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Abstract 

Genome-wide association studies (GWAS) have identified numerous susceptibility 

loci for Alzheimer’s disease (AD). However, utilizing GWAS to identify high-

confidence AD risk genes (ARGs) that can guide development of new therapeutics for 

patients suffering from AD has heretofore not been successful. To address this critical 

problem in the field, we have developed a genotype-informed, network-based 

methodology that interrogates pathogenesis to identify new therapeutics. When 

applied to AD, this approach integrates GWAS findings, multi-omics data from brain 

samples of AD patients and preclinical AD models, drug-target networks, and the 

human protein-protein interactome, along with large-scale patient database validation 

and in vitro mechanistic observations in human microglia cells. Through this 

approach, we identified 103 ARGs validated by various levels of pathobiological 

evidence in AD. Via network-based prediction and population-based validation, we 

then showed that pioglitazone usage is significantly associated with decreased risk of 

AD (hazard ratio (HR) = 0.895, 95% confidence interval [CI] 0.841-0.951, P = 3.97 x 

10-4) in a retrospective case-control validation. Pioglitazone is a peroxisome 

proliferator-activated receptor agonist used to treat type 2 diabetes, and propensity 

score matching cohort studies confirmed its association with reduced risk of AD in 

comparison to glipizide (HR =0.921, 95% CI 0.861-0.983, P = 0.0146), an insulin 

secretagogue that is also used to treat type 2 diabetes. In vitro experiments showed 

that pioglitazone downregulated glycogen synthase kinase 3 beta (GSK3β) and 

cyclin-dependent kinase (CDK5) in human microglia cells, supporting a possible 

mechanism-of-action for its beneficial effect in AD. In summary, we present an 

integrated, network-based methodology to rapidly translate GWAS findings and 

multi-omics data to genotype-informed therapeutic discovery in AD. 
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Introduction 

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder associated with 

progressive cognitive decline, extracellular amyloid plaques, intracellular 

neurofibrillary tangles, and neuronal death (Masters et al., 2015, Long and Holtzman, 

2019). AD and other dementias are an increasingly important global health burden, 

recently estimated to affect 43.8 million people worldwide (Nichols et al., 2019). 

Although genome-wide association studies (GWAS) have identified over 40 genome-

wide significant susceptibility loci for AD (Lambert et al., 2013, Cuyvers and 

Sleegers, 2016, Jung et al., 2018, Jansen et al., 2019) , translating these findings into 

identification of high-confidence AD risk genes (ARGs) and potential therapies has 

eluded the field. Indeed, since Dr. Alois Alzheimer first described the condition in 

1906, scientists have not developed any effective disease modifying treatments 

(Alzheimer, 1907, Long and Holtzman, 2019). 

The number of AD patients is expected to rise to 16 million by 2050 in the United 

States (U.S.) alone (Kodamullil et al., 2017, Alteri and Guizzaro, 2018), while the 

attrition rate for AD clinical trials (2002-2012) is estimated at 99.6% (Cummings et 

al., 2014). One possible explanation for why most candidate drugs fail in later-stage 

clinical trials is poor target selection. Broadly in disease, drug targets with genetic 

support have carried a high success rate amongst U.S. Food and Drug Administration 

(FDA)-approved therapies (Cook et al., 2014, Nelson et al., 2015). However, this has 

not been the case with AD, and the translational application of multi-omics data such 

as GWAS for target identification and therapeutic development in AD remains 
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challenging. 

    We recently demonstrated the utility of network-based methodologies for 

accelerating target identification and therapeutic discovery by exploiting multi-omics 

profiles from individual patients in multiple complex diseases, including 

cardiovascular disease (Cheng and Desai, 2018), cancer (Cheng and Lu, 2019), and 

schizophrenia (Wang et al., 2019). We now posit that systematic identification of 

likely causal genes by incorporating GWAS findings and multi-omics profiles with 

human interactome network models will also reveal disease-specific targets for 

genotype-informed therapeutic discovery in AD. This approach entails unique 

integration of the genome, transcriptome, proteome, and the human protein-protein 

interactome. Here, we report on application of this process to AD (Fig. 1A). 

Specifically, we integrated GWAS findings, multi-omics information generated from 

brain samples of individual AD patients and AD transgenic mouse models, publicly 

available drug-target networks, and the human protein-protein interactome, along with 

large-scale patient database validation and in vitro mechanistic observations in human 

microglia cells. By applying this network methodology to 106 AD loci, we identified 

a set of ARGs, most of which could be validated by multiple transcriptomic and 

proteomics profiles generated from AD transgenic mouse models. These ARGs 

represent enriched druggable targets for therapeutic discovery. Via a network-based 

prediction from findings of ARGs and population-based validation (Fig. 1B and C), 

we discovered that pioglitazone usage was significantly associated with decreased risk 

of AD in large-scale patient data. Subsequent in vitro mechanistic observations (Fig. 
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1D) revealed that pioglitazone significantly downregulates expression of glycogen 

synthase kinase 3 beta (GSK3b) and cyclin-dependent kinase 5 (CDK5) in human 

microglia cells, mechanistically supporting network-based and population-based 

findings.  

 

 

Materials and Methods 

Collection of GWAS SNPs from large-scale studies 

In this study, we assembled multiple single nucleotide polymorphisms (SNPs) 

associated with AD from 15 large-scale GWAS studies in diverse population groups, 

conducted between 2007 and 2019 (Supplementary Table 1). Collectively, these 

studies include over 270,000 AD cases and 1100,000 controls. To maximize genetic 

signals based on the omnigenic hypothesis (Boyle et al., 2017), we adopted a loose 

threshold (P < 1 x 10-5) to collect AD risk SNPs, which yielded 106 unique GWAS 

SNPs. 

 

Construction of human protein-protein interactome 

To build a comprehensive human protein-protein interactome, we assembled data 

from 15 common resources with multiple levels of experimental evidence. 

Specifically, we focused on high-quality protein-protein interactions (PPIs) with the 

following five types of experimental data: (1) binary PPIs tested by high-throughput 

yeast-two-hybrid (Y2H) systems; (2) kinase-substrate interactions by literature-

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 18, 2020. ; https://doi.org/10.1101/2020.01.15.20017160doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.15.20017160


 7 

derived low-throughput and high-throughput experiments; (3) literature-curated PPIs 

identified by affinity purification followed by mass spectrometry (AP-MS), Y2H and 

by literature-derived low-throughput experiments, and protein three-dimensional 

structures; (4) signaling network by literature-derived low-throughput experiments; 

(5) protein complex data (see Supplementary Methods). The genes were mapped to 

their Entrez ID based on the NCBI database, and duplicated pairs were removed. 

Collectively, the integrated human interactome included 351,444 PPIs connecting 

17,706 unique proteins. More details are provided in our recent studies (Cheng and 

Desai, 2018, Cheng and Lu, 2019)  

 

Collection of functional genomics data 

We collected the distal regulatory element (DRE)-promoter links inferred from two 

studies. The first study was the capture Hi-C study of cell line GM12878 (Mifsud et 

al., 2015). We obtained 1,618,000 DRE-promoter links predicted for GM12878 from 

http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2323/. The other dataset we 

used was from the FANTOM5 project (Andersson et al., 2014), in which cap analysis 

of gene expression (CAGE) technology was employed to infer enhancer-promoter 

links across multiple human tissues. We downloaded FANTOM5 data from 

http://enhancer.binf.ku.dk/presets/ and obtained 66,899 enhancer-promoter links. 

 

Collection of biological and functional data 

Disease-associated genes from Open targets. Open targets refers to a comprehensive 
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platform for therapeutic target identification and validation (Koscielny et al., 2017). 

We collected 527 AD disease-associated genes (Supplementary Table 2) from the 

Open Targets database (Assess in September, 2019).  

 

Experimentally validated genes for Alzheimer’s disease. We further collected 144 

high-quality experimentally validated AD genes (Supplementary Table 2), which 

combined genes involved in pathobiology of amyloidosis, tauopathy, or both, and 

genes characterizing other AD pathological hypothesis including neuroinflammation 

and vascular dysfunction (Supplementary Method).  

 

Brain specific expression. We downloaded RNA-Seq data (RPKM value) of 32 tissues 

from GTEx V6 release (accessed on April 01, 2016, https://gtexportal.org/home/). We 

defined those genes with RPKM≥1 in over 80% of samples as tissue-expressed genes 

and the other genes as tissue-unexpressed. To quantify the expression significance of 

tissue-expressed gene 𝑖 in tissue 𝑡, we calculated the average expression 〈𝐸(𝑖)〉 and 

the standard deviation 𝛿)(𝑖) of a gene’s expression across all considered tissues. The 

significance of gene expression in tissue 𝑡 is defined as  

𝑧)(𝑖, 𝑡) = (𝐸(𝑖, 𝑡) −	 〈𝐸(𝑖)〉)/𝛿)(𝑖)          (1) 

The details have been described in previous studies (Cheng and Desai, 2018, Cheng 

and Lu, 2019). 

 

Gene Expression. We collected human microarray data in AD cases versus controls 
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with brain samples from two independent datasets (GSE29378 and GSE84422) 

(Miller et al., 2013, Wang et al., 2016). We also collected mouse microarray data from 

AD transgenic mouse vs. controls, including brain microglia of 5XFAD mice from 2 

independent datasets (GSE65067 and GSE74615) (Orre et al., 2014, Wang et al., 

2015), and brain hippocampus of Tg4510 mice (GSE53480 and GSE57583) (Polito et 

al., 2014). 

The original microarray datasets were obtained from Gene Expression Omnibus 

(https://www.ncbi.nlm.nih.gov/geo). Detailed information of these 6 GEO datasets is 

provided in Supplementary Table 3. All raw expression data were log2 transformed, 

and all samples were quantile normalized together. Probe IDs in each dataset were 

mapped to National Center for Biotechnology Information (NCBI) Entrez IDs, and 

probes mapping to multiple genome regions or without corresponding entrez IDs were 

deleted. The items were imported to R statistical processing environment using a 

LIMMA/Bioconductor package. All the mouse genes were further transferred into 

unique human-orthologous genes using the Mouse Genome Informatics (MGI) 

database (Eppig et al., 2017). Genes with threshold fold change (FC) > 1.2 were 

defined as exhibiting differential expression and prioritized as predicted AD risk 

genes.  

 

Enrichment analysis 

Differentially expressed gene/protein (DEG/DEP) sets from multiple data sources 

were collected for enrichment analysis. This included a total of 6 bulk RNA-seq 
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datasets and 10 proteomic datasets from 4 types of AD transgenic mouse models, 

including 5XFAD, Tg4510, ADLPAPT and hAPP (see Supplementary Method). 

 

Bulk RNA-seq. We collected 2 RNA-seq datasets from brain or brain microglia of 

5XFAD mice. In addition, we obtained 4 RNA-seq datasets from brain microglia of 

Tg4510 mice across different months [M] age (2M, 4M, 6 M, and 8M). Differential 

expression analysis was performed using DESeq (Anders, 2010), while threshold for 

significance of differential expression was set to FDR < 0.05 using Benjamini-

Hochberg’s method. After mapping mouse genes to human-orthologous gene (Eppig 

et al., 2017), we obtained 6 differentially expressed gene sets. 

 

Proteomics. In total, 10 proteomic datasets were assembled from 3 types of AD 

transgenic mouse models in two recent publications (Savas et al., 2017, Kim et al., 

2018). The first study performed global quantitative proteomic analysis in hAPP and 

hAPP-PS1 mouse models at young (3 month [M]) and old ages (12 M) (Savas et al., 

2017). We obtained four sets of DEPs (hAPP_3M, hAPP_12M, hAPP-PS1_3M and 

hAPP-PS1_12M) after merging the DEPs from different brain regions. The second 

study performed quantitative proteomics to uncover molecular and functional 

signatures in the hippocampus of three types of transgenic mice (Kim et al., 2018). 

Two of these mouse lines, including ADLPAPT (4M, 7M, 10M) that carry three 

human transgenes (APP, PSEN1 and tau) and hAPP-PS1 (4M, 7M, 10M) mouse, were 

used in this study. After mapping mouse genes to human-orthologous gene (Eppig et 
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al., 2017), we obtained 10 sets of DEPs. 

 

AD risk gene prediction 

We utilized our recently developed Bayesian model selection method to predict ARGs 

(Fig 1A), based on the assumption that true risk genes are more densely connected 

with each other in a biological network (Wang et al., 2019). Specifically, we collected 

at most 20 genes in the 2Mb region centered at a GWAS index SNP as the candidates 

for that particular locus. Assigning L as the number of GWAS loci, and we then 

denoted a vector of genes with length L, each being from one of the L GWAS loci, as 

(X1, …, XL), and termed it as candidate risk gene set (CRGS). Assigning N to 

represent the biological network, we then calculated P(X1,…, XL|N), and selected a 

CRGS with maximum posterior probability. Computationally, it is not feasible to 

enumerate all possible gene combinations, and we therefore adopted a Gibbs sampling 

algorithm to transition the problem into a single-dimensional sampling procedure. For 

example, when sampling the risk gene from candidates at the L-th locus, we assumed 

that the risk genes at all other L-1 loci had been selected, and the sampling probability 

for a gene at the L-th locus was computed as conditional on the L-1 risk genes, based 

on its closeness to other L-1 risk genes in the network. For each candidate gene XL at 

the L-th locus, we assigned M1 to represent the event that XL is the risk gene at locus 

L, M0 represent the event that XL is not the risk gene at locus L, and X-L to represent all 

the selected risk genes in the other L-1 loci. The Bayesian model selection can be 

depicted as 
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0(12|456,7)
0(18|456,7)

= 0(12)
0(18)

0(456|12,7)
0(456|18,7)

           (2) 

where 0(456|12,7)
0(456|18,7)

 is a Bayesian Factor (BF) measuring the closeness between X-L and 

XL in network N and 0(12)
0(18)

 is prior odds. The prior odds reflect the prior knowledge 

whether XL is a risk gene or not and we assumed P(M1) = P(M0) in this study. 

In regarding to 
0(456|12,7)
0(456|18,7)

, we adopted the random walk with restart (RWR) 

algorithm to calculate the BF. Starting from any node 𝑛: in a predefined network N, 

the walker faces two options at each step: either moving to a direct neighbor with a 

probability 1 − 𝑟 or jumping back to 𝑛: with a probability 𝑟. The fixed parameter 

𝑟 is called the restart probability in RWR, and 𝑟 was set as 0.3 in this study (Wang et 

al., 2019). Let 𝑊 be the adjacency matrix that decides which neighbor to be moved 

to, and 𝑞? be the reaching probability of all nodes at step 𝑡. The RWR algorithm is 

formalized as 

𝑞?@A = (1 − 𝑟)𝑊𝑞? + 𝑟𝑠DE              (3) 

𝑠DE is a vector with the 𝑖-th element as 1 and 0 for others, which means th starting 

node is 𝑛:. Following the equation, 𝑞? can be updated step by step until 

|𝑞?@A − 𝑞?|F < 𝑇IJI, where 𝑇IJI is a predefined threshold. We set 𝑇IJI as 1e-6 

(Wang et al., 2019). The adjacency matrix 𝑊 represents the distance between any 

two nodes in the network and we adopted the same network and strategy in our 

previous work to calculate W. We calculated 𝑃(𝑋MN|𝑀A, 𝑁) based on 𝑊. We 

mapped 𝑋N to the rows of 𝑊 and 𝑋MN to the columns of 𝑊, and obtained a vector 

with the same length as 𝑋MN. The sum of the vector was calculated as 𝑃(𝑋MN|𝑀A,

𝑁). In this study, we assumed 𝑃(𝑋MN|𝑀Q, 𝑁) to be the same for all different 
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candidate genes. Through the Bayesian model selection equation, 

0(12|456,7)
0(18|456,7)

= 0(12)
0(18)

0(456|12,7)
0(456|18,7)

               (4) 

we obtained a value for each candidate genes at locus L. We used these values as 

sampling probabilities for Gibbs sampling to choose a risk gene for locus L. We then 

repeated the sampling across the remaining loci and iterated the sampling process 

until convergence. Specially, in each round of Gibbs sampling, we calculated the 

sampling frequency for each candidate gene. The frequency was compared with that 

of the previous round, and if the sum of squares of frequency differences across all 

selected genes was smaller than a predefined threshold (1 x 10-4 used in this study) 

then the sampling procedure was halted. Based on the sampling, we are able to assess 

the confidence of candidates being risk genes. In this study, we selected the gene with 

highest sampling frequency as risk gene for each locus as described previously (Wang 

et al., 2019). 

 

Construction of drug-target network 

We integrated six commonly used resources to collect high-quality physical drug-

target interactions for FDA-approved drugs. We obtained biophysical drug-target 

interaction using reported binding affinity data: inhibition constant/potency (Ki), 

dissociation constant (Kd), median effective concentration (EC50), or median 

inhibitory concentration (IC50) ≤ 10 µM. First, we extracted the bioactivity data from 

the DrugBank database (v4.3) (Wishart et al., 2018), the Therapeutic Target Database 

(TTD, v4.3.02) (Li et al., 2018), and the PharmGKB database (Barbarino et al., 
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2018). In addition, we acquired drug-target interactions related to FDA-approved 

drugs from three commonly used databases (Cheng and Lu, 2019). To improve data 

quality, we pooled only those items that satisfied the following four criteria: (i) 

binding affinities, including Ki, Kd, IC50, or EC50, ≤ 10 µM; (ii) the target protein has a 

unique UniProt accession number; (iii) proteins marked as “reviewed” in the UniProt 

database; and (iv) proteins are from Homo sapiens. Totally, we collected 15,367 drug–

target interactions connecting 1,608 FDA-approved drugs and 2,251 unique human 

targets (Supplementary Table 4).  

 

Description of network proximity 

Given the set of disease proteins (𝐴), the set of drug targets (𝐵), then the closest 

distance 𝑑UV measured by the average shortest path length of all the nodes to the 

other module in the human protein-protein interactome can be defined as: 

〈𝑑UV〉 =
1

W|𝐴|W + ‖𝐵‖
YZ𝑚𝑖𝑛\∈V
^∈U

𝑑(𝑎, 𝑏) +Z𝑚𝑖𝑛^∈U
\∈V

𝑑(𝑎, 𝑏)a																(5) 

where 𝑑(𝑎, 𝑏) denotes to the shortest path length between protein 𝑎 and drug target 

𝑏. 

To calculate the significance of the network distance between a given drug and 

disease module, we constructed a reference distance distribution corresponding to the 

expected distance between two randomly selected groups of proteins of the same size 

and degree distribution as the original disease proteins and drug targets in the 

network. This procedure was run 1000 times. The mean 𝑑̅ and standard deviation 

(𝜎e) of the reference distribution were used to caluculate a z-score (𝑧e) by converting 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 18, 2020. ; https://doi.org/10.1101/2020.01.15.20017160doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.15.20017160


 15 

an observed (non-Euclidean) distance 𝑑 to a normalized distance: 

𝑧e =
𝑑 − 𝑑̅
𝜎e

																(6) 

 

Pharmacoepidemiologic validation 

Patient Cohort Preparation. The pharmacoepidemiology study utilized the 

MarketScan Medicare Supplemental database from 2012 to 2017. The dataset 

included individual-level diagnosis codes, procedure codes, and pharmacy claims for 

~7 million patients per year. Pharmacy prescriptions of pioglitazone and glipizide 

were identified by using RxNorm and National Drug Code (NDC). For a subject 

exposed to the aforementioned drugs, a drug episode is defined as the time between 

drug initiation and drug discontinuation. Specifically, drug initiation is defined as the 

first day of drug supply (i.e. first prescription date). Drug discontinuation is defined as 

the last day of drug supply (i.e. last prescription date + days of supply) accompanied 

by no drug supply for the next 60 days. Gaps of less than 60-day of drug supply were 

allowed within a drug episode. The pioglitazone cohort included the first pioglitazone 

episode for each subject, as well as the glipizide cohort. Further, we excluded 

observations that started within 180-days of insurance enrollment. For the final 

cohorts, demographic variables including age, gender and geographical location were 

collected. Additionally, diagnoses of hypertension (HTN) and type 2 diabetics (T2D) 

(the ICD codes were given in Supplementary Materials and Method) before drug 

initiation were collected. These variables were specifically selected to address 

potential confounding biases. Lastly, a control cohort was selected from patients not 
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exposed to pioglitazone. Specifically, non-exposures were matched to the exposures 

(ratio 1:4) by initiation time of pioglitazone, enrollment history, age, and gender. The 

geographical location, diagnoses of HTN and T2D were collected for the control 

cohort as well.  

 

Outcome measurement. The outcome was time from drug initiation to diagnose of 

AD, which was defined by using the ICD codes (Supplementary Materials and 

Method). For pioglitazone and glipizide cohorts, observations without diagnose of 

AD were censored at the end of drug episodes. For the control cohort, the 

corresponding pioglitazone episode’s starting date was used as the starting time. 

Observations without diagnosis of AD were censored at the corresponding 

pioglitazone episode’s end date. 

 

Statistical analysis. Survival curves for time to AD were estimated using a Kaplan-

Meier estimator. Additionally, propensity score stratified survival analysis was 

conducted to investigate the risk of AD between pioglitazone users and non-

pioglitazone users, as well as pioglitazone users and glipizide users. For each 

comparison, the propensity score of taking pioglitazone was estimated by using a 

logistic regression model in which covariates included age, gender, geographical 

location, T2D diagnosis, and HTN diagnosis. Furthermore, propensity score stratified 

Cox-proportional hazards models were used to conduct statistical inference for the 

hazard ratios (HR) of developing AD between cohorts. 
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Experimental validation 

Reagents. Pioglitazone was acquired from Topscience. Lipopolysaccharides (LPS) 

(Cat# L2880) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) were obtained from Sigma-Aldrich. Antibodies against Phospho-GSK3B-

Y216 (Cat# AP0261), GSK3B (Cat# A2081) and CDK5 (Cat# A5730), were 

purchased from ABclonal Technology. CDK5-Phospho-Tyr15 (Cat# YP0380) was 

obtained from Immunoway (Plano, Texas, USA). All other reagents were purchased 

from Sigma-Aldrich unless otherwise specified.  

 

Cell viability. Human microglia HMC3 cells were purchased from American Type 

Culture Collection (ATCC, Manassas, VA). Cell viability was detected by MTT 

method as described previously (Huang et al., 2019). 5000 cells/well were plated in 

96-well plates for 12 h, and then treated with pioglitazone for 48 h. After treatment, 

MTT solution was added to the cells to a final concentration of 1 mg/mL and the 

mixture was allowed to incubate at 37 °C for 4 h. The supernatant was removed, and 

precipitates were dissolved in DMSO. Absorbance was measured at 570 nm using a 

Synergy H1 microplate reader (BioTek Instruments, Winooski, VT, USA). 

 

Western blot analysis. HMC3 cells were pre-treated with pioglitazone (3 µM or 10 

µM) and DMSO (control vehicle), and followed with 1 µg/mL LPS for 30 min. Cells 

were harvested, washed with cold PBS, and then lysed with RIPA Lysis Buffer with 
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1% Protease Inhibitor (Cat# P8340, Sigma-Aldrich). Total protein concentrations 

were measured using a standard BCA protein assay kit (Bio-Rad, CA, USA), 

according to the manufacturer’s manual. Samples were electrophoresed by sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), then blotted onto a 

polyvinylidene difluoride (PVDF; EMD Millipore, Darmstadt, Germany) membrane. 

After transferring, membranes were probed with specific primary antibodies (1:1000) 

at 4°C overnight. Specific protein bands were detected using a chemiluminescence 

reagent after hybridization with a horseradish peroxidase (HRP)-conjugated 

secondary antibody (1:3000). 

 

 

Results 

Pipeline of the network-based methodology 

We utilized a Bayesian model selection method to predict ARGs (Wang et al., 2019), 

based on the assumption that likely causal risk genes are more densely connected with 

each other in a biological network (Fig. 1A). Specifically, we collected at most 20 

genes in a 2 Mb region centered at a GWAS index SNP as the candidates for that 

particular locus. We then calculated a posterior probability for each candidate gene 

based on its closeness to other risk genes in the biological network. For each GWAS 

locus, the candidate gene with the highest posterior probability was predicted as an 

ARG (see Methods). By applying this framework to the 106 AD GWAS loci we 

collected (Methods), we predicted 103 ARGs after merging the overlapping genes 
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across several different loci (Supplementary Table 5). Meanwhile, we also predicted 

a set of local background genes (LBGs) as a control group in the following analyses 

(Wang et al., 2019). We validated our 103 ARGs using multi-omics data, including 

functional genomic characteristics and transcriptomics, as well as proteomic profiles 

generated from diverse AD transgenic mice models. 

 

Multi-omics validation of network-predicted risk genes in AD 

A significant disease module formed by ARGs in the human interactome. AD involves 

a complex, polygenic, and pleiotropic genetic architecture. We found that 103 ARGs 

formed significantly connected subgraphs (termed disease module) rather than being 

scattered randomly in the human protein-protein interactome, consistent with previous 

disease module analyses that we demonstrated in other multiple complex diseases 

(Cheng and Desai, 2018, Cheng and Lu, 2019). Specifically, 68.0% of ARGs (70/103, 

P=0.015, permutation test) form the largest connected subnetwork (disease module), 

in comparison to the same number of randomly selected genes with similar 

connectivity (degree) as the original seed genes in the human interactome 

(Supplementary Fig. S1). This disease module (Fig. 2A) includes 128 PPIs (edges or 

links) connecting 70 unique proteins (nodes). Network analysis revealed 14 proteins 

with connectivity higher than 5, the top five of which were ESR1, PSMC5, MAPK1, 

PAK1 and NFKB1. These same five genes have previously been implicated in AD 

(Granic et al., 2009, Conejero-Goldberg et al., 2011, Ma et al., 2012, Wang et al., 

2016). For example, ESR1 interacts with tau protein in vivo, and prevents glutamate 
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excitotoxic injury by Aβ via estrogen signaling (Wang et al., 2016). Gene expression 

analysis shows that PSMC5 was significantly overexpressed in patients carrying 

APOE4 mutations in comparison to APOE4 wild-type group (Conejero-Goldberg et 

al., 2011). In summary, 103 predicted ARGs comprise a strong disease module in the 

human interactome. 

 

ARGs capture more gene regulatory elements. Because a majority of GWAS SNPs lie 

in non-coding region and exert their function by gene regulation (Zhao et al., 2018), 

we explored the gene regulatory elements of ARGs by testing the hypothesis that the 

network-predicted risk genes capture more distal regulatory elements (DREs)-

promoter connections compared to background. We collected DRE-promoter 

connection data generated by two technologies: Cap Analysis of Gene Expression 

(CAGE) from Functional Annotation of the Mammalian Genome 5 (FANTOM5) 

project and capture Hi-C (see Methods) (Andersson et al., 2014, Won et al., 2016). 

Through this, we found that the ARGs are indeed connected to more DREs in both 

capture Hi-C data (P = 9.70 x 10-4, Fig. 2B) and FANTOM5 data (P = 3.52 x 10-3, Fig. 

2C). 

 

ARGs are more likely to be differentially expressed in AD. We next investigated 

differential gene expression of ARGs under different pathobiology contexts of AD. 

Specifically, we measured fold changes of microarray expression levels of ARGs 

compared to 571 local background genes (LBGs). We found that ARGs were more 
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likely to be differentially expressed in: (i) brain transcriptome of AD patients (Fig. 2D 

and 2E); and (ii) mouse brain transcriptome from different AD transgenic mouse 

models (Fig. 2F-2I), including two transcriptomics datasets from 5XFAD mouse 

brain microglial cells (Fig. 2F and 2G) and two tauopathy-related transcriptomics 

datasets (Tg4510) from mouse brain hippocampus (Fig. 2H and 2I). We further 

performed differentially expressed gene enrichment analysis for network-predicted 

ARGs in AD. We collected bulk RNA-seq data from whole brain tissue or brain 

microglial cells from two common AD transgenic mouse models (5XFAD and 

Tg4510) and observed that ARGs were significantly differentially expressed in 

5XFAD brain (P=0.003), 5XFAD microglial cells (P=0.002), and brain microglial of 

Tg4510 (Supplementary Table 6). This suggests that our identified ARGs are 

potentially involved in the pathobiology of AD. 

 

ARGs coding proteins are more likely to be differentially expressed in AD. We further 

inspected differentially expressed proteins encoded by 103 network-predicted ARGs 

across 10 published proteomics datasets (see Supplementary Methods). Herein, we 

evaluated 3 types of AD transgenic mouse models: (a) hAPP model containing APP 

transgene, (b) 5XFAD model harboring human transgenes for both APP and PSEN1 

mutations, and (c) ADLPAPT model carrying three human transgenes (APP, PSEN1 

and tau). We found that products of ARGs were significantly differentially expressed 

in all 3 AD transgenic mouse models (P <0.05, Fisher test, Supplementary Table 6). 

     Collectively, we have thus shown that network-predicted ARGs are 
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significantly involved in disease-related functional genomics, transcriptomics, and 

proteomics, supporting their role as likely causal genes for AD. 

 

Incorporation of AD multi-omics data to prioritize ARGs 

To prioritize ARGs we integrated multi-omics profiles. In total, we incorporated  8 

criteria that can be categorized into 5 types of biological evidence: (1) brain-

expression specificity (z-score) derived from GTEx database, (2) availability of 

supportive experimental evidence from the literature and manually curated data from 

Open Targets database (Koscielny et al., 2017), (3) experimentally validated AD 

genes, (4) differential gene expression, and (5) available drug targets. Figure 3 shows 

a global view of 103 ARGs that we validated by these multiple forms of biological 

evidence in AD. Among 103 ARGs, 89 genes (86.4% [89/103]) satisfy at least one 

criterion. In addition, 15 ARGs have at least 5 forms of AD-related evidence, 

including 8 well-known AD genes: APOE, PTK2B, NOS1, MEF2C, SORL1, EPHA5, 

ADAM10, and CD33. For the rest of the ARGs, all but BRSK1 had corresponding 

published literature-derived evidence. For example, PAK1 is a predicted risk gene 

with 6 criteria of biological evidence: high brain expression specificity (z-

score=2.83), supportive experimental evidence from the literature, druggable target 

data, and, differential expression in human brain of AD patients, microglial cells of 

5XFAD mouse model, and brain hippocampus of a tau mouse model (Fig. 3 and 

Supplementary Table 7). P21-activated kinase 1, encoded by the PAK1 gene, has 

been implicated in AD (Zhao et al., 2006), and recent studies have revealed that 
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inactivation of PAK1 obliterated social recognition without changing amyloid beta 

(Aβ)/tau pathology, and also exacerbated synaptic impairment and behavioral deficits 

in mouse models of AD (Arsenault et al., 2013, Bories et al., 2017). 

   Among 103 ARGs, we selected 37 (Supplementary Table 7) using subject matter 

expertise based on a combination of factors: (i) high brain-expression specificity, (ii) 

differential expression in multiple AD transgenic mouse models; (iii) strength of the 

network-based prediction; and (iv) availability of supportive experimental evidence. 

To advance disease understanding of network-predicted high-confidence risk genes, 

we performed biological pathway enrichment analysis using ClueGO plugin in 

Cytoscape (Supplementary Table 8) (Bindea et al., 2009). We found 4 statistically 

significant biological pathways in AD: (a) regulation of neurotransmitter transport, (b) 

Aβ-related biologic process, (c) long-term synaptic potentiation, and (d) oxidative 

stress (Table 1 and Supplementary Table 9). 

 

Neurotransmitter transport. Specifically, MEF2C and RIMS1, encoding myocyte-

specific enhancer factor 2C and regulating synaptic membrane exocytosis protein 1, 

play key roles in neurotransmitter secretion and synaptic plasticity. MEF2C 

(rs254776) has been reported in several GWAS studies (Allen et al., 2015, Karch and 

Goate, 2015), and we found significantly lower expression of MEF2C in AD brain (P 

= 1.26 x 10-3, one side Wilcoxon test, Supplementary Fig. 2A). RIMS1 is a newly 

predicted ARG, and a recent proteome study from human hippocampus revealed its 

overexpression in AD (Hondius et al., 2016). RIMS1 is significantly overexpressed in 
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5XFAD mouse microglia (P = 4.51 x 10-3, one side Wilcoxon test) compared to 

controls (Supplementary Fig. 2B). 

 

Beta-amyloid-related biologic process. Five genes (APOE, ADAM10, CHRNA7, 

SORL1, and LRP2) are associated with beta-amyloid biologic process. Among them, 

APOE, ADAM10, and SORL1 are well-known AD risk genes, validated by large 

scale genetic studies and preclinical studies (Fjorback et al., 2012, Lambert et al., 

2013, Kunkle et al., 2019). For example, APP cleavage by ADAM10 will produce an 

APP-derived fragment that is neuroprotective, sAPPα (Peron et al., 2018). CHRNA7 

(neuronal acetylcholine receptor subunit alpha-7) and LRP2 (low-density lipoprotein 

receptor-related protein 2) are two newly identified risk genes. There is significantly 

lower expression of CHRNA7 in the Tg4510 mouse transcriptome (P = 4.55 x 10-4) 

compared to controls (Supplementary Fig. 2E). CHRNA7 binds to Aβ with a high 

affinity (Farhat and Ahmed, 2017). Finally, a previous study showed that the 

rs3755166 polymorphism within LRP2 is associated with susceptibility to AD in the 

Chinese population (Wang et al., 2011).  

 

Long-term synaptic potentiation. Mitogen-activated protein kinase (MAPK1) and 

PTK2B are two identified risk genes related to long-term synaptic potentiation. 

Mitogen-activated protein kinase 1, encoded by MAPK1 gene, is highly expressed in 

brain tissue (z-score = 3.51). The MAPK1 cascade can be activated by Aβ via alpha7 

nicotinic acetylcholine receptors (Dineley et al., 2001), and significantly lower 
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expression of MAPK1 was found in Tg4510 mice (P = 8.27 x 10-3) compared to 

controls (Supplementary Fig. 2F). PTK2B, a well-known AD gene with high 

expression in brain (z-score = 1.62), was identified as an early marker and in vivo 

modulator of tau pathology (Dourlen et al., 2017), by mediating Aβ-induced synaptic 

dysfunction and loss (Salazar et al., 2019). 

 

Oxidative stress. Oxidative stress is a prominent hypothesis in the pathogenesis of AD 

(Jiang et al., 2016). Here we found four network-predicted ARGs (FOXO3, NOS1, 

NFKB1, and ESR1) that were associated with regulation of oxidative stress. FOXO3 

encoding Forkhead box protein O3 transcription factor, is a direct substrate of CDK5. 

FOXO3 activates several genes (e.g. BCL2L11 and FASLG) to promote neuronal 

death and aberrant Aβ processing (Shi et al., 2016). Significantly lower expression of 

FOXO3 was found in 5XFAD mouse microglia (P = 8.62 x 10-4) compared to controls 

(Supplementary Fig. 2H). NFKB1, encoding transcription factor nuclear factor 

kappa B (NF-κB), is implicated in oxidative stress, synaptic plasticity, and learning 

and memory (Snow and Albensi, 2016). 

Taken together, these findings suggest that our network-predicted ARGs are 

involved in diverse pathobiological pathways of AD. However, experimental 

validations are warranted for several newly predicted ARGs. 

 

High druggability of network-predicted ARGs 

To date, most disease genes generated from GWAS findings are undruggable (Okada 
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et al., 2014). For example, a recent study revealed that none of approved and 

investigational AD drugs target products (proteins) of GWAS-derived genes in AD 

(Kwok et al., 2018). We examined whether network-predicted ARGs were more 

druggable compared to randomly selected proteins from human protein-coding gene 

background. Based on drug-target networks from 6 commonly used resources (see 

Methods), we obtained 2,866 potential druggable proteins for FDA-approved or 

clinically investigational drugs. Surprisingly, we found that 41 out of 103 predicted 

ARGs (39.8 %) are known druggable proteins, which is four-fold higher than 

druggable proteins (P = 9.25 X 10-11, Fisher test) in the genome-wide human protein-

coding gene background. High druggability of network-predicted ARGs offers more 

candidate targets for therapeutic discovery (such as drug repurposing) in AD. For 

example, ADRA2A, one of the predicted ARGs, encodes adrenoceptor alpha 2A 

receptor. ADRA2A is a potential target of clozapine (Philibin et al., 2009), an atypical 

antipsychotic drugs. Long-term clozapine treatment reduces Aβ deposition and 

improves cognitive impairment in an AD transgenic mice model (Choi et al., 2017). 

NR1I3, encoding the nuclear receptor constitutive androstane receptor (CAR), is a 

potential drug target activated by the lipid-lowering drug simvastatin (Kobayashi et 

al., 2005). Simvastatin was reported to significantly reduce levels of Aβ in vitro and in 

vivo (Yamamoto et al., 2016, Li et al., 2018). In summary, network-predicted ARGs 

showed higher druggability compared to traditional GWAS-based analysis 

approaches. We next examined opportunities for drug repurposing by integrating 

findings from ARGs with the human protein-protein interactome network. 
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ARGs offer candidate targets for Alzheimer's drug repurposing 

We have shown that network-predicted ARGs are related to the known pathobiology 

of AD and offer potential druggable targets, prompting us to examine opportunities 

for AD therapeutic discovery. We hypothesized that for a drug with multiple targets to 

be beneficial for treating a disease, its target proteins should be within or in the 

immediate vicinity of the corresponding disease module (Fig. 2A) in the human 

interactome network. To examine the potential application of ARGs on AD drug 

repurposing, we applied a network proximity approach (Cheng and Desai, 2018) to 

quantify the interplay between AD modules from ARGs and drug targets in the human 

interactome network. We used the cutoff of Z score (Z < -1.5) to select network-

predicted repurposable drugs in AD. After exclusion of nutraceutical drugs, metal 

drugs, and radioactive diagnostic agents, 130 drug candidates were obtained. We then 

systematically retrieved the published anti-AD clinical, in vitro/in vivo reported data 

for the 130 predicted drugs. In total, 25 had corresponding preclinical or clinical 

evidence for potential application to AD (Supplementary Table 10). Figure 4 shows 

the molecular mechanisms of the 25 predicted drug candidates with published 

experimental or clinical evidence for AD. These drugs are classified into 6 categories 

according to Anatomical Therapeutic Chemical classification (ATC) codes: 

musculoskeletal systems [n=6], genito urinary and hormones [n=5], cardiovascular 

[n=3], alimentary tract and metabolism [n=3], respiratory system [n=2], and others 

[n=6]. 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 18, 2020. ; https://doi.org/10.1101/2020.01.15.20017160doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.15.20017160


 28 

Among them, we found 4 predicted drugs having known AD clinical evidence 

(Galimberti and Scarpini, 2017, Lehrer and Rheinstein, 2018), including pioglitazone 

[NCT02913664], carvedilol [NCT01354444], febuxostat (Singh and Cleveland, 

2018), and fluticasone (Lehrer and Rheinstein, 2018). Pioglitazone, an FDA approved 

drug for T2D, has a significant network proximity (Z = -1.64) with the ARGs. Figure 

4 shows that pioglitazone targets six proteins by connecting with 12 neighborhoods of 

ARGs.  

Several clinical trials conducted with pioglitazone to treat AD. A phase II study 

(NCT00982202) shows no statistically significant difference between controls and 

patients with mild to moderate AD (Geldmacher et al., 2011). However, another study 

showed that pioglitazone was associated with cognitive and functional improvement, 

as well stabilization of AD in 42 diabetic patients (Sato et al., 2011). Many of these 

studies were conducted in populations without biological confirmation of AD by 

biomarkers and in some case (e.g., the TOMMOW study; NCT01931566), the dose of 

pioglitazone was substantially lower than that used in clinical practice for the 

treatment of diabetes. The available clinical trial data do not exclude a beneficial 

effect of pioglitazone on AD. Except for the TOMMOW study that was conducted in 

cognitively normal at-risk individuals, other trials have examined symptomatic 

patients that address a question different from the risk-reduction interrogation we 

prosecuted. For these reasons, we chose pioglitazone to test the drug user’s 

relationship with AD outcomes using state-of-the-art pharmacoepidemiologic analysis 

of large-scale patient data. 
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Network-predicted pioglitazone usage reduces risk of AD in patient data 

We selected pioglitazone, identified by the network proximity measure (closest), to 

assess the drug user’s relationship with AD outcomes (Supplementary Table 11) by 

analyzing 7.23 million patients from the Medicare supplemental database (see 

Methods). Two comparison analyses were conducted to evaluate the predicted 

association based on individual level longitudinal patient data and state-of-the-art 

pharmacoepidemiologic methods. These included: (1) pioglitazone (n = 101,650) 

versus matched control population (n = 410,184), and (2) pioglitazone versus 

glipizide (a T2D drug, n = 191,656). Table 2 summarizes the patient data for 

pharmacoepidemiologic analyses. For each comparison, we estimated the un-stratified 

Kaplan-Meier curves, conducted by both propensity score stratified (n strata = 10) 

log-rank test and Cox model. After 6 years of follow-up, pioglitazone significantly 

reduces risk of AD compared with match control population (P = 3.97x10-4, hazard 

ratio (HR) = 0.895, 95% confidence interval [CI] 0.841-0.951, Fig. 5A and 5C). 

Importantly, propensity score matching cohort studies confirms that pioglitazone is 

associated with a reduced risk of AD in comparison to glipizide (HR =0.921, 95% CI 

0.861-0.983, P = 0.0146, Fig. 5B and 5C). Thus, two comparison analyses support 

our network-based prediction. 

 

In vitro observation of pioglitazone’s mechanism-of-action in AD 

Figure 5 reveals that pioglitazone significantly reduces risk of AD in patient-based 
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data. To investigate its mechanism-of-action in AD, we performed a network analysis 

through integration of drug targets and ARGs into the brain-specific PPI network (see 

Methods). Network analysis shows that pioglitazone potentially targets two 

tauopathy-related proteins (GSK3β and CDK5) in AD (Fig. 6A). RNA sequencing 

data from the GTEx database (GTEx Consortium, 2015) suggests that GSK3β and 

CDK5 are highly expressed in brain tissue. Accumulating studies suggested that 

inhibition of GSK3β and CDK5 activity is a potential therapeutic strategy for AD 

(Mazanetz and Fischer, 2007). 

We next examined pioglitazone’s mechanism-of-action on human microglia 

HMC3 cells. Firstly, to assess the potential cell cytotoxicity, HMC3 cells were treated 

with pioglitazone at various concentrations (0.03 µM to 100 µM) for 48 h, and cell 

viability was determined by MTT method. As presented in Fig. 6B, pioglitazone at 

0.03 µM to 10 µM did not affect cell viability, revealing low toxicity in human cells. 

Thus, these optimized concentrations of pioglitazone (≤ 10 µM) were used in 

subsequent experiments. As shown in Fig. 6C, phosphorylation of GSK3β and CDK5 

were significantly increased after LPS treatment (1 µg/mL for 30 min) in HMC3 cells. 

Pre-treating with pioglitazone significantly reduced phosphorylated GSK3β and 

CDK5 in a dose-dependent manner (Fig. 6D and 6E and Supplementary Fig. 3). 

Altogether, these data suggest that pioglitazone may offer potential benefits for 

patients with AD by reducing activation of GSK3β and CDK5. 
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Discussion 

AD risk involves a complex polygenic and pleiotropic genetic architecture (Long and 

Holtzman, 2019). Traditional reductionist paradigms overlook the inherent complexity 

of human disease and often led to treatments that are inadequate or have important 

adverse effects (Greene and Loscalzo, 2017). Understanding AD from the point-of-

view of how cellular systems and molecular interactome perturbations underlie the 

disease is the essence of network medicine (Fang et al., 2019). In this study, we argue 

that in the case of AD, cellular networks gradually evolve throughout disease 

initiation and progression, leading to progressive shifts of local and global network 

properties and systems states. It is these shifts that underlie the pathogenesis of AD. 

Genome alterations such as amplification, deletion, and mutation are primary events 

in AD. However, such events can be selected in human cells only if they encode the 

appropriate perturbations in the interactome network and systems properties of the 

affected cells. Therapeutic interventions need to be designed to deal with 

perturbations of AD systems properties, and have little to do, functionally speaking, 

with genetic and genomic events alone (Swarup et al., 2019). Herein, we have 

proposed a genome-wide and population-based drug repurposing framework, which 

integrates genetic findings, functional genomics, drug-target networks, and the human 

protein-protein interactome, along with large-scale population-based validation and in 

vitro mechanistic observations in human microglia cells. 

    In total, we identified 103 ARGs by utilizing our recently developed Bayesian 

model selection method (Wang et al., 2019). Human interactome network analysis 
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reveals that ARGs form a statistically significant disease module. Functional 

genomics enrichment analysis shows that ARGs harbor more gene regulatory 

elements in the human genome. In addition, large-scale transcriptomics and 

proteomics data analyses imply that ARGs are more likely to be differentially 

expressed in human AD brain and multiple AD transgenic mouse models (Fig. 2). 

These comprehensive observations suggest that ARGs potentially capture 

pathobiological pathways of AD (Fig. 3). Importantly, drug-target network analysis 

shows a 4-fold higher druggability compared to the known drug targets in the human 

genome. 

A previous study showed that few products (proteins) of GWAS-derived closest 

genes could be applied for therapeutic discovery (Kwok et al., 2018). Several factors 

may account for this. First, the reported significant loci occupy only a small 

proportion of heritability and provide limited information about underlying AD 

biology (Deming et al., 2017). Second, many genome-wide significant loci lie in 

noncoding regions, and genes closest to index SNPs may not represent causal genes of 

AD (Zhang and Lupski, 2015). Thus, systematic identification of likely causal genes 

from GWAS findings using network approaches is a crucial step for understanding 

AD pathobiology and offers potential candidate targets for new therapeutic 

development as presented in this study. 

Network-based drug repurposing from ARGs findings predict 4 highly 

repurposable drugs for AD, including pioglitazone (NCT02913664), carvedilol 

(NCT01354444), febuxostat and fluticasone. Carvedilol, an FDA approved drug for 
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hypertension that blocks the beta adrenergic receptor, significantly attenuates brain 

oligomeric β-amyloid level and cognitive deterioration in two independent AD mice 

models (Wang et al., 2011). A propensity-matched analysis has suggested that a daily 

dose of 40 mg febuxostat can reduce the risk of dementia in older adults (Singh and 

Cleveland, 2018). Fluticasone is a non-steroidal anti-inflammatory drug (NSAID), 

and a recent study showed that long term use of fluticasone reduces incidence of 

developing AD (Lehrer and Rheinstein, 2018). 

Pioglitazone, a U.S. FDA-approved anti-T2D drug, was reported to restore 

energy metabolism and reduce Aβ levels in the brain of APP/PS1 mice (Chang et al., 

2019). A previous clinical study has shown that pioglitazone improves cognition and 

regional cerebral blood flow in patients with mild AD accompanied with T2D (Sato et 

al., 2011). However, large-scale population-based validations have not been 

conducted to confirm the relationship of drug use with AD outcomes in the real-world 

patient data. In this study, by combining network-based prediction and population-

based validation, we found that pioglitazone potentially reduced risk of AD in large-

scale patient database (Fig. 5). In addition, In vitro mechanistic observations (Fig. 6) 

reveal that pioglitazone significantly downregulates expression of CDK5 and GSK3b 

in human microglia cells, mechanistically supporting network and population-based 

findings. However, a phase II study (NCT00982202) shows no statistically significant 

differences between controls and patients with mild to moderate AD for pioglitazone 

(Geldmacher et al., 2011). One possible explanation is that pioglitazone reduces risk 

of AD only in patients with pre-existing diabetes or that pioglitazone may have its 
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effects before symptoms occur but not in more advanced patients. Thus, our findings 

suggest that larger clinical trials and additional mechanistic studies may be necessary 

to clarify pioglitazone’s action in AD prevention in both a broad population and a 

well-defined sub-population. 

Our network methodology presented here has several strengths. First, it 

contributes to identification of high-confidence likely causal genes, followed by 

multi-omics data validation, network-based drug repurposing investigation, large-

scale patient data analysis, and in vitro mechanistic observation in human microglial 

cells. This work illustrates translation of GWAS findings to pathobiology and 

therapeutic development in AD. Second, the large patient-level longitudinal data 

ensures that our analyses integrate real-world patient evidence to test the drug’s 

efficiency in AD risk reduction.  

Potential weaknesses of this work should be acknowledged. First, catalogs of 

genetic variants from GWAS that influence human disease traits are far from 

complete, and this deficiency may affect the accuracy of identification of ARGs. 

Incompleteness of human interactome data and potential literature bias may influence 

performance of our network methodology. Our choice of validation models (e.g., 

specific type of transgenic mice models; specific cell types such as microglia) may 

have influenced our results. Detailed clinical information is missing for health 

insurance claims data regardless of high-dimensional covariate adjustment. This limits 

our ability to test the effects of pioglitazone on subpopulation of AD patients such as 

those with mild AD. In addition, although our dataset contains a geographically 
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diverse population of commercially-insured Americans seniors, the results are not 

representative of individuals who are not commercially-insured or uninsured. Finally, 

the phenotyping algorithms (e.g., using the ICD codes) may not capture all AD cases. 

Thus, this approach may need to be re-applied on a regular iterative basis as datasets 

are expanded, in order to offer maximum utility. 

In summary, this study presents a powerful network-based methodology to 

translate GWAS findings to emerging therapeutic discovery by exploiting multi-

omics, drug-target network, and the human protein-protein interactome, along with 

large-scale population-based and cell model-based validation. Approaches such as 

ours may minimize the translational gap between genetic discoveries and therapeutic 

development in AD and other complex diseases and assist in identifying urgently 

needed new therapies 
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Table 1. Network-predicted risk genes involved in four pathobiological pathways of 

Alzheimer’s disease (AD). 

Gene Protein  Description 

Neurotransmitter transport 

MEF2Ca 
Myocyte-specific enhancer 

factor 2C 

MEF2C mRNA expression levels were correlated with AD 

pathology 

RIMS1 
Regulating synaptic membrane 

exocytosis protein 1 

An altered protein expression in RIMS1 during AD 

pathology 

Beta-amyloid-related biologic process 

APOEa  Apolipoprotein E Affect Aβ production, aggregation, and clearance 

CHRNA7 
Neuronal acetylcholine receptor 

subunit alpha-7 

Bind to Aβ with very high affinity, providing therapeutic 

insight into AD 

SORL1a Sortilin-related receptor 
Reduce Aβ generation by trafficking APP away from 

amyloidogenic cleavage sites 

ADAM10a 

Disintegrin and 

metalloproteinase domain-

containing protein 10 

Constitutive α-secretase in the process of amyloid-β protein 

precursor (AβPP) cleavage 

LRP2 
Low-density lipoprotein 

receptor-related protein 2 

rs3755166 polymorphism within LRP2 gene is associated 

with susceptibility to AD in the Chinese population 

Long-term synaptic potentiation 

MAPK1 
Mitogen-activated protein 

kinase 1 

Beta-amyloid activates the MAPK cascade via 

hippocampal CHRNA7 

PTK2Ba Protein-tyrosine kinase 2-beta An in vivo modulator and early marker of Tau pathology. 

Oxidative stress  

FOXO3 Forkhead box protein O3 
Activate BCL2L11 and FASLG to promote neuronal death 

and aberrant Aβ processing 

NOS1 Nitric oxide synthase 
Loss of endothelial NOS promotes p25 production and Tau 

phosphorylation 

NFKB1 
Nuclear factor NF-kappa-B 

p105 subunit 

Involve in neuroinflammation, synaptic plasticity, learning, 

and memory implicated in AD 

ESR1 Estrogen receptor 

Interact with tau protein in vivo, and prevent glutamate 

excitotoxic injury by Aβ through estrogen signaling 

mechanisms 
a denotes that a gene is experimentally validated AD genes. The detailed literature information 
is provided in Supplementary Table 9. 
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Table 2. Description of the dataset for the state-of-the-art pharmacoepidemiologic 

analysis in Alzheimer’s disease. 
Drug Sample 

Size 
# of 
AD 

Female 
(%) 

Age 
(Mean) 

Geographical location (%) T2D 
(%) 

HTN 
(%) 

Northeast North 
Central 

South West NA   

Pioglitazone 101,650 1,244 38.4 73.6 17.7 28.4 35.6 17.3 0.9 51.6 34.4 
Glipizide 191,656 3,048 44.8 74.9 21.5 27.6 31.0 18.7 0.8 59.6 43.1 
Control 402,184 5,498 38.4 75.46 24.6 31.6 30.3 12.4 1.0 45.0 41.4 

We estimated the un-stratified Kaplan-Meier curves, conducted propensity score 
stratified (n strata = 10) log-rank test and Cox model. T2D: type 2 diabetes; HTN: 
hypertension. 
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Figure 1. A diagram illustrating a genotype-informed, network methodology and 

population-based validation for Alzheimer’s therapeutic discovery. (A) A 

framework of network-based Bayesian algorithm (see Methods) for identifying 

Alzheimer’ disease (AD) risk genes. Specifically, this algorithm integrates multi-

omics data and gene networks to infer risk genes from AD GWAS loci; (B) Network-

based drug repurposing by incorporating ARGs and the human interactome network. 

(C) Population-based validation to test the drug user’s relationship with AD 

outcomes; Comparison analyses were conducted to evaluate the predicted drug-AD 

association based on individual level longitudinal patient data and the state-of-the-art 

pharmacoepidemiologic methods (see Methods). (D) Network-based mechanistic 

observation. Experimental validation of network-predicted drug’s proposed 

mechanism-of-action in human microglial cells. 
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Figure 2. Network-based validation of predicted risk genes for Alzheimer’s disease (AD). 
(A) A subnetwork highlighting disease module formed by predicted AD risk genes (ARGs) in 
the human protein-protein interactome. This disease module includes 128 protein–protein 
interactions (PPIs) (edges or links) connecting 70 ARGs (nodes). Larger node size 
highlighting the high expression level in brain compared to other tissues. (B-I) Discovery of 
genomic features of 103 predicted ARGs implicated in AD. ARGs capture strong distal gene 
regulatory elements in Hi-C (B) and FANTOM5 data (C) compared to a set of local 
background genes (LBGs). (D-I) AGRs are more likely differential expression across six 
transcriptomics datasets: (D and E) AD patient brain (GSE29378 [D] and GPL96 [E]), (F and 
G) brain microglia cell of 5XFAD mouse model (GSE65067 [F] and GSE74615 [G]), and (H 
and I) brain hippocampus of Tg4510 mouse model (GSE53480 [H] and GSE57583 [I]). P 
value was computed by one-tail T-test. LCC: Largest Connected Component. 
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Figure 3. Multi-omics validation of network-predicted risk genes for Alzheimer’s 
disease (AD). Circle plot shows all 103 predicted AD risk genes validated by 
multiple-scale biological evidences. In total, 8 types of biological evidences were 
evaluated: (1) Brain-expression specificity derived from GTEx database (z-score>0 as 
a high brain-specific expressed gene); (2) literature evidence validation for the gene 
associated with AD; (3) drug target information; (4) literature-derived experimental 
data from Open targets database; (5) high quality experimentally validated AD-
associated genes; (6) differential expression (DE) in AD patient brains; (7) differential 
expression in brain microglia cells of 5XFAD mouse model; (8) differential 
expression in brain hippocampus of Tg4510 mouse model. Gray bar denotes the 
number of biological evidences. 13 selected risk genes involved in four AD key 
pathways are highlighted by red: including regulation of neurotransmitter transport, 
Aβ metabolic process, long-term synaptic potentiation, and oxidative stress. 
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Figure 4. Risk gene-informed drug repurposing for Alzheimer’s disease (AD). (A) 

A Sankey diagram illustrates a global view of 25 repurposable drug candidates with 

published evidences for AD. These drugs are linked to their physical binding targets 

or neighborhood proteins derived from network-predicted AD risk genes. (B) 

Network proximity analysis measures the network distance between disease module 

and drug targets in the human interactome. A subnetwork indicates the molecular 

mechanism of pioglitazone implicated in AD, which targets six physical binding 

proteins of which neighborhoods are 12 predicted AD risk genes. (C) Drugs are 

grouped by their first-level Anatomical Therapeutic Chemical Classification (ATC) 

codes. The drugs with known anti-AD clinical status, in vitro and in vivo mouse 

model published data are given. Several approved drugs (pioglitazone, carvedilol, 

febuxostat and fluticasone) with anti-AD clinical evidence are highlighted. 
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Figure 5. Longitudinal analyses reveal that pioglitazone reduces incidence of 

Alzheimer’s disease in patient data. Two comparison analyses were conducted 

including: (A) pioglitazone (n = 101,650) vs. matched control population (n = 

402,184), and (B) pioglitazone vs. glipizide (a diabetes drug, n = 191,656). First, for 

each comparison, we estimated the propensity score by using the variables described 

in Table 2. Then, we estimated the un-stratified Kaplan-Meier curves, conducted 

propensity score stratified (n strata = 10) log-rank test and Cox model. (C) Hazard 

ratios and 95% confidence interval (CI) for two cohort studies. Using propensity score 

stratified survival analyses, non-exposures were matched to the exposures (ratio 4:1) 

by adjusting the initiation time of pioglitazone, enrollment history, age and gender, 

and disease comorbidities (hypertension and diabetes).  
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Figure 6. Experimental validation of pioglitazone’s proposed mechanism-of-
action in Alzheimer’s disease (AD). (A) Network analysis highlighting the inferred 
mechanism-of-action for pioglitazone in AD. The potential molecular mechanisms of 
pioglitazone were inferred through integration of known drug targets and predicted 
AD risk or AD seed genes into brain-specific co-expressed protein-protein 
interactome network (see the Methods). Node size indicates the protein-coding gene 
expression level in brain compared with other 31 tissues from GTEx database (GTEx 
Consortium, 2015). Larger size highlighting the high expression level in brain 
compared with other tissues. We excluded the literature-derived protein-protein 
interactions; (B) Effects of pioglitazone on the cell viability of HMC3 cells. HMC3 
cells were treated with indicated concentrations of pioglitazone for 48 h and cell 
viability was determined using MTT. Data are represented as mean ± SEM (n = 3) and 
each experiment was performed at least three times in duplicate. (C) Effects of 
pioglitazone on LPS-induced activation of GSK3β (D) and CDK5 (E) in human 
microglia HMC3 cells. HMC3 cells were pre-treated with pioglitazone and followed 
LPS treatment (1 µg/mL, 30 min). The total cell lysates were collected and subjected 
to Western blot analysis. Quantification data represent mean ± s.d. of two independent 
experiments. 
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