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Abstract 

Socioeconomic status (SES) and education (EDU) are phenotypically associated with 

psychiatric disorders and behavior. It remains unclear how these associations influence the genetic 

risk for mental health traits and EDU/SES individually. Using information from >1 million 

individuals, we conditioned the genetic risk for psychiatric disorders, personality traits, brain 

imaging phenotypes, and externalizing behaviors with genome-wide data for EDU/SES. 

Accounting for EDU/SES significantly affected the observed heritability of psychiatric traits 

ranging from 2.44% h2 decrease for bipolar disorder to 29.0% h2 decrease for Tourette syndrome. 

Neuroticism h2 significantly increased by 20.23% after conditioning with SES. After EDU/SES 

conditioning, novel neuronal cell-types were identified for risky behavior (excitatory), major 

depression (inhibitory), schizophrenia (excitatory and GABAergic), and bipolar disorder 

(excitatory). Conditioning with EDU/SES also revealed unidirectional causality between brain 

morphology and mental health phenotypes. Our results indicate genetic discoveries of mental 

health outcomes may be limited by genetic overlap with EDU/SES. 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 13, 2020. ; https://doi.org/10.1101/2020.01.09.20017079doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.01.09.20017079


Page 2 of 36 

 

Introduction 

Education (EDU) and socioeconomic status (SES) are risk or protective factors for traits 

related to mental health and disease (1, 2). Social position has been repeatedly correlated with 

mood, anxiety, and substance use related disorders, while EDU phenotypes such as educational 

attainment, math ability, and fluid intelligence are overall protective factors for development of 

neurological and psychiatric conditions (2). They are epidemiologically correlated, but the specific 

EDU and/or SES phenotypes used in epidemiological studies clearly account in part for observed 

differences between groups (3). It is therefore imperative to understand how EDU and SES 

phenotypes influence what we understand about human health and disease. 

Genome-wide association studies (GWAS) are powerful hypothesis-free genetic studies 

for detecting risk loci (e.g., single nucleotide polymorphisms (SNPs) or genes) for phenotypes of 

interest. Their widespread use has led to risk locus discovery underlying thousands of phenotypes 

across the spectrum of human health and disease, including mental and physical health and disease, 

personality, anthropometric measures, intelligence, and behavior (4). An observation generated 

from large-scale GWAS is the widespread presence of pleiotropy; a single SNP (or a set of SNPs) 

may have a range of relatively small effects on multiple similar or disparate phenotypes. On a 

genome-wide scale, these pleiotropic effects, detected using GWAS summary data, may be used 

to determine genetic correlations between phenotypes to putatively identify genetic underpinnings 

of trait pairs (5). 

The EDU phenotypes educational attainment and cognitive performance have relatively 

high SNP-heritability: the phenotypic variance explained by genetic information was 40-60% (6) 

and 21.5% (7), respectively. Socioeconomic status (SES) is defined as the social standing or class 

of an individual or group, often measured as a combination of education, income, and occupation 

(8). SES phenotypes such as household income and Townsend deprivation index (i.e., measure of 

SES based on whether individuals own their homes, their employment status, their access to a 

vehicle, and whether or not individuals share living accommodations with others) are significantly 

heritable and show strong genetic correlation with EDU traits (9). Additionally there is pleiotropy 

of genetic risks between EDU/SES and a range of mental health outcomes (e.g., psychiatric 

disorders, personality traits, internalizing and externalizing behaviors, social science outcomes, 

and brain imaging phenotypes) (10, 11). 

The epidemiological observations of high genetic correlations between genetic risk for 

EDU/SES and mental health outcomes (1, 2) raise two critical questions: (1) how might the strong 

genetic effects of EDU/SES affect our understanding of the overall genetic risk for mental health 

outcomes? and (2) is there evidence that genetic effects of mental health and disease phenotypes 

affect our understanding of the overall genetic risk for EDU/SES? The goal of this study was to 

investigate how the shared genetic effects between the general categories of EDU, SES, and mental 

health outcome phenotypes influence genetic risk for individual phenotypes within each of these 

classes. 

There are several ways to approach these questions. First, polygenic risk scoring (PRS) 

(12) is a tempting approach; but PRS using mental health/disease to predict the same or different 

phenotypes from an independent dataset often explain very little variance in the outcome 

phenotype (13-15). PRS also cannot detect specific biology underlying each phenotype. Second is 

multi-trait analysis of GWAS (MTAG), which jointly analyses GWAS summary statistics and 

adjusts per-SNP effect estimates and association p-values using the strength of the genetic 

correlation between phenotypes (16). Genetic correlations between EDU/SES and related 

phenotypes have, however, demonstrable biases from environmental confounders. If genetic 
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correlations involving EDU and SES proxy phenotypes are significantly upwardly biased, an 

MTAG adjustment of summary statistics may inappropriately correct (i.e., bias) the summary 

statistics used for this study. To disentangle the complex genetic overlaps between EDU/SES and 

mental health, we therefore used multi-trait conditioning and joint analysis (mtCOJO), which 

generates conditioned GWAS summary statistics for each phenotype of interest after correcting 

for the per-SNP effects of another phenotype (17). The mtCOJO approach is not based on genetic 

correlation; it is based on the causal relationship between trait pairs inferred by Mendelian 

randomization (MR). For our phenotypes of interest mtCOJO is an advantageous approach, which, 

in theory, is independent of the effects of environmental confounders. MR detects causal 

inferences between trait pairs using non-modifiable risk factors (SNPs) associated with an 

exposure variable and only associated with an outcome variable through the exposure. Because 

SNPs are non-modifiable, environmental confounders of the relationship between SNP, exposure, 

and outcome should not influence MR estimates. 

We used the mtCOJO approach to condition mental health outcomes with the per-SNP 

effects of EDU and SES phenotypes and investigate their underlying biology at multiple levels:  

(1) risk locus detection, (2) heritability (h2), (3) gene-set enrichment, (4) tissue transcriptomic 

profile enrichment, (5) cell type transcriptomic profile enrichment, (6) phenotype relationships via 

structural equation modeling and genetic correlation, and (7) latent genetically causal relationships 

(see flow diagram Fig S1). Our findings identify several cell types and phenotype relationships 

that were masked by the shared genetic etiology between mental health outcomes and EDU/SES. 

Furthermore, we demonstrate that the same multi-level analyses of EDU and SES are largely 

robust to the effects of shared genetic etiology with mental health outcomes. 
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Results 

Trait Inclusion 

The genetic correlations (rg) between EDU (educational attainment, cognitive 

performance, highest math class, and self-rated math ability), SES (household income and 

Townsend deprivation index), and mental health outcomes (i.e., psychiatric disorders, personality 

traits, externalizing behaviors, social science outcomes, and brain imaging phenotypes) were 

detected using the Linkage Disequilibrium Score Regression (LDSC) method (Fig. 1, Table S1, 

Figs. S2 & S3) (18). Genetic correlations for EDU and SES phenotype categories were analyzed 

independently to identify brain imaging phenotypes nominally genetically correlated with at least 

two of the four EDU phenotypes and both SES phenotypes. We detected only two traits genetically 

correlated with at least two of the four EDU phenotypes: left insular cortex (mean rg = -0.122, se 

= 0.013) and left subcallosal cortex (mean rg = -0.106, se = 0.009). These two brain imaging 

phenotypes were included in EDU conditioning experiments. 

Twenty-nine brain imaging phenotypes were genetically correlated with both SES 

phenotypes. We tested genetic correlation between these 29 brain imaging phenotypes to identify 

a subset of high heritability traits to include in SES conditioning experiments. We identified six 

such brain imaging phenotypes (Fig. S2). These are: cortex volume, left hemisphere 

medialorbitofrontal area, right insular cortex, right temporal fusiform cortex, subcortical gray 

matter volume, and volume of right-ventral diencephalon. The SES phenotypes income and 

deprivation index are inversely genetically correlated as visible in Fig. 1. 

 

Conditioning Heritability and Risk Locus Discovery 

We tested the effects of conditioning on observed-scale heritability (h2) using LDSC (18). 

Psychiatric disorders were most sensitive to shared genetic etiology with EDU/SES phenotypes. 

Except for major depressive disorder (MDD), anxiety, and posttraumatic stress disorder (PTSD), 

conditioning reduced the h2 for all psychiatric disorders relative to their original estimates (h2 

decrease ranged from 2.44% ± 0.187 for bipolar disorder (original h2 = 4.39%; highest conditioned 

h2 = 2.22%, se = 0.460, p = 5.67x10-65; lowest conditioned h2 = 1.70%, se = 0.440, p = 4.05x10-

80) to 29.0% ± 0.105 for Tourette syndrome (original h2 = 35.6%; highest conditioned h2 = 6.72%, 

se = 0.770, p = 2.61x10-18; lowest conditioned h2 = 6.43%, se = 0.730, p = 1.27x10-18); Fig. 2A). 

Tourette syndrome exhibited the largest decrease in h2 after conditioning with the effects of 

EDU/SES phenotypes (Tourette syndrome mean pdiff compared to original h2 = 2.24x10-11, se = 

4.42x10-12). Conversely, two phenotypes exhibited significant increases in h2 after conditioning 

with EDU/SES phenotypes: neuroticism (highest conditioned h2 = 20.2%, se = 0.630, p = 3.08x10-

226; lowest conditioned h2 = 18.1%, se = 0.590, p =2.35x10-207) and subjective well-being (highest 

conditioned h2 = 3.65%, se = 0.220, p = 8.11x10-62; lowest conditioned h2 = 3.34%, se = 0.220, p 

=4.67x10-52). 

Conditioning the neuroticism GWAS (original h2 = 9.41%) with EDU/SES phenotypes 

revealed several novel, confirmed known LD-independent risk loci, and increased heritability 

(range = 59 loci (neuroticism conditioned with income) to 100 loci (neuroticism conditioned with 

deprivation index; Fig. 2B). We observed an increase in the association signal in the neuroticism 

GWAS with the strongest effects observed after conditioning with SES phenotypes income 

(lambda GC = 1.36; intercept = 0.971, se = 0.009) and deprivation index (lambda GC = 1.75; 

intercept = 0.967, se = 0.009; Fig. 2C). This increase was not related to an increase in the potential 

bias of population stratification (there was no significant change in the LDSC intercept, p > 0.05), 

supporting that the observation was attributable to the increased detection of valid neuroticism 
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polygenic signals. Using a physical proximity single-SNP-single-gene based annotation of 

conditioned neuroticism genomic risk loci, the top gene sets included Gene Ontology (GO) 

biological process synaptic signaling (enrichment FDR = 1.5x10-4), GO cellular component 

synapse part (enrichment FDR = 5.40x10-4), and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) dopaminergic synapses (enrichment FDR = 0.046). 

The significant increase in h2 for GWAS of subjective well-being (original h2 = 2.50%) 

uncovered a 5.7 kb genomic risk locus on chromosome 7 (minimum genome-wide significant p-

value = 1.45x10-8) which maps to the α2δ1 subunit of calcium voltage-gated channel (CACNA2D1). 

The protein encoded by CACNA2D1 has been implicated in familial epilepsy and intellectual 

disability pedigrees but to our knowledge has not been implicated in genome-wide studies of these 

phenotypes (19, 20). 

 

Tissue-Type Transcriptomic Profile Enrichment Differences 

After conditioning with GWAS of EDU/SES phenotypes, schizophrenia was the only 

mental health outcome demonstrating significant changes in tissue transcriptomic profile 

enrichment. Compared to original schizophrenia brain tissue transcriptomic profile enrichments, 

all conditioned schizophrenia brain tissue GTEx annotations, with the exception of c1 cervical 

spinal cord, had significantly decreased enrichments (Fig. S4). The maximum decrease was 

observed after conditioning schizophrenia with the EDU phenotype educational attainment 

(average beta decrease for all brain tissue annotations = 0.038 ± 0.004). After conditioning with 

EDU and SES phenotypes, the cerebellum and cerebellar hemisphere GTEx annotations remained 

the most enriched in the schizophrenia GWAS (original cerebellum enrichment = 0.080, p = 

1.76x10-22; original cerebellar hemisphere enrichment = 0.077, p = 1.28x10-22; mean conditioned 

cerebellum enrichment = 0.047 ± 0.001, FDR < 0.05; mean conditioned cerebellar hemisphere 

enrichment = 0.047 ± 0.001, FDR < 0.05). After adjusting for the effects of cognitive performance 

and educational attainment and correcting for multiple testing, we uncovered enrichment of 

skeletal muscle tissue transcriptomic profiles in the schizophrenia GWAS (original skeletal muscle 

enrichment = 0.009, p = 0.135; skeletal muscle enrichment conditioned with educational 

attainment = 0.010, p = 0.032; skeletal muscle enrichment conditioned with cognitive performance 

= 0.011, p = 0.024) (21). 

 

Cell-Type Transcriptomic Profile Discoveries 

Cell-type transcriptomic profile enrichments were evaluated in two ways: (1) assess 

differences in within-data-set cell-type enrichments before and after conditioning with EDU/SES 

(based on MAGMA cell-type enrichment Step 1 (22)) and (2) assess the effects of conditioning on 

the detection of conditionally independent proportionally significant (PS) cell type enrichments 

(based on MAGMA cell-type enrichment Step 3 (22)). PS cell-types are those whose genetic 

signals could be differentiated from one another. PS values ≥ 0.80 indicate independent genetic 

signals relative to a second cell type. We then used genes whose expression profiles define the 

excitatory (Ex) and inhibitory (In) cell types of PsychENCODE (23) to perform gene set 

enrichment analyses of GO and KEGG gene sets. 

There were no differences in cell-type transcriptomic profile enrichments for mental health 

outcomes (MAGMA cell-type Step 1) after conditioning with EDU/SES; however, we discovered 

several PS cell-type pairs not detected in the unconditioned GWAS for (1) risky behavior, (2) 

MDD, and (3) schizophrenia (MAGMA cell-type Step 3). These PS cell-type findings and relevant 

gene set results for are described in detail below. 
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In unconditioned GWAS of risky behavior, there were no PS cell-type enrichments After 

conditioning with the EDU phenotypes cognitive performance and educational attainment, human 

cortex fetal quiescent and Ex2 were conditionally independent from one another (risky behavior 

conditioned with cognitive performance Ex2 β = 0.035, p = 7.48x10-4, PS = 1.37; fetal quiescent 

β = 0.023, p = 0.032, PS = 1.82; risky behavior conditioned with educational attainment Ex2 β = 

0.034, p = 0.001, PS = 1.38; fetal quiescent β = 0.024, p = 0.030, PS = 1.77; Fig 3A). Ex2 neurons 

also were detected in the risk tolerance GWAS after conditioning with educational attainment, 

but this signal could not be distinguished from hippocampal CA1 subfield cells. The genes that 

define the Ex2 cell type were enriched in nervous system development (GO:0007399; enrichment 

FDR = 3.70x10-4) and eye development (GO:001654; enrichment FDR = 6.30x10-4) gene sets. 

The unconditioned MDD GWAS exhibited cell-type transcriptomic profile enrichments 

between adult GABAergic neurons, In6b, and gestational week 10 (GW10) stem cells. After 

conditioning with self-rated math ability, the genetic signal from human midbrain neurons was 

conditionally independent from lateral geniculate nucleus (LGN) GABAergic neurons (β relative 

to midbrain neurons = 0.041, p = 0.002, PS = 0.822; Fig 3B), In6b neurons (β relative to midbrain 

neurons = 0.517, p = 6.59x10-6, PS = 0.969), and In5 neurons (β relative to midbrain neurons = 

0.039, p = 5.26x10-5, PS = 0.813). The gene expression profiles of these cell types implicate the 

neurotransmitter transport (GO:0007269; enrichment FDR = 0.003) and locomotory behavior 

(GO:0007626; enrichment FDR = 0.015) gene sets in MDD psychopathology. 

The cell-type transcriptomic profiles underlying schizophrenia initially highlighted the role 

of Ex7 and human cortical neurons with conditionally independent genetic signals. After 

conditioning the schizophrenia GWAS with self-rated math ability, we uncovered conditionally 

independent PS genetic signals from GW26 GABAergic neurons and GW10 stem cells 

(GABAergic neuron β = 0.046, p = 9.46x10-9, PS = 1.00; GW10 stem cell β = 0.031, p = 1.04x10-

4, PS = 1.00; Fig 3C and 3D). Importantly, the independent genetic signals of Ex7 and human 

cortical neurons persisted after conditioning the schizophrenia GWAS with EDU and SES 

phenotypes. There were no conditionally independent PS cell-type signals in the unconditioned 

GWAS, but the GWAS of bipolar disorder conditioned with educational attainment revealed PS 

genetic signals from (1) Ex7 (β relative to GABAergic neurons from the lateral geniculate nucleus 

(LGN) = 0.043, p = 1.50x10-10, PS = 0.952 and Ex7 beta relative to LGN human cortical neurons 

= 0.035, p = 5.46x10-6, PS = 0.999), (2) LGN GABAergic neurons (β relative to Ex7 = 0.045, p = 

1.42x10-4, PS = 0.871), and (3) human cortical neurons (β relative to Ex7 = 0.001, p = 0.044, PS 

= 0.904) but could not distinguish genetic signals between the LGN GABAergic and human 

cortical neuron cell types. The genes contributing to the Ex7 cell type were enriched in gene sets 

related to nervous system processes (GO:0050877; enrichment FDR = 0.014) and synaptic 

signaling (GO:0099536; enrichment FDR = 0.023). 

 

Correlative, Latent, and Causal Relationships between Mental Health Outcomes 

Genetic correlations were assessed between all mental health outcomes after conditioning 

with each EDU and SES phenotype. Though small changes in genetic correlation magnitude were 

observed, the mental health outcome genetic correlations largely persisted even after conditioning 

with EDU/SES (Fig. S5). Two mental health outcomes, however, demonstrated significant 

changes in their genetic correlations after conditioning: (1) genetic correlations with neuroticism 

and (2) genetic correlations with volume of the right-ventral diencephalon. The genetic 

correlations between conditioned neuroticism and (1) MDD (original rg = 0.732, mean conditioned 

rg = 0.574 ± 0.008), (2) subjective well-being (original rg = -0.718, mean conditioned rg = -0.522 ± 
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0.009), and (3) tiredness (unconditioned rg  = 0.638, mean conditioned rg = 0.490 ± 0.017) were at 

least nominally significant, and were in each case significantly lower than the unconditioned 

relationship. Unconditioned right-ventral diencephalon volume was significantly genetically 

correlated with subcortical gray matter volume (unconditioned rg = 0.620, p = 8.77x10-15) and 

schizophrenia (unconditioned rg = 0.134, p = 0.009). After conditioning with income, the genetic 

correlation between volume of the right-ventral diencephalon and (1) subcortical gray matter 

volume persisted (conditioned rg = 0.612, p = 1.44x10-14), (2) schizophrenia switched directions 

and remained significant (conditioned rg = -0.120, p = 0.011, pdiff = 2.72x10-4), and (3) risk 

tolerance became significant (conditioned rg = -0.123, p = 0.044). Conversely, after conditioning 

with the effects of deprivation index, the genetic correlation between volume of the right-ventral 

diencephalon and (1) subcortical gray matter volume was no longer significant (conditioned rg = 

-0.076, p = 0.315), (2) schizophrenia increased in magnitude (conditioned rg = 0.198, p = 5.20x10-

12, pdiff = 0.294), and (3) several additional phenotypes become at least nominally significant 

(conditioned rg with autism spectrum disorder (ASD) = 0.478, p = 3.40x10-30; with bipolar 

disorder = 0.181, p = 2.93x10-8; with risky behavior = 0.418, p = 1.50x10-59; with subjective well-

being = -0.363, p = 1.83x10-17; and with tiredness = 0.343, p = 1.82x10-20; Fig. S5). 

Genomic Structural Equation Modeling (GenomicSEM) was used to identify how 

unconditioned and conditioned mental health outcomes relate to a latent unobserved genetic factor 

connecting them (Fig. 4). In unconditioned models, exploratory factor analysis (EFA) identified a 

two-factor model as best suited to explain the relationships among mental health outcomes. In 

confirmatory factor analysis (CFA), these two latent factors generally highlight relationships 

between all psychiatric disorders and brain imaging phenotypes (F1) and anxiety, MDD, 

depressive symptoms, and neuroticism (F2). The correlation between unconditioned F1 and F2 was 

0.14. After conditioning with highest math class, self-rated math ability, and deprivation index, 

the GWAS of neuroticism and MDD were no longer major contributors to the same factor. 

Conditioned F1 had major contributions from MDD (mean loading = 0.611 ± 0.005) and 

depressive symptoms (loading = 0.538 ± 0.098) while conditioned F2 had major contributions from 

neuroticism (loading = 0.877 ± 0.080) and anxiety (loading = 0.658 ± 0.009). Interestingly, after 

conditioning with the SES phenotype income, the SEM best-fit converged on a single common 

factor between all mental health outcomes with major contributions from MDD (loading = 0.808, 

se = 0.068) and depressive symptoms (loading = 0.831, se = 0.022). 

Latent Causal Variable (LCV) analyses were used to detect causal relationships between 

trait pairs that are independent of the genetic correlations between them (24). Considering only the 

unconditioned mental health outcomes, one trait pair exhibited significant genetic causality 

proportion (gĉp): left subcallosal cortexobsessive compulsive disorder gĉp = 0.167, p = 4.54x10-

6 (Table 1 and Fig. 5). This partial causal relationship did not survive conditioning; however, 

thirteen unique trait pairs demonstrated significant gĉp after conditioning both traits with an EDU 

or SES phenotype (Table 1). Most notable were those causal relationships involving brain imaging 

phenotypes which became significant after conditioning with EDU phenotypes: (1) 

extraversionleft subcallosal cortex (mean gĉp = 0.188 ± 0.107, 1.23x10-13<p-values<1.83x10-6) 

after conditioning with educational attainment, highest math class, and self-rated math ability, (2) 

left subcallosal cortexsubjective well-being (mean gĉp = 0.745 ± 0.009, 1.45x10-9<p-

values<1.16x10-8) after conditioning with cognitive performance, educational attainment, and 

highest math class, (3) opennessleft insular cortex (mean gĉp = 0.296 ± 0.050, 2.54x10-23<p-

values<3.63x10-8) after conditioning with cognitive performance, highest math class, and self-

rated math ability. These average gĉp estimates represent only Bonferroni significant 
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relationships; however, each trait pair listed was nominally significant after conditioning with all 

other EDU and SES phenotypes but not significant in the unconditioned experiment (Table 1). 

The EDU/SES phenotype which revealed the most latent causal relationships between 

mental health outcomes was Townsend deprivation index. Conditioning with this phenotype 

revealed 7/13 causal relationships, most of which involved bipolar disorder or the volume of the 

right-ventral diencephalon. 

 

Effects of Mental Health Outcomes on Education and Socioeconomic Status 

We evaluated how shared etiology between mental health outcomes and EDU/SES 

phenotypes might influence our understanding of the genetics of EDU/SES. After conditioning 

each EDU and SES phenotype with individual mental health outcomes, all six EDU/SES 

phenotypes were significantly heritable and maintained high genetic correlation with their 

unconditioned equivalents (Fig. S6). Attention deficit hyperactivity disorder (ADHD) and tiredness 

had the most substantial influence on the h2 of EDU and SES phenotypes, both of which 

significantly reduced the h2 of EDU/SES phenotypes relative to their original h2 estimates. Next, 

each EDU and SES phenotype was simultaneously conditioned with all genetically correlated 

mental health outcomes to evaluate how robust EDU and SES phenotypes are to genetic etiology 

shared with many phenotypes. After conditioning with all mental health outcomes, the EDU/SES 

phenotypes educational attainment, income, and self-rated math ability maintain significant h2. 

Conditioned educational attainment (mean rg = 0.999 ± 0.006), income (mean rg = 0.988 ± 0.025), 

and self-rated math ability (mean rg = 0.987 ± 0.033) were highly genetically correlated with their 

unconditioned phenotypes. 

Gene set, tissue transcriptomic profile, and cell-type transcriptomic profile enrichments 

were generally robust to the effects of individual mental health outcomes (Fig S7). After 

conditioning with MDD, the GWAS of self-rated math ability demonstrated a significant decrease 

in brain cortex tissue transcriptomic profile enrichment (conditioned frontal cortex (BA9) 

enrichment = 0.106, p = 1.61x10-23; conditioned cortex enrichment = 0.108, p = 4.48x10-23; 

conditioned anterior cingulate cortex (BA24) enrichment = 0.106, p = 6.12x10-21). We then 

evaluated these enrichment changes in the EDU and SES phenotypes which maintained significant 

h2 after conditioning with all mental health outcomes (educational attainment, income, and self-

rated math ability). Conditioned educational attainment demonstrated changes in enrichment of 

neurogenesis (pdiff = 1.43x10-8) and neuron differentiation gene sets (pdiff = 1.61x10-7) such that 

they were no longer associated with the GWAS of educational attainment. Conditioned EDU 

phenotypes educational attainment (9.57x10-17<pdiff<2.14x10-8) and self-rated math ability 

(4.35x10-14<pdiff<4.21x10-12) both demonstrated decreased enrichment of cerebellar and cortical 

tissue transcriptomic profiles. Cell-type transcriptomic profile enrichment changes were generally 

unique to each phenotype: educational attainment demonstrated decreased enrichment of 

inhibitory (In4, pdiff = 6.38x10-14) and GABAergic (pdiff = 8.03x10-11) neurons, self-rated math 

ability demonstrated decreased enrichment of excitatory (Ex1 (pdiff = 7.37x10-11), Ex2 (pdiff = 

1.27x10-10), Ex4 (pdiff = 9.96x10-10), Ex5 (pdiff = 7.27x10-10), and Ex7 (pdiff = 1.77x10-10)) neurons, 

and income demonstrated changes in excitatory (Ex1 (pdiff = 0.004), Ex4 (pdiff = 0.005),   Ex5 (pdiff 

= 0.001), and Ex9 (pdiff = 0.002)), inhibitory (In4; pdiff 0.001), and GW26 GABAergic (pdiff = 

4.67x10-4) neurons. Consistent with our discoveries regarding cell types underlying mental health 

outcomes, cell type enrichment changes underlying conditioned EDU and SES phenotypes reflect 

changes in nervous system development, synaptic signaling, and eye development gene ontologies. 
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In a structural equation model assuming a single factor connecting all EDU and SES 

phenotypes, income was the only trait that did not load independently of all other EDU/SES proxies 

(loading = -0.781; Fig. S8). EFA of EDU and SES phenotypes revealed a two-factor model with 

major contributions from educational attainment (F1 loading = 0.990, se = 0.015) and self-rated 

math ability (F2 loading = 0.996, se = 0.046). The correlation between F1 and F2 was 0.426 and 

was mediated by cognitive performance (F1 loading = 0.429, se = 0.018; F2 loading = 0.292, se = 

0.027) and highest math class (F1 loading = 0.603, se = 0.024; F2 loading = 0.466, se = 0.029). 

Notably, the SES phenotype income also did not load onto either factor independently of the other 

EDU and SES phenotypes in EFA. 

After conditioning with all mental health outcomes, we reanalyzed the structural equation 

models using only those EDU/SES phenotypes with significant h2 (educational attainment, 

income, and self-rated math ability). Assuming a single factor (as well as EFA and CFA), 

educational attainment remained a major contributor to the model (common factor loading = 

0.986, se = 0.127). In CFA of conditioned phenotypes, the loading value for income significantly 

increased relative to its original loading value (conditioned common factor loading = 0.118, se = 

0.253, pdiff = 0.018) such that income independently loaded onto the same common factor as 

educational attainment and self-rated math ability. 

 

Discussion 

EDU and SES are important influences on numerous mental health and disease phenotypes, 

but it has been difficult to determine the extent to which this is so, and the biological nature of the 

relationship. How much of the genetic risk for schizophrenia, for example, is caused by reduced 

educational attainment? Or how much of the risk for schizophrenia reflects a shared biology with 

the predisposition to educational attainment? These are important questions to answer if we are to 

understand the biology of both kinds of traits. To get at this question, we conditioned one on the 

other, and thereby statistically removed its effects, and then asked the question, “how much of the 

heritable risk for that trait remains?” In most cases, SES/EDU accounted for some of the genetic 

variance in the mental health or disease phenotype and adjusting for SES/EDU reduced the 

strength of the association with the heritable risk for that disorder. However, in a few cases 

(depression, anxiety, neuroticism, PTSD, and subjective well-being) adjusting for SES/EDU either 

increased or did not change these associations. In the space below, we present a framework for 

interpreting these complexly of these findings. 

 

Mental Health Outcomes 

The biology underlying psychiatric disorders was most affected by shared genetic etiology 

with EDU/SES proxies, as evidenced by significant decreases in h2 for all psychiatric disorder 

except MDD, anxiety, and PTSD when conditioned on these traits. Conversely, conditioning the 

neuroticism and subjective well-being GWAS revealed additional risk loci that were not detected 

in the original GWAS. Using an independent method, Turley, et al. observed similar information 

gain (16); however, we demonstrated that this information gain is due to polygenicity rather than 

population substructure. That is, we believe this demonstrated novel biology, as opposed to the 

underlying population genetics phenomena. Unlike Turley, et al., we do not report comparable risk 

locus gain with subjective well-being. 

In structural equation models of mental health outcomes, neuroticism and MDD originally 

loaded onto the same common factor. After conditioning with highest math class, self-rated math 

ability, and deprivation index, the loadings of neuroticism and MDD separate, suggesting that their 
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unique biology may be distinguishable. This is consistent with our observation of ameliorated 

genetic correlation between these two phenotypes due to conditioning. Hill, et al., described two 

factors of neuroticism, one of which aligns more closely with anxiety and tension phenotypes and 

the second of which aligns more closely with worry and vulnerability phenotypes (25). With 

GenomicSEM, we support these claims: neuroticism loads onto the same common factor as anxiety 

while MDD aligns with depressive symptoms and loneliness. We demonstrate here that neuroticism 

and MDD are highly positively genetically correlated in their unconditioned versions. Based on 

the present results, we hypothesize that conditioning these phenotypes with EDU and SES reveals 

unique genetic architectures of these phenotypes. We demonstrate that after conditioning with 

EDU/SES, general neuroticism appears more similar to the Hill, et al. Anxiety/Tension phenotype. 

Lastly, our GenomicSEM data mirror those genetic correlation results from Hill, et al., adding 

weight to our observed two-factor model (25). 

Cell type transcriptomic profile enrichments underlying the GWAS of mental health 

outcomes were robust to the effects of EDU and SES phenotypes, but we uncovered new cell-type 

information for risk tolerance, MDD, schizophrenia, and bipolar disorder. These enrichments 

highlight unique cell-specific processes underlying these disorders which overlap in 

phenotypically and genetically similar phenotypes schizophrenia and bipolar disorder: the cell-

types discovered in the conditioned schizophrenia GWAS overlap with those in the conditioned 

bipolar disorder GWAS. These findings recapitulate common therapeutic targets for these 

disorders. For example, inhibitory and GABAergic neuron transcriptomic profile enrichments 

were detected in the conditioned MDD GWAS and these are common targets of emerging 

therapeutic options (e.g., scopolamine, an antidepressant which blocks the M1 receptor of 

GABAergic interneurons in the medial prefrontal cortex  (26); ketamine blocking the activation of 

somatostatin interneurons in PFC (27)) for MDD and depressive symptoms (26). Detection of these 

overlapping cell-type transcriptomic profile enrichments supports drug repurposing efforts in 

psychiatric disorders and related mental health conditions. 

Using genome-wide information, we uncovered putatively causal relationships between 

many mental health outcomes. These analyses revealed well-known relationships between traits 

(e.g., bipolar disorder, schizophrenia, and MDD) but also elucidated several novel relationships 

involving brain imaging phenotypes. In particular we identified the volume of the left subcallosal 

cortex as a possible mediator of the relationships between several mental health outcomes (e.g., 

extraversion, subjective well-being, and alcohol dependence) which in turn demonstrate potential 

causal relationships with mood disorders which are commonly comorbid with alcohol dependence 

(28). This structural convergence may elucidate common disease mechanisms; however, these 

commonalities may be confounded by fine-grained nuances of the relationship between brain 

structure and mental health and disease. The LCV method used to identify these causal 

relationships does not support multivariable analyses nor does it employ sensitivity tests to detect 

horizontal pleiotropy (i.e., a SNP is associated with both phenotypes through separate 

mechanisms) or effect-size outlier SNPs. These observations likely confound our causal inferences 

and require more robust testing with traditional Mendelian randomization methods suited to 

accommodate weak genetic instruments (i.e., those SNPs not strongly associated with either 

phenotypes of interest, typically with association p-values greater than 5x10-8) (29-31). 

Certain relationships regarding mental health outcome conditioning that might have been 

expected, were not observed in our study. Intellectual abilities are genetically correlated with ASD 

and ADHD and disabilities therein often co-occur with ASD and/or ADHD diagnoses (32, 33). 

According to the Diagnostic and Statistical Manual of Mental Disorders (5th Edition, DSM-5), 
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diagnosis of intellectual disability or global developmental delay must be eliminated as possible 

explanations of ASD symptoms prior to making a formal ASD diagnosis.  We had hypothesized 

that after conditioning with the effects of EDU phenotypes, these psychiatric disorders might 

demonstrate notable changes in their underlying biology, but this was not the case. This lack may 

suggest that ADHD and ASD diagnosis criteria robustly capture elements unique to the disorders 

rather than those shared with EDU/SES phenotypes. In other words, ascertainment of cases at the 

extreme ends of spectrum disorders (34, 35) reliably capture trait specific biology with minimal 

phenotype confounding from shared effects with EDU and SES. 

 

Education and Socioeconomic Status 

EDU and SES phenotypes were generally robust to the effects of shared genetic etiology 

with mental health outcomes. When conditioned with individual mental health outcomes, we 

detected relatively few changes to the predicted underlying biology of EDU and SES phenotypes. 

Only when EDU and SES phenotypes were conditioned with several mental health outcomes did 

we observed changes in h2 and underlying biology. The phenotypes educational attainment, 

income, and self-rated math ability maintained significant h2 after conditioning with all mental 

health outcomes. Conversely, the SNP-based observed-scale h2 of cognitive performance, highest 

math class, and deprivation index disappeared after conditioning with all mental health outcomes. 

When assessing the relationship between EDU and SES phenotypes, we revealed educational 

attainment as a driving factor linking EDU and SES phenotypes. Furthermore, we uncovered an 

independent contribution of income to a common factor with educational attainment and self-rated 

math ability. Based on recent work of Morris, et al. to uncover why EDU and SES phenotypes are 

related to one another, these observations point to educational attainment as a mediator of the 

genetic and phenotypic correlations between EDU and SES. 

Tissue and cell-type transcriptomic profile analyses of EDU, SES, and mental health 

outcome phenotypes highlighted differences in cortical and cerebellar tissue enrichment. Though 

not significantly decreased in all phenotypes after conditioning, the bidirectional changes in 

cerebellar and cortical tissue enrichment (i.e., EDU/SES conditioned with mental health outcomes 

and mental health outcomes conditioned with EDU/SES) highlight the importance of these brain 

regions and their shared transcriptional regulation in human mental health and disease (36). 

Furthermore, this observation of cerebellar and cortical tissue changes support the common 

psychopathology factor (a p-factor) studied extensively in recent mental health and disease 

research (37). Genetic risk and structural brain imaging changes have been identified underlying 

this p-factor (37). 

 

Limitations 

Our study has three primary limitations. First, we did not select independent genetic 

correlates from the mental health outcome phenotypes with which to condition the EDU and SES 

phenotypes. Due to high genetic correlation between mental health outcomes, this approach may 

have introduced bias in our reporting of which EDU and SES phenotypes were robust to shared 

genetic etiology with all mental health outcomes. This potential over-conditioning likely drove our 

results towards the null (e.g., non-significant h2) and therefore, we have not reported gene set, 

tissue transcriptomic profile enrichment, cell-type transcriptomic profile enrichment, or 

GenomicSEM loadings for EDU/SES traits where there might have been over-conditioning. For 

this reason, our results do not imply that, for example, educational attainment is a more powerful 

or specific EDU phenotype than cognitive ability. Second, it has recently been demonstrated that 
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the origin of phenotypic and genetic correlations between EDU and SES phenotypes may be driven 

by dynastic effects and/or assortative mating acting independently or in concert (6). Dynastic 

effects describe a condition where offspring inherit phenotype-associated genetic risks and 

phenotype-associated environmental risks. Assortative mating exists when mate pairs are non-

randomly chosen based on certain attributes. We hypothesize that the dynastic and assortative 

mating events described between EDU and SES phenotypes (6) may also appear in phenotypic 

and genetically correlated EDU, SES, and mental health outcome pairs. Future studies will be 

required to describe how these evolutionary and social pressures influence the correlative and 

causal relationships uncovered here (e.g., OCDanorexia nervosa after conditioning with the 

effects of educational attainment, income, and deprivation index). Third, The UK Biobank is 

considered a generally healthy cohort not enriched for any trait or disorder of interest. To our 

knowledge, the brain imaging GWAS (performed on a subset of UK Biobank participants) used 

here were adjusted for variables related to blood pressure, height, weight, and bone mineral 

composition but are not adjusted for substance-related (recreational or prescribed) or psychiatric 

variables. The presence of these variables in sufficient quantities among those brain imaging 

participants could alter brain volumes affecting the results of the genetic analyses conducted. 

 

Conclusions 

By conditioning mental health outcomes for the shared genetic etiology with EDU and SES 

phenotypes, this study elucidates novel biology and causal relationships between phenotypes. 

These biological mechanisms, cell-types, tissue-types, and causal trait pairs could not have been 

detected without adjusting the effects of EDU and SES. This study highlights how the pervasive 

effects of EDU and SES may mask underlying biology of mental health outcomes in support of 

multitrait analyses of GWAS to enable trait-specific discoveries. 

 

Materials and Methods 

An overview of all materials, methods, and key findings from this investigation of the 

genetic overlap between EDU, SES, and mental health outcome phenotypes is shown in a flow 

diagram in Fig. S1. 

 

Trait Description and Selection 

Four EDU (educational attainment, highest math class, self-rated math ability, and 

cognitive performance) and two SES phenotypes (household income and Townsend deprivation 

index) from the Social Science Genetic Association Consortium (SSGAC), UK Biobank (UKB), 

and 23&Me were used in this study to condition mental health outcomes. These unconditioned 

phenotypes are characterized on the level of heritability, tissue transcriptomic profile enrichment, 

and cell-type transcriptomic profile enrichment in Fig. S1. 

Mental health outcomes from the Psychiatric Genomics Consortium (PGC), SSGAC, 

Genetics of Personality Consortium (GPC), UKB, and UKB Brain Imaging Genetics (UKB BIG) 

were selected based on their genetic correlation with EDU and SES phenotypes (Table S1 and 

Figs. 1 & S2). To focus our analyses, we predetermined that mental health outcomes would be 

included if (1) they had significant heritability (h2), and (2) they were genetically correlated with 

2/4 EDU and 2/2 SES phenotypes. It is recommended that each phenotype in a genetic correlation 

pair have h2 z-scores ≥ 4 (18) but mtCOJO (see below) only requires significant heritability 

estimates. For this reason, we have relaxed the h2 suggestions for genetic correlation analyses with 
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respect to trait inclusion. Genetic correlation estimates should be interpreted in light of this relaxed 

h2 criteria. 

 

Conditioning 

Conditioning was performed in Genome-wide Complex Trait Analysis (GCTA) using the 

mtCOJO feature using the 1000 Genomes Project European ancestry linkage disequilibrium 

reference panel (17). For case-control GWAS summary statistics, odds ratios and corresponding 

standard error were converted to log-odds and corresponding standard error. 

Causal estimates within mtCOJO were calculated using Generalized Summary-data-based 

Mendelian Randomization (GSMR). In our analyses of mental health outcomes conditioned with 

the effects of EDU and SES phenotypes, each MR causal inference was performed using genome-

wide significant SNPs in the exposure (EDU/SES trait). To test how mental health outcomes 

influence EDU and SES phenotypes, we relaxed this SNP inclusion threshold where necessary 

(e.g., when UKB BIG phenotypes served as the exposure phenotype) such that at least two SNPs 

were included in the causal inference. 

 

Heritability and Genetic Correlation 

Observed-scale h2 was calculated for each original and conditioned GWAS using the 

Linkage Disequilibrium Score Regression (LDSC) method with 1000 Genomes Project European 

reference population (18).  

 

Gene-set, Tissue Transcriptomic, and Cell-type Transcriptomic Profile Enrichment 

Original and conditioned GWAS were used as standard input for Multi-marker Analysis of 

GenoMic Annotation (MAGMA v1.06) implemented in FUnctional Mapping and Annotation 

(FUMA) v1.3.3c with the following parameters: genome-wide significance p < 5x10-8, minor allele 

frequency ≥ 0.01, and LD blocks merged at < 250kb for LD r2≥0.6 with lead variant (22, 38). 

SNPs underlying each phenotype of interest were mapped to genes within 10kb physical 

proximity using FUMA (38). Mapped genes were assessed using the gene-set enrichment feature 

of FUMA, and gene ontology enrichment analysis with ShinyGO (39). 

Tissue transcriptomic profile enrichment was performed relative to the GTEx v7 53 tissue 

types with the default 0kb gene window. 

Cell-type transcriptomic profile enrichments were performed using eleven human specific 

transcriptomic profile datasets related to the brain (22): PsychENCODE_Developmental, 

PsychENCODE_Adult, Allen_Human_LGN_level 1, Allen_Human_MTG_level1, 

DroNc_Human_Hippocampus, GSE104276_Human_Prefrontal_cortex_all_ages, 

GSE104276_Human_prefrontal_cortex_per_ages, GSE67835_Human_Cortex, 

GSE67835_Human_Cortex_woFetal, Linnarson_GSE101601_Human_Temporal_cortex, and 

Linnarson_GSE76381_Human_Midbrain. Cell-type transcriptomic profiles were assessed in three 

ways as per the FUMA analysis pipeline. (1) enrichment of cell-type transcriptomic profiles within 

each selected data set, (2) within data set conditionally independent cell-type transcriptomic profile 

enrichments, and (3) across data set cell-type transcriptomic profile enrichments. 

For analyses within data sets, step-wise conditional significance is evaluated for each cell 

type in a data set against the p-values for all other cell-types in that same data set. The output from 

these analyses identify cell types within a data set whose transcriptomic profiles are enriched in a 

given GWAS independently of the signal from all other cell type transcriptomic profiles in the 

same data set. 
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Using within-data-set conditionally independent cell-types identified above, cross-data-set 

analysis identifies cell-type transcriptomic profiles enriched in a given GWAS independent of all 

other cell-types from all chosen data sets. Proportionally significant (PS) and conditionally 

independent cell-type pairs indicate that enrichment of these cell-types in a given GWAS are 

driven by independent genetic signals.  

For a given pair of cell types, PS of cell type a given cell type b (PSa,b) ≥ 0.8 and PSb,a ≥ 

0.8 indicates independent genetic signals for cell types a. Interpretation of additional PS thresholds 

for each cell type in a given pair can be seen in detail (https://fuma.ctglab.nl/tutorial#celltype) or 

in Watanabe, et al. (22). 

 

Latent Causal Variables 

LCV is a method for inferring genetic causal relationships between trait pairs using GWAS 

summary data using effect size estimates or z-scores (24). LCV modeling was implemented in R 

using the 1000 Genomes Project Phase 3 European reference panel. As recommended, GWAS 

summary data were filtered to include only SNPs with minor allele frequencies greater than 5% 

and the major histocompatibility region was removed due to its complex linkage disequilibrium 

structure. Note that genetic correlation does not imply that shared genetic risks between traits are 

causal. The LCV model output distinguishes whether genetic correlations support genetic 

causation and the degree to which (i.e., the genetic causality proportion; gĉp) genetic risk for trait 

1 is causal for trait 2. LCV gĉp estimates were only interpreted for trait pairs where both traits 

exhibit LCV-calculated h2 z-scores ≥ 7. 

 

Statistical Considerations 

Z-tests were used to determine differences in heritability, SNP effects, gene-set 

enrichments, tissue transcriptomic profile enrichments, cell-type transcriptomic profile 

enrichments, GenomicSEM loadings, and LCV estimates between conditioned and unconditioned 

GWAS. 
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Figure and Figure Legends 

 

 
Fig. 1. Trait inclusion genetic correlations. Genetic correlation between mental health outcomes, 

education phenotypes, and socioeconomic status phenotypes. Genetic correlations labeled with an 

asterisk were at least nominally significant. 
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Fig. 2. Heritability (h2) changes and risk locus discovery. (A) Observed-scale h2 changes of 

mental health outcomes after conditioning with education and socioeconomic status phenotypes. 

(B) Manhattan plots for neuroticism (SSGAC) before and after conditioning with education and 

socioeconomic status phenotypes. (C) Evidence that neuroticism (SSGAC) locus discovery is due 

to increased detection of polygenicity rather than exacerbated effects of population substructure. 
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Fig. 3. Cell-type transcriptomic profile enrichments underlying mental health outcomes. Cross-data-set proportionally significant 

(PS) and conditionally independent (i.e., genetic signatures of cell-type pairs are distinguishable) cell-type transcriptomic profile 

enrichments underlying unconditioned and conditioned GWAS for (A) risky behavior, (B) major depression, (C) schizophrenia, and (D) 

bipolar disorder. The human cell-type data sets from FUMA are labeled individually for each panel using different colors; cell types in 

the x and y directions are conditionally independent signals from within-data-set analysis performed in FUMA (cell-type enrichment 

step 2 (22)). Genetic signals from colinear cell types labeled with a single asterisk could not be differentiated from one another in FUMA. 
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Fig. 4. Trait loading onto latent factors. Genomic structural equation modeling of mental health 

outcomes before and after conditioning with education and socioeconomic status phenotypes. Each 

column shows the confirmatory factor analysis (CFA) loading value (blue shading indicating that 

a trait is a major contributor to the latent factor and blue tinting indicating that a trait is a minor 

independent contributor to the latent factor) for each mental health outcome (in the y direction) 

into one of two factors (F1 and F2) from exploratory factor analysis (EFA). Grey boxes indicate 

that a given trait was not predicted to load onto a given factor column. Red boxes indicate that the 

trait was predicted by EFA to load onto a factor but did not independently load during CFA. 
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Fig 5. Causal relationships masked by education and socioeconomic status effects. Latent 

Causal Variable (LCV) results detecting causal relationships between the genetic risk for two 

mental health outcomes. (A) Colors are used to indicate original trait pair and conditioned trait 

pair LCV results. LCV genetic causality proportions surviving multiple testing correction are 

labeled. Large data points indicate significantly different LCV genetic causality proportions 

relative to the unconditioned estimate. (B) Summary of the causal relationship (derived from A) 

network originating from brain imaging phenotypes (bolded text). (C) Causal relationships with 

no evidence of brain imaging phenotype connection in the current study (derived from A). In B 

and C, horizontal arrow thickness indicates the size of the estimated causal relationship between 

the two traits on either end of the arrow while the direction of each arrow indicates the direction 

of causal effect; the color of each arrow indicates the education or socioeconomic status phenotype 

used to condition each trait of a trait pair; mean genetic correlations from LCV are included above 

each set of horizontal arrows. 
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Table 1. Causal inferences detected after multiple testing correction. Significant causal 

relationships detected between mental health outcomes using latent causal variable analyses. For 

each significant causal estimate, all conditioned causal estimates between that phenotype pair are 

provided, highlighting at least nominally significant causal inferences after conditioning with 

education and socioeconomic status phenotypes that could not be detected in the original 

unconditioned trait pair. 

 

Submitted as a separate file. 
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Supplementary Materials 

 

Supplementary Results 

Trait Inclusion 

Left and right insular cortex brain imaging phenotypes have been treated as differentially 

genetically correlated with EDU and SES, respectively. (1) Though not included in the 

conditioning experiments involving EDU phenotypes, the right insular cortex was nominally 

significantly genetically correlated with educational attainment (rg = -0.118, p = 0.044) and (2) 

though not included in the conditioning experiments involving SES phenotypes, the left insular 

cortex was nominally significantly genetically correlated with income (rg = 0.183, p=0.004). 

 

Gene-set Enrichment Differences 

Using MAGMA (38), we tested for differences between the gene set enrichments of 

original and conditioned mental health outcome GWASs. Gene set enrichments for each mental 

health outcomes were robust to the effects of conditioning with EDU and SES phenotypes. No 

significant changes were observed in gene set enrichments underlying the GWAS of mental health 

outcomes. 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 13, 2020. ; https://doi.org/10.1101/2020.01.09.20017079doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.09.20017079


Page 28 of 36 

 

 
Fig. S1. Analytic pipeline. The overall analysis plans and methods used (green boxes) and key 

results from each phase of analysis for (A; blue boxes) mental health outcomes conditioned with 

education and socioeconomic status phenotypes and (B) education and socioeconomic status 

phenotypes conditioned with individual mental health outcomes (orange boxes) and all mental 

health outcomes (grey boxes). 
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Fig. S2. Description of education and socioeconomic status phenotypes. Summary level data 

for education and socioeconomic status phenotypes on the level of phenotype heritability, tissue 

transcriptomic profile enrichment, and cell-type transcriptomic profile enrichment.  

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 13, 2020. ; https://doi.org/10.1101/2020.01.09.20017079doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.09.20017079


Page 30 of 36 

 

 
Fig. S3. Selection of brain imaging phenotypes. (A) Brain imaging phenotypes genetically 

correlated with education phenotypes: educational attainment, highest math class, self-rated math 

ability, and cognitive performance. (B) Brain imaging phenotypes nominally genetically correlated 

with socioeconomic status phenotypes: household income and Townsend deprivation index. 

Heatmap shows genetic correlations between socioeconomic status genetic correlates and their 

respective per-trait heritability z-scores. Six bolded brain imaging phenotypes were selected for 

conditioning experiments due to their heritability estimate relative to strongly genetically 

correlated traits.  
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Fig S4. Tissue changes in schizophrenia GWAS. Robust linear regression between original and 

conditioned tissue transcriptomic profile enrichments in the schizophrenia GWAS. The 

schizophrenia GWAS was conditioned with education and socioeconomic status phenotypes: 

educational attainment (purple regression line), highest math class (green regression line), self-

rated math ability (pink regression line), cognitive performance (black regression line), income 

(cyan regression line), and Townsend deprivation index (red regression line). Tissues are labeled 

if conditioning with education and socioeconomic status significantly reduced their enrichment in 

the schizophrenia GWAS. 
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Fig. S5. Mental health outcome genetic correlations. Genetic correlation architecture of all 

mental health outcomes shown as heatmaps. Red asterisks indicate genetic correlations surviving 

Bonferroni correction, single black asterisks indicate at least nominally significant genetic 

correlations, and double black asterisks indicate genetic correlations that are significantly different 

than their unconditioned equivalent. 
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Fig. S6. Heritability and genetic correlation of education and socioeconomic status 

phenotypes. 
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Fig S7. Gene set, tissue transcriptomic profile, and cell-type transcriptomic profile 

enrichment changes. Each panel shows the robust linear regression between original gene set (A, 

D, G), tissue transcriptomic profiles (B, E, H), and cell-type transcriptomic profiles (C, F, I) and 

conditioned enrichments for educational attainment (A-C), self-rated math ability (D-F), and 

income (G-I). For visual clarity, standard errors around each linear regression are shown for traits 

resulting in a significant change of enrichment and for each trait conditioned on all mental health 

outcomes (pink dashed regression lines). Data points indicate annotations with significant different 

enrichments after conditioning; the top five differentially enriched annotations are labeled. 

A	 B	 C	

D	 E	 F	

G H	 I	
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Fig. S8. Summary of Genomic Structural Equation Modeling (GenomicSEM). (A) SEM of 

education (EDU) and socioeconomic status (SES) phenotypes assuming all phenotypes load onto 

a single common factor. The same model with significantly heritably conditioned phenotypes is 

shown. Asterisks indicate significant changes in loading value. (B) Confirmatory factor analysis 

of unconditioned EDU and SES proxies. (C) Confirmatory factor analysis of EDU and SES proxies 

conditioned with all mental health outcomes. 
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Table S1. Description of mental health outcomes assessed.  

 

Trait Source Sample Size H2 % (z-score) 

Autism Spectrum Disorder PGC 18,382 cases and 27,969 controls 19.41 (11.55) 

Attention Deficit Hyperactivity Disorder PGC 20,183 cases and 35,191 controls 22.81 (15.41) 

Schizophrenia PGC 36,989 cases and 113,075 controls 23.22 (25.24) 

Post-traumatic Stress Disorder PGC 2,424 cases and 7,113 controls 4.86 (2.26) 

Anorexia Nervosa PGC 3,495 cases and 10,982 controls 24.03 (6.29) 

Alcohol Dependence PGC 8,485 cases and 20,272 controls 5.08 (4.38) 

Major Depressive Disorder PGC + UKB 246,363 cases and 561,190 controls 3.75 (25) 

Bipolar Disorder PGC 20,352 cases and 31,358 controls 4.32 (12) 

Tourette Syndrome PGC 4,819 cases and 9,488 controls 35.62 (8.32) 

Obsessive Compulsive Disorder PGC 2,688 cases and 7,037 controls 34.56 (7.2) 

Anxiety (Case-Control) ANGST 5,761 cases and 11,765 controls 7.26 (2.49) 

Subjective Well-Being SSGAC 298,420 2.5 (12.5) 

Neuroticism SSGAC 170,911 9.41 (14.26) 

Depressive Symptoms SSGAC 161,460 4.72 (12.76) 

Risk Tolerance SSGAC 466,571 5.13 (23.32) 

Risky Behavior SSGAC 315,894 11.09 (26.4) 

Openness GPC 17,375 9.27 (4.14) 

Conscientiousness GPC 17,375 6.32 (2.47) 

Extraversion GPC 63,991 5.19 (6.33) 

Loneliness Gao, et al. 2017 2,853 cases and 4,583 controls 0.3 (2.14) 

Reaction Time CCACE/UKB 330,069 8.13 (27.1) 

Tiredness CCACE/UKB 108,976 5.84 (21.63) 

Left Insular Cortex BIG 8,428 23.13 (4.18) 

Right Insular Cortex BIG 8,428 21.76 (4.20) 

Left Subcallosal Cortex BIG 8,428 22.96 (4.34) 

Right Temporal Fusiform Cortex BIG 8,428 26.03 (4.51) 

Volume of Right-Ventral Diencephalon BIG 8,428 32.83 (5.41) 

Cortex Volume BIG 8,428 22.36 (4.47) 

Subcortical Grey Matter Volume BIG 8,428 27.58 (4.57) 

Left Hemisphere Medialorbitofrontal Area BIG 8,428 23.11 (4.83) 
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