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Abstract 

The study aims were to develop fracture prediction models by using machine learning 

approaches and genomic data, as well as to identify the best modeling approach for fracture 

prediction. The genomic data of Osteoporotic Fractures in Men, cohort Study (� � 5,130), was 

analyzed. After a comprehensive genotype imputation, genetic risk score (GRS) was calculated 

from 1,103 associated SNPs for each participant. Data were normalized and split into a training 

set (80%) and a validation set (20%) for analysis. Random forest, gradient boosting, neural 

network, and logistic regression were used to develop prediction models for major osteoporotic 

fractures separately, with GRS, bone density and other risk factors as predictors. For model 

training, the synthetic minority over-sampling technique was used to account for low fracture 

rate, and 10-fold cross-validation was employed for hyperparameters optimization. In the testing 

set, the area under the ROC curve (AUC) and accuracy were used to assess the model 

performance. The McNemar test was employed for pairwise comparisons to examine the 

accuracy difference between models. The results showed that the prediction performance of 

gradient boosting was the best, with AUC of 0.71 and an accuracy of 0.88, and the GRS ranked 

as the 7th most important variable in the model. The performance of random forest and neural 

network were also better than that of logistic regression. Pairwise comparisons showed that the 
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accuracy difference between models was significant. This study suggested that improving 

fracture prediction can be achieved by incorporating genetic profiling and by utilizing the 

gradient boosting approach.  
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Abbreviations 

MrOS: Osteoporotic Fractures in Men Study 

ML: Machine Learning 

BMD: Bone Mineral Density 

FRAX: The Fracture Risk Assessment Tool 

GRS: Generic Risk Score 

QUS: Quantitative Ultrasound 

ROC: Receiver Operating Curve 

AUC: Area Under Curve 

LR: Logistic Regression 

RF: Random Forest 

GB: Gradient Boosting 

NN: Neural Network 

MOF: Major Osteoporotic Fracture 

SNPs: Single Nucleotide Polymorphisms 

FNBMD: Femoral Neck BMD 

TSBMD: Total Spine BMD 

THBMD: Total Hip BMD 
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Introduction 

Osteoporotic fractures continue to be a significant, ever-growing public health problem 

around the world. By estimation, more than 8.9 million fractures worldwide are caused by 

osteoporosis every year. (1) The incidence of osteoporotic fracture increases exponentially 

throughout life, as does the risk of devastating consequences of these fractures, including 

functional decline, institutionalization, mortality, and destitution. With longevity increasing 

globally, the potentially high cumulative rate of osteoporosis and fracture, and the associated 

excess disability and mortality,(2) have caused and will continue to cause an inevitable increase in 

social and economic burdens worldwide.  

Osteoporosis affects both men and women. Women have a higher risk of osteoporotic 

fracture, and thus the general population and even the medical community share the belief that 

osteoporosis is not as important in men. Therefore, osteoporosis has been an under-recognized 

problem, and as well, osteoporotic fracture has become a long-neglected medical issue in men. 

Men indeed suffer much higher morbidity and mortality rates than women following 

osteoporotic fractures.(3) For example, men are more likely to die from hip fractures, with a 

mortality rate in men of up to 37.5%.(4) Of those survivors, men are significantly more likely 

than women to have disabilities and lose independence. With increasing longevity in men, the 

burdens resulting from their fractures are likely to increase significantly shortly. 

Therefore, accurately identifying high-risk individuals is critical to preventing fracture 

and the subsequent devastating consequences, especially in older men. Primary risk factors 

contributing to fracture susceptibility of men include advancing age, low bone mineral density 

(BMD), low body weight, limitations of physical function, previous fracture, a history of falls, 

prolonged use of corticosteroids, smoking, and alcohol consumption.(5). Several predictive 
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models have developed based on these risk factors, with the Fracture Risk Assessment Tool 

(FRAX) being the most commonly used fracture prediction tool.(6, 7) However, the prognostic 

accuracy of FRAX is suboptimal, because the average area under the receiver operating 

characteristic curve (AUC); the primary metric for model assessment for total fracture by FRAX 

is only 0.67 (95% CI, 0.64-0.71).(10) Thus there is room for further improvement in fracture 

prediction.  

Substantial efforts have begun to find ways to improve fracture prediction in the field. 

Generally, integrating new markers of fracture risk in the prediction model and adopting 

innovative modeling strategies are two essential approaches to improving the accuracy of 

fracture prediction. One crucial factor improving the accuracy of fracture risk assessment is 

genetic factors, which have not been included in existing fracture risk assessment models.(7) 

However, genetic elements are determinants of bone structure and predisposition to bone 

deterioration and fragility. Mounting evidence shows that fracture susceptibility is genetically 

determined.(8, 9, 10) In the last two decades, major genome-wide association studies (GWASs) 

have successfully identified thousands of single nucleotide polymorphisms (SNPs) associated 

with fracture.(10, 11) To date, the largest GWAS on fracture identified 1,103 SNPs associated with 

fracture.(10) Integrating these SNPs into fracture risk assessment models has the potential to 

improve the accuracy of fracture prediction over the existing models. 

Additionally, existing models for fracture prediction do not take into account the 

potential interactions between risk factors, which are likely present. Such limitations can be 

addressed by machine learning (ML) approaches, which is capable of modeling complex 

interactions and maximizing predictive accuracy from complex data. ML techniques, including 

random forest, gradient boosting, and neural network, have been applied in clinical research for 
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disease predictions and have shown much higher accuracy for diagnosis than classical 

methods.(12) However, the performance of these ML techniques for fracture prediction has rarely 

been examined.  

Integrating genomic data and using these ML techniques will likely enable the 

development of a novel model to improve fracture prediction. Therefore, the aims of the present 

work were 1) to develop models using ML techniques to predict major osteoporotic fracture 

(MOF) in men, based on data containing genomic variants; 2) To compare these models to 

determine which ML model performs the best for MOF prediction. 

Materials and Methods 

Data Source  

The existing data from the Osteoporotic Fractures in Men Study (MrOS) archived in the 

Database of Genotypes and Phenotypes (dbGaP) was used for the analysis. Genotype and 

phenotype data of MrOS was acquired through authorized access (Accession: phs000373.v1.p1) 

after the analysis plan was approved by the institutional review board at the University of 

Nevada, Las Vegas, and the National Institute of Health (NIH). MrOS was designed to 

investigate anthropometric, lifestyle, and medical factors related to bone health in older, 

community�dwelling men. Details of the MrOS research design, recruitment, and baseline 

characteristics have been described elsewhere.(13, 14) 

Study participants 

Participants in the MrOS were at least 65 years old, community-dwelling, ambulatory, 

and not having a bilateral hip replacement at the study entry. For enrollment, participants were 

required to be able to complete the self-administered questionnaire, to understand and sign the 

written informed consent, to attend the clinic visit, and to complete at least the anthropometric, 
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DEXA, and vertebral X-ray procedures. The participants did not have a medical condition that 

would result in imminent death, a judgment that was made by the investigators. A total of 5,994 

men were enrolled between March 2000 and April 2002; all were from six communities in the 

United States (Birmingham, AL; Minneapolis, MN; Palo Alto, CA; Pittsburgh, PA; Portland, 

OR; and San Diego, CA.).  The selection process for the MrOS led to 5,130 eligible subjects, all 

of whom had both genotype data and phenotype data available for our current analysis. 

Measurements of BMD and quantitative ultrasound (QUS) 

During the baseline visit of MrOS, total body, total femur, and lumbar spine (L1 to L4) 

BMD were measured using a fan-beam dual-energy X-ray absorptiometry (QDR 4500 W, 

Hologic, Inc., Bedford, MA, USA). Participants were scanned by centrally certified DXA 

Clinical Densitometrists, all of whom used standardized procedures for BMD measurements. 

Cross-calibrations found no linear differences across scanners, and the maximum percentage 

difference between scanners was only 1.4% in mean BMD of total spine.(15) No shifts or drifts in 

scanner performance were found, based on longitudinal quality evaluation from data that was 

daily scanned at each clinical center for standardized phantoms. 

QUS measurements in Mr. OS were described in detail else.(16) Briefly, QUS was 

measured at the right heel for participants using the Sahara machine (Hologic, Waltham, MA). 

This device provides three QUS parameters: broadband ultrasonic attenuation (dB/MHz), speed 

of sound (SOS in M/sec), and quantitative ultrasonic index (QUI, a unitless proprietary linear 

combination of BUA and SOS). Based on duplicate measurements on participants, the mean 

coefficient of variation for all devices was only 3.3.  

Assessment of covariates: 
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Self-administered questionnaires were used to acquire bone-health related information, 

including demographics, clinical history, medications, and lifestyle factors. The acquired 

information contained variables in the study, including age, race, smoking, and alcohol 

consumption. Height (cm) was measured using a Harpenden Stadiometer, and weight (kg) was 

measured by a standard balance beam or an electronic scale. BMI was calculated as kilograms 

per square meter. Smoking was categorized as “never,” “past,” and “current.” Alcohol intake 

was quantified in terms of the usual drinks consumed per day. Walking speed was determined by 

timed completion of a 6-meter course, traveled at the participant's usual walking speed. Mobility 

limitations were measured by participants’ ability to rise from a chair without using their arms, 

as well as their ability to complete five chair stands.  

Major Osteoporotic Fracture  

A major osteoporotic fracture (MOF) was defined as a fracture of the hip, spine (clinical), 

wrist, or humerus(17) that had occurred during the following up in this study. Only 451 men 

(8.8%) were found to have a MOF in the data.  

Genotyping Data 

Baseline whole blood samples were used for DNA extraction. Written consent for DNA 

use was obtained in advance from the participants. Quality-control genotype data were acquired 

through dbGaP. A most comprehensive Haplotype Reference Consortium (HRC) reference panel 

and a Positional Burrows-Wheeler Transform (PBWT) imputing algorithm were utilized for the 

genotype imputation to ensure high quality of imputation. All genotype imputation work was 

conducted at the Sanger Imputation Service. Based on a most up-to-date study published by 

Morris et al. in 2019(10), a total of 1,103 associated SNPs were extracted for this analysis. Each of 
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the 1,103 SNPs were successfully imputed for MrOS data. The imputation quality was excellent, 

with a mean R2 of 0.99.  

Genetic risk score  

A genetic risk score (GRS) is a standardized metric derived from the number of risk 

alleles and their effect size for each study participant. This metric allows the composite 

assessment of genetic risk in complex traits. A linkage disequilibrium (LD) pruning was 

performed in advance in order to eliminate possible LD between SNPs. None of the 1,103 SNPs 

was removed after the pruning. The weighted GRS was then calculated with the algorithms 

described else.(18) Briefly, each individual’s weighted GRS was calculated by summing the 

number of risk alleles at each locus and multiplied by the effect size, which provided regression 

coefficients from the referenced study.(10) 

Data analysis 

In the phenotype dataset, only the ultrasound speed of sound had missing values (6.7%). 

Median imputation, a most common imputation method for phenotype data, was used to replace 

these missing values so as to maximize the sample size. Phenotype data (� � 5,130) and 

genotype data (� � 5,143) were merged after all missing data imputations were completed. The 

predictors included GRS, age, race, body weight, height, smoking, alcohol consumption, walking 

speed, impairment of instrumental activities of daily living, BMD, mobility limitations, and 

ultrasound speed of sound. All modeling was adjusted for clinical location. We included the 

three BMD measurements from the femoral neck, total spine, and total hip in order to predict 

MOF in the models. Since site-specific measures of BMD had the strongest association with 

fracture at the corresponding site,(20, 21, 22, 23) including multiple BMD measurements should have 

been a better prediction for MOF, which includes fractures from multiple skeletal sites. Our 
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analysis also confirmed that multiple BMD measurements had better MOF predictions than 

single BMD in the model. Centered predictors were used to address possible multicollinearity 

problems between multiple BMD predictors in the models. All continuous variables in the data 

were normalized by the centering method before analysis. Centering independent variables 

removes nonessential ill-conditioning and thus reduces multicollinearity. In this analysis, all 

variance inflation factors (VIF), which measured the impact of collinearity among the variables 

in the model, were < 5 after centering in logistic regression (VIF < 10 is considered acceptable). 

Advanced ML methods are more robust to multicollinearity.(23) Among the three very highly 

correlated QUS measurements,(16) we only included SOS in the models. Because after centering, 

our analysis confirmed that SOS had the best MOF prediction performance, and including all 

three QUS measurements in the model did not improve the model performance. The final dataset 

(� � 5,130) was divided randomly into the training set (80%, � � 4,104) and the testing set 

(� � 1,026). The data processing flow and corresponding sample size in each step is shown in 

Figure 1. 

The MrOS had a small number of fracture cases (� � 451, 8.8%). Such imbalanced data 

could cause difficulty in using accuracy of prediction to assess model performance because the 

minor class (fracture) should have less influence on accuracy than the major class (non-

fracture),(24) which could contribute to the undesirable lower performance of the prediction 

model.(25) To address this data imbalance issue, we employed the Synthetic Minority Over-

sampling (SMOTE) technique(26)  for data resampling in order to account for the low fracture 

rate in the training set. We used 10-fold cross-validation for hyper-parameters optimization, for 

which the training set (� � 4,104) is divided into 10-folds, with one fold chosen for validation 

and remaining folds used for training. We used Scikit-learn's randomized search cross-validation 
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method to find the best hyperparameters for various ML algorithms. Fracture prediction models 

were trained separately using logistic regression, random forest, gradient boosting, and neural 

network with backpropagation in the training set.  

Model evaluation 

The testing set (� � 1,026) was used for model evaluation and comparison. The selected 

evaluation metrics included the area under the ROC curve (AUC) and the prediction accuracy. 

The receiver-operating characteristic (ROC) curve is generated by plotting true positive rate vs. 

false positive rate at various threshold settings. The prediction accuracy is the rate of correct 

predictions by each model. We employed the McNemar statistical test for pairwise comparisons 

for prediction accuracy between ML models.(27) We also used the testing set to investigate the 

variable importance in the best prediction model identified in this study. All of the analyses were 

performed in the Python Software Foundation, Python Language Reference (v3.7.3) with the 

package Scikit-learn: Machine Learning in Python (http://www.python.org)(28) was used. 

Results 

Baseline characteristics 

Table 1 shows the characteristics of participants with MOF (� � 451) and without MOF 

(� � 4,679). The mean age of participants with MOF was significantly higher (75.9 years) than 

those without MOF (73.6 years). Each BMD measured from the femoral neck, total hip, and total 

spine in participants with MOF was significantly lower than that of the participants without 

MOF. The ultrasound speed of sound was lower in participants with MOF than that in 

participants without MOF, although the difference is not statistically significant. 

Model Performance Comparison 
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Random forest, gradient boosting, neural network, and logistic regression models were 

developed with 10-folds cross-validation in the training set (� � 4,104�, and their fracture 

prediction performance was compared in the testing set (� � 1,026�. Figure 2 shows the 

comparison of the ROC curve of these developed models in the testing dataset for MOF 

prediction. The ROC curves of random forest, gradient boosting, and neural network are above 

that of the logistic regression. Figure 3 shows the performance results of each model in 

predicting MOF. AUC and accuracy of random forest, gradient boosting, and neural network are 

higher than those in the logistic regression model.  

For comparing each pair of models (e.g., Random Forest vs. Logistic Regression), we 

calculated the counts that made correct and incorrect predictions by each model. Table 2 shows 

the results of the McNemar test for comparison accuracies in classifying MOF (yes vs. no) 

between ML methods in the testing set. With bonferroni correction for multiple comparisons (α = 

0.05/6=0.0083), the difference of accuracy between two models in all pairwise comparisons was 

statistically significant with � �  .0001, except the comparison between logistic regression vs. 

neural network, with � � .025.  

Assessment of Variable Importance 

Using the testing set, we investigated the variable importance in the gradient boosting 

model, which was the optimal prediction model identified in this study. Figure 4 shows the mean 

decrease in the Gini impurity of gradient boosting. Total hip BMD, femoral neck BMD, SOS, 

Age, total spine BMD, Weight, GRS, and height were the most important variables for the MOF 

prediction in the gradient boosting model. The GRS is ranked as the 7�� most important variable 

in the model.   
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Discussion 

This study presents the finding that using various ML approaches to develop the 

predictive model for MOF by analyzing both genotype and phenotype data. The study results 

demonstrate that several ML approaches perform better than logistic regression and that the 

gradient boosting model appears to be the best to predict MOF in men. The present study also 

demonstrates that GRS is an important variable for fracture prediction and that GRS provides 

information on osteoporotic fracture risk, which is complementary to BMD and other risk 

factors. As existing models for fracture risk assessment are suboptimal, for example, FRAX, 

which is widely accepted worldwide, only have AUC value around 0.7 for total fracture 

prediction.(29) The prediction performance of other developed models for fracture risk 

assessment, including Garvan Fracture Risk Calculator,(29) is not better. There is a crucial need to 

find ways to improve prediction accuracy and performance for fracture risk. The present study 

demonstrates that fracture prediction accuracy can be improved by incorporating genetic 

profiling and utilizing advanced ML modeling approaches. To the best of our knowledge, our 

present work is the first attempt to predict fracture outcomes using both advanced ML 

approaches and genetic information, as well as to identify the best performing model for MOF 

prediction. As such, this study will do much to facilitate finding a new, personalized tool to 

assess individual fracture risk.  

Genetic factors that influence osteoporotic fracture risk is well documented. Hereditary 

factors contribute 50%-85% to fracture susceptibility.(30) Several large GWAS and GWAS meta-

analyses have already identified more than 1,000 SNPs associated with fracture risk at genome-

wide significant levels.(10, 11) Although these individual SNPs have modest effect size on fracture 

risk, GRS, as summarized from individual risk SNPs, can improve AUC and accuracy of fracture 
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prediction.(31) In the present study, we found that GRS ranked the 7th most important variable in 

the optimal MOF prediction model of gradient boosting, where the model includes major 

conventional risk factors as predictors. The contributions of GRS to fracture prediction we 

observed in this study were consistent with previous studies,(31) which used 63 associated SNPs 

identified 8 years ago.(32) We utilized the most updated 1,103 recently discovered associated 

SNPs(10) for this analysis. Our study further supports that genetic profiling has great potential for 

improving the accuracy of fracture prediction over and above the existing models, which only 

employ conventional phenotypic risk factors.    

Of equal importance, advanced ML approaches provide great potential for improving 

fracture prediction. The reason is that besides disregarding genetic factors, most, if not all, 

existing fracture prediction models do not allow for potential interactions between predictors. 

However, interactions between predictors are likely present but not detected by conventional 

modeling approaches. Such weakness in existing models can be remedied with the advanced ML 

techniques we are exploring in our current research. In the present study, we employed multiple 

ML approaches, including random forest, gradient boosting, and neural networks, in developing 

a more accurate fracture prediction model. We found that gradient boosting has the highest 

accuracy and AUC for MOF prediction in our testing set, and the accuracy of the gradient 

boosting model is significantly higher than that of the other three models, as verified by the 

McNemar test, a widely used approach for comparing ML classifiers. The highest predictive 

performance of the gradient boosting model has been widely used in other areas for various 

outcomes, including urinary tract infections(33), hip fractures,(34) hepatocellular carcinoma,(35) 

sepsis,(36), and bioactive molecules.(37) The present study suggested that the gradient boosting 
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algorithm, combined with genomic profiling as a predictor, can provide a more accurate 

prediction for fracture risk. 

Our study has limitations. First, the total sample size (� � 5,130) is relatively small for 

ML approaches. ML approaches often require much larger training data size. For this reason, we 

employed a 10-folds cross-validation approach for tuning the hyper-parameter within the training 

set, instead of allocating part of the study sample for validation purpose, which would cause a 

smaller sample size for ML model training. Second, some covariates were not available in the 

MrOS data through dbGaP, including medications, comorbidities, and physical activities. A lack 

of these predictor variables can decrease the model performance. Studies with larger sample 

sizes may have found that the gradient boosting model had better prediction performance, with 

higher AUC(19, 25) than that observed in this study. Lack of related predictors in the data may 

explain lower AUC in the present study.  The limited number of fracture cases is another reason 

for the lower AUC observed in this study. A testing dataset with at least 75 – 100 cases are 

recommended in order to achieve the consistent precision performance for an ML algorithm(38); 

however, our testing dataset only had only 60 fracture cases. Third, the MrOS data we used only 

included men � 65 years, so our findings may not apply to women or to individuals who are of a 

younger age. Fourth, rare risk SNPs were less likely to be included in this study, because risk 

SNPs used in this study were identified from a GWAS study, which likely discovered common 

variants, not rare variants.(39).Finally, due to the small sample size and a small number of hip 

fracture cases (� � 188) in MrOS data, we were not able to develop a predictive model for hip 

fracture outcomes by utilizing oversampling techniques. For a similar cause, we were not able to 

model 1,103 individual SNPs during the ML model development or to examine the interactions 

between these SNPs. We have to use GRS of these risk SNPs in the model due to the small 
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number of fracture cases and the small sample size of this study. Nevertheless, these limitations 

are unlikely to have altered our findings in the present study because this is a self-control study, 

with all ML models developed and validated by the same datasets.  

In summary, advanced ML models performed better in fracture prediction for men than 

conventional logistic regression. Gradient boosting appears to be the best performing model for 

MOF prediction in this study. As well, genetic variants contribute to the fracture prediction 

independent of BMD and other risk factors. Hence, our work suggests that improving fracture 

prediction accuracy can be achieved by incorporating genetic profiling and by utilizing the 

gradient boosting ML approach. Additional more extensive and more comprehensive studies, 

especially those including women, young participants (<65 years), rare genetic variants, and 

additional risk factors, are warranted in order to further examine fracture prediction performance 

of ML models, especially with individual SNPs as predictors. Genetically-enhanced, highly 

accurate assessment models are likely to improve fracture prediction and thus help clinicians and 

patients to assess fracture risk better at the individual level. 
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Figure Legends 
 

Figure 1. Overview of Data Process Flow  

Figure 2. Comparisons of Receiver-operating characteristic curve between various ML models for MOF 

prediction in the testing dataset (n = 1,026)  

Figure 3. Diagnostic performance between various ML models in predicting Major Osteoporotic Fracture 

(MOF) in the testing dataset (n = 1,026)   

Figure 4. Variable importance in the gradient boosting model for prediction of Major Osteoporotic 
Fracture in the testing set (n = 1,026).  
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Table 1. Demographic and Clinical Characteristics of participants with major osteoporotic 
fracture (MOF) in the follow up in the MrOS study. 

Variable* With  MOF  
(n = 451) 

Without MOF  
(n = 4,679) 

P-
value** 

Age 75.9 �  6.2  73.6 �  5.8  < 0.001 

Weight 80.6 �  13.1  83.4 �  13.3  
< 0.001 

Height 173.7 �  6.6  174.2 �  6.8  
< 0.001 

Alcohol 
Consumption 

3.9 �  5.7  4.2 �  6.8  
< 0.001 

Impairment of 
Instrumental 

Activities of Daily 
Living 

0.5 �  1.0  0.4 �  0.9  

< 0.001 

Femoral Neck BMD 0.7 �  0.1  0.8 �  0.1  
< 0.001 

Total Hip BMD 0.9 �  0.1  1.0 �  0.1  
< 0.001 

Total Spine BMD 1.0 �  0.2  1.1 �  0.2  
< 0.001 

Ultrasound Speed of 
Sound 

1539.4 �  31.8  1556.5 �  35.8  
0.14 

Generic Risk Score 31.6 �  0.4  31.6 �  0.5  
< 0.001 

Walking speed 1.0 �  0.3  1.1 �  0.3  
< 0.001 

Mobility 
Limitations 

0.3 �  0.6  0.2 �  0.5  
< 0.001 

Race (White) 404 (90%) 4212 (91%) < 0.001 
Smoking (Current) 275 (61) 2742 (91) < 0.001 

* Continuous variables were expressed as mean � SD, and categorical variables were expressed 
as number (%).  
** � - values were obtained by �- test for continuous variables and chi-square test for categorical 
variables. 
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Table 2. Results of the McNemar’s Test between various ML models in predicting Major 
Osteoporotic Fracture in the testing dataset (n = 1,026)   

 �  Value 

Cross-Validation 
 Model 

Logistic 
Regression 

Random 
Forest 

Gradient 
Boosting 

Neural 
Network �  .05 �  .0001 �  .0001 
Gradient 
Boosting �  .0001 �  .0001 -- 
Random 
Forest �  .0001 -- -- 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 

 

*GRS: Generic Risk Score. 
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