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Abstract 

Pancreatic Ductal Adenocarcinoma (PDAC) is the most demolishing form of pancreatic cancer 

with poor prognosis and rising incidence. Difficulties in the early detection and aggressive 

biological nature of this disease are responsible for most of the therapeutic failures. In this study 

publicly available microarray expression data of full RNA from peripheral blood of PDAC 

patient has been utilized via network-based approach in order to identify potential non-invasive 

biomarkers and drug targets for early diagnosis and treatment of PDAC. Analysis of 

differentially expressed genes revealed their predominant involvement in translational process, 

apoptotic process, protein phosphorylation, immune responses, ATP binding, protein binding and 

signal transduction. Moreover, CREBBP, MAPK14, MAPK1, SMAD3, UBC, MAGOH, 

HSP90AB1, RPL23A, ACTB and STAT3 were identified as the best proteome signatures, 

GATA2, FOXC1, PPARG, E2F1, HINFP, USF2, MEF2A, FOXL1, YY1 and NFIC were 

identified as the best transcriptional regulatory signatures, and hsa-miR-93, hsa-miR-16, hsa-

miR-195, hsa-miR-424, hsa-miR-506, hsa-miR-124, hsa-miR-590-3p, hsa-miR-1, hsa-miR-497 

and hsa-miR-9 were identified as the best post-transcriptional regulatory signatures in PDAC 

patient. Analysis of drug-gene interaction revealed Anisomycin, Azactidine, Arsenic trioxide, 

Bortezomib, Ulixertinib and some other molecules as the probable candidate molecules which 

may reverse PDAC condition. 
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1. Introduction 

Pancreatic Ductal Adenocarcinoma (PDAC) is by far the most common type of devastating 

exocrine neoplastic and chemo resistant cancer, concerning 90% of all pancreatic cancers (Orth 

et al., 2019). This cancer originates in the ducts that carry secretions of digestive enzymes and 

bicarbonate away from the pancreas. Pancreatic cancer is rarely diagnosed before 55 years of 

age, mainly the highest incidence is reported in people over 70 years (Siri and Salehiniya, 2019). 

Though, there has no evidence what causes this cancer in most of cases, many researchers are 

identified some genetic and environmental factors (obesity, smoking, diabetes etc.) are 

intertwined in the development of PDAC. This cancer occurs when cells in our pancreas 

especially in the duct line develop mutations in the DNA that causes cells to grow uncontrollably 

and to continue living further can form a tumor. Malignancy can spread to nearby organs and 

blood vessels if the cell remains untreated for the long time (Adamska et al., 2017). Furthermore, 

25% of people survive one year and 5% live for five years for the lack of apparent and particular 

symptoms and reliable biomarkers for early diagnosis as well as aggressive metastatic spread 

leading to poor response to treatments (Maitra and Hruban, 2008). Globally, 458,918 new cases 

of pancreatic cancer have been reported in 2018, and 355,317 new cases are estimated to occur 

until 2040 (Rawla etal., 2019). By 2030, researchers project that pancreatic cancer will become 

the 2nd leading cause of cancer related death in the US after lung cancer, surpassing colorectal, 

breast, and prostate cancer (Rahib et al., 2014). Moreover, currently accessible therapeutic 

options are surgery, radiation, chemotherapy, immunotherapy, and use of targeted drugs. But 

these are not effective as later stage detection causes metastasis additionally it is expensive too 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.08.20016931doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.08.20016931
http://creativecommons.org/licenses/by/4.0/


(Charsi, 2007; Orth et al., 2019). Therefore, there is an increasing demand for the development 

of novel, effective strategies aiming to advance current therapeutic possibilities.  

Microarray data is now being increasingly used to assume the function of differentially 

expressed genes (DEGs) which are not currently available (Ullah et al., 2019; Hatfield et al., 

2003). And DEGs identified from microarray data can be used in the robust identification of 

biomarkers. However, these studies provide fruitful findings but the understanding of actual 

mechanism of biological condition using the data of differentially expressed genes (DEGs) is 

often difficult and may sometime come with erroneous interpretation (Pepe et al., 2003; Crow et 

al., 2019).  

In this study we have employed network-based approach to identify potential molecular 

signatures which could be used as biomarkers or drug targets in the early diagnosis and treatment 

of PDAC. We have also employed strategy to identify drug-gene interactions in PDAC in order 

to select feasible therapeutic molecule for the treatment of PDAC (Figure 1).    

2. Materials and Methods 

2.1. Data Retrieval and Identification of Differentially Expressed Genes 

We retrieved GSE74629 microarray data from NCBI-GEO (National Center for Biotechnology 

Information-Gene Expression Omnibus) database (Caba et al., 2015). The dataset comprises the 

expression profile of total RNA from peripheral blood of 36 PDAC patients and 14 age, gender 

and habit matched healthy people. The presence of PDAC was confirmed by histological biopsy 

or imaging-guided biopsy. After retrieval, the data was statistically analyzed using GEAP (Gene 

Expression Analysis Platform) to differentiate the upregulated and downregulated genes (Nunes 

et al., 2018).  Log2 transformation was applied and differentially expressed genes (DEGs) were 
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sorted with adjusted P value<0.01 filter since the lower value corresponds to more accurate 

prediction.   

 

2.2. Functional Enrichment Analysis of DEGs 

Both upregulated and downregulated gene sets were analyzed by DAVID (Database for 

Annotation, Visualization, and Integrated Discovery) (version 6.8) for gene over-representation 

to elucidate gene ontology (GO) terms and pathways involved with DEGs (Sherman and 

Lempicki, 2009). P values were adjusted using the Hochberg and Benjamini test and gene count 

>15 were set as the cut-off point during the analysis. 

2.3. Construction of Protein-Protein Interaction Network and Identification of Hub Proteins 

STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) database was utilized for 

the construction of generic protein-protein interaction (PPI) network with NetworkAnalyst 

(Szklarczyk et al., 2017; Xia et al., 2015). Topological and expression analysis of the DEGs were 

performed using NetworkAnalyst. Hub proteins in the generic PPI network with top 10 most 

connected nodes were identified with cytoHubba plugin using betweenness centrality interaction 

matrix on Cytoscape (version 3.7.2) (Chin et al., 2014; Shannon et al., 2003).  Then the 

functional enrichment of the hub proteins was also analyzed. 

2.4. Identification of Regulatory Molecules 

DEGs were searched against JASPAR which is an open access, curated and non-redundant 

database of DNA binding transcription factors, with the help of NetworkAnalyst to construct 

transcription factor (TF)-DEGs interaction network (Sandelin et al., 2004). Micro RNA 
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(miRNA)-DEGs interaction network was constructed searching the DEGs against TarBase, a 

manually curated microRNA database that includes almost 1,300 experimentally supported 

targets (Sethupathy et al., 2006). Top 10 interacting TFs and miRNAs were selected and 

analyzed.  

 

2.5. Identification of Small Therapeutic Candidate Molecules 

After the identification of hub proteins and regulatory biomolecule signatures, the selected 

signatures were then analyzed by DGidb (Drug Gene Interaction Database) (version 3.0) 

database that presents drug-gene interaction and gene druggability information in order to 

identify potential therapeutic candidate molecules that may reverse the PDAC condition (Cotto et 

al., 2017). Best observed therapeutic molecules according to specific target were then selected. 

3. Result 

3.1. Transcriptome Signatures 

Publicly available microarray data of total RNA profile from peripheral blood of PDAC patient 

and control was retrieved for statistical analysis. A total of 1910 differentially expressed genes 

were identified with 681 upregulated and 1229 downregulated genes were identified within the 

defined parameter (Figure 2). 

After that both upregulated and downregulated gene sets were analyzed sequentially to 

understand their functional enrichment reflecting Gene Ontology (GO) terms and enriched 

pathway. GO aids in understanding the involvements of the genes in context of Biological 

Processes, Cellular Compartmentation and Molecular Function. Top 10 GO terms for both 
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upregulated and downregulated gene sets were retrieved (Table 1).  Among the identified terms 

of upregulated genes, 55 genes were found to be involved in signal transduction and 31 genes 

were involved in innate immune response. Again, Protein Phosphorylation, Apoptotic Processes 

and Viral Processes were the next predominant GO terms. Moreover, the upregulated genes were 

also predominant in ATP binding, protein binding and Protein homodimerization activity and 

they were shown to act mainly in cytoplasm, cytosol and plasma membrane.  

Among the downregulated genes, 54, 50 and 44 genes were found to be involved in rRNA 

processing, Translation and Translational Initiation respectively. Additionally, they were found 

to be involved in protein binding and RNA binding and also observed to act predominantly in 

cytosol and nucleus. 

Moreover, The DEGs were then again subjected to analyze their involvement in biological 

pathway. Selected genes showed sign of their involvement in KEGG (Kyoto Encyclopedia 

of Genes and Genomes) pathway (Figure 3).  

3.2. Proteome Signatures 

After functional enrichment analysis, the DEGs were used to construct protein-protein 

interaction (PPI) network. A densely connected scale free network was constructed for the DEGs 

(Figure 4). Then the generic PPI map was used to identify the hub proteins using the 

betweenness centrality matrix. CREBBP, MAPK14, MAPK1, SMAD3, UBC, MAGOH, 

HSP90AB1, RPL23A, ACTB and STAT3 were identified as the most connected nodes (Hub 

proteins) (Figure 5) (Table 2). Then the functional enrichment of the hub proteins was analyzed. 

The identified proteins were primarily involved in positive regulation of protein transport into 

nucleus (P value: 8.30E-06), Regulation of immune response (P value: 1.32E-05) and 
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posttranscriptional regulation of gene expression (P value: 1.32E-05). They were also found to 

be involved in phosphatase binding and performing predominantly in nucleus.  

3.3. Regulatory Signatures 

The DEGs were analyzed to identify transcriptional (TFs) and post-transcriptional (miRNAs) 

regulatory biomolecules. GATA2, FOXC1, PPARG, E2F1, HINFP, USF2, MEF2A, FOXL1, 

YY1 and NFIC were identified as the best transcriptional (TFs) regulatory biomolecules (Figure 

6) (Table 3). And, hsa-miR-93, hsa-miR-16, hsa-miR-195, hsa-miR-424, hsa-miR-506, hsa-miR-

124, hsa-miR-590-3p, hsa-miR-1, hsa-miR-497 and hsa-miR-9 were identified as the best post-

transcriptional (miRNAs) regulatory biomolecules (Figure 7) (Table 4). 

3.4. Identification of Therapeutic Candidate Molecules 

Identified hub proteins and transcription factors were analyzed for their interaction with 

candidate molecules that could be used to reverse the PDAC condition. CREBBP, MAPK1, 

MAPK14, GRB2 and RPL23A among 10 hub proteins were reported to have significant 

interactions with candidate molecules (Table 5). Among the selected transcription factors, 

GATA2, PPARG and E2F1 showed interactions with multiple candidate molecules. Arsenic 

Trioxide, Dactinomycin, Bortezomib, Azactidine, Paclitaxel, Flourouracil and Carmustine were 

reported to be myelosuppressive agents. Anisomycin and Dactinomycin have nucleic acid 

synthesis inhibitory capability. Moreover, multiple candidate molecules were reported to be 

enzyme inhibitors.  

4. Discussion  
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After statistical analysis 1910 differentially expressed genes were identified with 681 

upregulated and 1229 downregulated genes within the defined parameter which was then 

employed to analyze the functional enrichment. 

Gene co-expression analysis and interaction network allows to identify functionally co-related 

genes, assume their tentative functions, identify regulatory biomolecules and understand disease-

gene interactions (Van et al., 2017; Rhee et al., 2008).  Upregulated and downregulated genes 

were found to be predominantly involved in translational process, apoptotic process, protein 

phosphorylation, immune responses, ATP binding, protein binding and signal transduction 

(Table 1). Protein phosphorylation is the most important post translational event in signal 

transduction which plays crucial role to mediate the cell signaling and its hyperactivity, 

malfunction or overexpression is mostly encountered in tumor and cancer development (Ardito 

et al., 2017). Altered apoptotic profile is a common clinical feature in pancreatic cancer (Bafna et 

al., 2009). PDAC involves an elevated level of both inflammatory and regulatory immune cells 

(Shibuya et al., 2014). Overexpression of ATP binding cassette protein has been observed in 

pancreatic cancer cells (Chen et al., 2012).  

Protein-protein interaction (PPI) network provides useful insight into the functional organization 

of many proteins which promotes the understanding of complex molecular relationship to 

determine the phenotype of a cell (Stelzl and Wanker, 2006). Hub proteins are the most 

connected nodes in a PPI network that provides significant information about the function of the 

network (He and Zhang, 2006). Among, the selected 10 hub proteins, CREBBP is a 

transcriptional co-activator and its inhibition has been shown to suppress PDAC (Arensman et 

al., 2014) (Table 2). CREBBP has also been shown to play crucial role in lung cancer which was 

evident by its knockdown that resulted in the inhibition of lung cancer and induction of apoptosis 
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(Tang et al., 2016). MAPK14 is a serine-threonine specific kinase that phosphorylates different 

proteins. MAPK14 dependent phosphorylation has been shown to mediate epithelial to 

mesenchymal transition in breast cancer cell (Hedrick and Safe, 2017). MAPK1 is another 

serine-threonine specific kinase and its overexpression has been reported in cervical cancer cells. 

MAPK1 has also been suggested to be constitutively active in absence of DUSP6 and leading to 

worsening prognosis of pancreatic cancer (Li et al., 2015; Furukawa, 2009). HSP90AB1 is a 

molecular chaperone and it promotes epithelial-mesenchymal transition in lung cancer (Wang et 

al., 2019). SMAD3 is a signal transducer and epithelial to mesenchymal transition in PDAC is 

mediated by upregulated SMAD3 (Yamazaki et al., 2014). STAT3, a signal transducer, whose 

overexpression has been shown to be correlated with VEGF (Vascular Endothelial Growth 

Factor) in pancreatic cancer. Constitutively activated STAT3 has been shown to be involved with 

elevated VEGF which then mediate angiogenesis and metastasis. Blockade of STAT3 showed 

suppression of VEGF expression (Wei et al., 2003). ACTB is a structural protein and it is 

essential for the maintenance of cytoskeletal structure and kinetics. 1.7 fold increase in 

expression of ACTB has been observed in pancreatic cancerous cells. However, ACTB 

overexpression has also been reported with other type of cancers i.e., lung cancer, colorectal 

cancer, liver cancer etc. (Rubie et al., 2005; Guo et al., 2013). MAGOH is a component of 

spliceosome and is required for splicing premature mRNA inside the cell. Differential expression 

of specific mRNA transcript has been correlated with MAGOH expression in breast cancer and 

this was evident by the knockdown of MAGOH along with other spliceosome factors which 

resulted in different pattern of mRNA production (Stricker et al., 2017). RPL23A is a component 

of ribosome and mediates the protein synthesis inside cell. Increased level of RPL23A 

expression has been observed in liver cancer (Molavi et al., 2019). UBC is responsible for 
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ubiquitylation of many proteins inside cell. Downregulation of UBC has been shown to inhibit 

the proliferation of small cell lung cancer (Tang et al., 2015). Overexpression of UBC gene was 

observed in renal cancer cell (Kanayama et al., 1991). 

Both transcription factors and microRNAs play crucial role in the expression of widespread 

genes inside human body (Martinez and Walhout, 2009). And the interactome network of these 

regulatory biomolecules provides crucial and valid information about the biological functions of 

these molecules and their involvement with disease (Vidal et al., 2011). Mostly connected 10 

TFs and miRNAs were selected from TFs-DEGs and miRNA-DEGs interactome network (Table 

3). Among the selected TFs, GATA2 has been reported to be overexpressed and accused as the 

metastasis-driving factor in prostate cancer (Chiang et al., 2014). High expression of both 

FOXC1 mRNA and protein has been observed in western blot and immunohistochemistry 

experiment with PDAC tissue (Wang et al., 2013). PPARG mutation has been observed in case 

of PDAC and some other form of cancers (Wang et al., 2015). Inhibition of PPARG by specific 

inhibitor has been shown to induce growth arrest of pancreatic carcinoma cells (Elnemr et al., 

2000). E2F1 is essential for the S phase transition of PDAC cell (Schild et al., 2009). HINFP is 

responsible for regulating cell cycle and differential expression of this protein has been observed 

in different cancer cell lines (Holmes et al., 2005, van et al., 2009). Differential expression of 

USF-2 has been observed for bronchial dysplasia and non�adenocarcinoma lung cancer and this 

protein has been suggested as the early marker of lung cancer (Ocejo�Garcia et al., 2005). 

MEF2A has been reported to promote hepatocellular carcinoma (Pon and Marra, 2016). High 

expression of FOXL1 in PDAC tissue has been shown to promote the clinical outcome whereas 

lower expression is suggested to promote metastasis (Zhang et al., 2013). YY1 plays significant 
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role in the signaling cascade that regulates the PDAC metastasis (Yuan et al., 2017). NFIC has 

been recently shown to play key role in breast cancer tumorigenesis (Lee et al., 2015). 

Among the selected microRNAs, hsa-miR-93 is used as a biomarker for gastric cancer early 

detection and prognosis prediction (Larki et al., 2018) (Table 4). hsa-miR-16 is upregulated in 

PDAC  and acts as a promising biomarker in cancer detection(Huang et al., 2019). hsa-miR-195 

inhibits cell proliferation, migration, and invasion which potentially opens new avenues for the 

treatment of breast cancer(Singh et al., 2015). hsa-miR-424 is over expressed in PDAC patient 

and helps to characterize PDAC(Lee et al., 2007). hsa-miR-506 has downregulated expression 

profile in cervical cancer. Additionally, it works to promote apoptosis of cervical cancer cells (Li 

et al., 2011) hsa-miR-124 has been shown to be downregulated in nasopharyngeal carcinoma 

(NPC) and dramatically inhibited the cell proliferation, colony formation, migration and 

invasion in vitro, as well as tumor growth and metastasis in vivo (Peng et al., 2014). hsa-miR-

590-3p can be used as a sensitive biomarker in coloreteral cancer. It is also tissue-specific and 

can regulate tumor suppressor genes and oncogenes in different tissues (Elfar et al., 2019). hsa-

miR-1 is downregulated in the PDAC group compared with either in the sera samples or in tumor 

tissues. hsa-miR-1 was frequently decreased in clinical osteosarcoma (OS) tumor tissues and 

involved in the anticancer effect induced by specific chemical agent (Zhu and Wang, 2016). It 

also has a negative regulatory role in the proliferation of colon cancer by targeting baculoviral 

inhibitor of apoptosis protein(Xu et al., 2015). hsa-miR-497 is significantly downregulated in 

certain types of cancer, including breast, gastric, endometrial, colorectal and prostate cancer. It 

also  inhibits both  the migration and invasion of prostate cancer cells (Wu et al., 2016). hsa-

miR-9 is up�regulated in non�small�cell lung cancer (NSCLC). It is also involved in 
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transforming growth factor�beta 1 (TGF�β1)�induced NSCLC cell invasion and adhesion by 

targeting SOX7(Han et al., 2017). 

DEGs were then analyzed to understand their potential interactions with small candidate 

molecule (Table 5). Among the selected candidate molecules, Arsenic Trioxide has been shown 

to induce apoptosis in pancreatic cancer cell (Li et al., 2003). Recently, Ulixertinib has been 

shown to have antitumor activity in PDAC in phase I clinical trial (Jiang et al., 2018). 

Anisomycin can decrease the proliferation of colorectal cancer cell (Ushijima et al., 2016). 

Bortezomib can induce apoptosis in PDAC cell (Nawrocki et al., 2005). Azactidine is capable of 

inducing apoptosis in ovarian cancer cell (Li et al., 2009). 

Finally, publicly available microarray data of PDAC patient and control was used to identify 

potential biomarkers and drug targets using a network-based integrated approach. After continual 

computational assessment this study found several key proteome and regulatory signatures which 

may lead to the identification of potential biomarkers and drug targets. This study recommends 

CREBBP, MAPK14, MAPK1, SMAD3, UBC, MAGOH, HSP90AB1, RPL23A, ACTB and 

STAT3 as the best proteome signatures, GATA2, FOXC1, PPARG, E2F1, HINFP, USF2, 

MEF2A, FOXL1, YY1 and NFIC as the best transcriptional regulatory signatures, and hsa-miR-

93, hsa-miR-16, hsa-miR-195, hsa-miR-424, hsa-miR-506, hsa-miR-124, hsa-miR-590-3p, hsa-

miR-1, hsa-miR-497 and hsa-miR-9 as the best post-transcriptional regulatory signatures in 

PDAC patient. Moreover, identified signatures were also analyzed for their potential interactions 

with small candidate molecules. Anisomycin, Azactidine, Arsenic trioxide, Bortezomib, 

Ulixertinib and some other molecules were reported to have myelosuppressive agent that may 

reverse the PDAC condition. 

5. Conclusion 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.08.20016931doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.08.20016931
http://creativecommons.org/licenses/by/4.0/


PDAC is one of the most devastating form of cancers for which feasible treatment and early 

diagnosis techniques are merely available. In this study several genes have been identified which 

are predominantly involved in translational process, apoptotic process, protein phosphorylation, 

immune responses, ATP binding, protein binding and signal transduction in PDAC patient. 

Thereafter, several proteome and regulatory signatures were identified which were found to be 

involved in PDAC and some other form of cancers. Multiple therapeutic agents were also 

identified which may reverse PDAC condition. Other in vitro study also supported our findings 

and again we suggest further laboratory experiment to find the best potential biomarker and 

therapeutic agent for PDAC diagnosis and treatment. Hopefully, this study will raise research 

interest among researchers and contribute to the identification of feasible biomarker and drug 

target of PDAC in the upcoming days.  
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Figure 2: Volcano plot of selected differentially expressed genes (DEGs). Colored (Blue: Down 
regulated genes; Red: Upregulated genes) DEGs have been selected with adjusted P value > 

0.01. filter. 

Gene Expression 
Data Retrieval  

Identification of 
Differentially 

Expressed Genes 
(DEGs)  

Functional 
Enrichment Analysis  

Protein-Protein 
Interaction Network 

Analysis   

DEGs-Transcription 
Factors (TFs) 

/miRNA Interaction 
Analysis   

Determinatio
Gene Ontolo

(GO) Terms 
KEGG Pathw

Identificatio
Hub Protei

Identification
Regulator

TFs/miRNA

DEGs-Drugs 
Interaction Analysis   

Identificati
Therapeu
Candidat

Figure 1: Strategies employed in the overall study. 
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Figure 3: KEGG pathway of differentially expressed genes: (A) Upregulated genes; (B) 
Downregulated genes. 
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Figure 4: Protein-protein interaction (PPI) network of differentially expressed genes (DEGs). 
Nodes represent DEGs (Green: Upregulated genes; Red: Downregulated genes). Edges represent 

interaction. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Hub proteins from generated protein-protein interaction (PPI) network. Nodes 
represent proteins and edges represent interactions. 
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Figure 6: Interaction between transcription factor (TF) and differentially expressed genes 
network of differentially expressed genes (DEGs). Nodes represent DEGs (Green: Upregulated 

genes; Red: Downregulated genes; Blue: Transcription factors). Edges represent interaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Interaction between miRNA and differentially expressed genes network of 
differentially expressed genes (DEGs). Nodes represent DEGs (Green: Upregulated genes; Red: 

Downregulated genes; Blue: miRNA). Edges represent interaction. 
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Upregulated Genes 
Biological 
Processes 

Terms Gene Count Coverage (%) P-Value 
Signal Transduction 55 10.70 7.0E-5 

Innate Immune Response 31 6.00 2.3E-6 
Protein Phosphorylation 29 5.60 5.2E-5 

Apoptoic Process 27 5.30 6.4E-3 
Viral Process 25 4.90 2.3E-6 

Oxidation-reduction Process 25 4.90 3.3E-2 
Positive Regulation of GTPase Activity 24 4.70 3.5E-2 

Cell Adhesion 21 4.10 2.6E-2 
Inflammatory Response 20 3.90 7.7E-3 

Immune Response 20 3.90 2.1E-2 
Cellular 

Component 
Cytoplasm 174 33.90 2.0E-4 

Plasma Membrane 152 29.60 3.3E-6 
Cytosol 146 28.40 5.4E-11 

Extracellular Exosome 132 25.70 9.3E-12 
Membrane 99 19.30 8.3E-8 

Integral Component of Plasma Membrane 57 11.10 1.4E-3 
Focal Adhesion 39 7.60 4.0E-12 
Golgi Apparatus 34 6.60 2.0E-2 

Perinuclear Region of Cytoplasm 30 5.80 2.1E-3 
Cell Surface 23 4.50 3.0E-2 

Molecular 
Function 

Protein Binding 297 57.80 1.2E-8 
ATP Binding 62 12.10 7.5E-4 

Protein Homodimerization Activity 32 6.20 9.0E-3 
Identical Protein Binding 31 6.00 2.0E-2 

Protein Serine-threonine Kinase Activity 24 4.70 2.4E-4 
Protein Kinase Binding 22 4.30 1.4E-3 

Protein Heterodimerization Activity 22 4.30 1.6E-2 
Protein Kinase Activity 21 4.10 1.9E-3 

Receptor Binding 19 3.70 7.8E-3 
Cadherin Binding Involved in Cell-cell Adhesion 17 3.10 5.7E-3 

Downregulated Genes 
Biological 
Processes 

Terms Gene Count Coverage (%) P-Value 
rRNA Processing 54 7.10 7.8E-27 

Translation 50 6.60 6.0E-20 
Translation Initiation 44 5.80 1.6E-26 

Nuclear-mediated mRNA Catabolic Process, Non-sense-
mediated Decay 

40 5.20 5.9E-25 

Viral Transcription 38 5.00 7.1E-24 
SRP-dependent Cotranslational Protein Targeting to 

Membrane 
36 4.80 1.1E-24 

mRNA Splicing Via Spliceosome 30 3.90 4.1E-8 
Regulation of Transcription from RNA Polymerase II 

Promoter 
30 3.90 9.5E-3 

Immune Response 29 3.80 9.3E-3 
Negative Regulation of Apoptotic Process 27 3.50 6.0E-2 

Cellular 
Component 

Nucleus 296 38.80 1.3E-10 
Cytoplasm 249 32.70 6.2E-4 

Cytosol 210 27.60 7.8E-13 
Nucleoplasm 192 25.20 3.9E-15 

Extracellular Exosome 148 19.40 2.5E-4 
Membrane 131 17.20 2.1E-6 

Mitochondria 105 13.80 2.0E-11 
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Nucleolus 89 11.70 2.6E-16 
Mitochondria Inner Membrane 52 6.80 8.4E-12 

Ribosome 41 5.40 1.4E-20 
Molecular 
Function 

Protein Binding 463 60.80 2.6E-17 
Poly(A) RNA Binding 135 17.70 9.2E-31 

RNA Binding 70 9.20 2.4E-17 
Structural Constituent of Ribosome 50 6.60 7.3E-23 

Protein Kinase Binding 24 3.10 3.4E-2 
Cadherin Binding Involved in Cell-cell Adhesion 22 2.90 7.7E-3 

Nucleotide Binding 21 2.80 7.5E-2 
Transcription Factor Binding 19 2.50 4.2E-2 

Unfolded Protein Binding 12 1.60 5.1E-3 
Translation Initiation Factor Activity 9 1.20 3.1E-3 

 

Table 1: Top 10 gene ontology (GO) terms of differentially expressed genes (DEGs) in PDAC. 

 

Hub Proteins Description Functional Category Clinical Significance References 
CREBBP CREB Binding Protein Transcription co-activator Involved in PDAC and Lung 

Cancer. 
(Arensman et al., 
2014; Tang et al., 

2016) 
MAPK14 Mitogen-Activated Protein 

Kinase 14 
Serine-threonine kinase Involved in Breast Cancer. (Hedrick and Safe, 

2017) 
MAPK1 Mitogen-Activated Protein 

Kinase 1 
Serine-threonine kinase Involved in Cervical Cancer and 

PDAC. 
(Li et al., 2015; 

Furukawa, 2009) 
SMAD3 Mothers against 

decapentaplegic homolog 
3 

Signal transducer Involved in PDAC. (Yamazaki et al., 
2014) 

UBC Ubiquitin C Signal transducer Involved in Lung Cancer and 
Renal Cancer. 

(Tang et al., 2015) 

MAGOH Protein Mago Nashi 
Homolog 

Component of 
spliceosome 

Involved in Breast Cancer. (Stricker et al., 
2017) 

STAT3 Signal Transducer and 
Activator of Transcription 

3 

Signal transducer Involved in PDAC. (Wei et al., 2003) 

ACTB Beta-Actin Cytoskeletal actin Involved in PDAC and other form 
of cancer. 

(Rubie et al., 2005; 
Guo et al., 2013) 

RPL23A Ribosomal Protein L23a Ribosomal protein Involved in Liver Cancer. (Molavi et al., 
2019) 

HSP90AB1 Heat Shock Protein 90-
beta 

Molecular chaperone Involved in Gastric Cancer. (Wang et al., 2019) 

 

 

Table 2: Summary of the identified hub proteins from PPI network. 
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Table 3: Summary of the selected TFs from TFs-DEGs network. 

 

 

 

 

 

 

 

 

 

 

 

 

Transcription 
Factors 

Description Clinical Significance References 

GATA2 GATA Binding Factor 2 Involved in Prostate Cancer.  (Chiang et al., 2014) 
FOXC1 Forkhead Box C1 Involved in PDAC. (Wang et al., 2013) 
PPARG Peroxisome Proliferator 

Activated Receptor 
Gamma 

Involved in PDAC and other cancers. (Wang et al., 2015; 
Elnemr et al., 2000) 

E2F1 E2F Transcription Factor 
1 

Involved in PDAC. (Schild et al., 2009) 

HINFP Histone Nuclear factor Involved in different cancers. (Holmes et al., 2005, 
van et al., 2009) 

USF2 Upstream Stimulatory 
Factor 2 

Involved in Lung Cancer. (Ocejo�Garcia et al., 
2005) 

MEF2A Myocyte enhancer factor-
2A 

Involved in Liver Cancer. (Pon and Marra, 2016) 

FOXL1 Forkhead Box L1 Involved in PDAC. (Zhang et al., 2013) 
YY1 Yin Yang 1 Involved in PDAC. (Yuan et al., 2017) 
NFIC Nuclear Factor 1-C Involved in Breast Cancer. (Lee et al., 2015) 
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MiRNAs Description Clinical Significance References 
hsa-miR-93 Homo sapiens micro-

ribonucleic acid -93 
Involved in Gastric Cancer (Larki et al., 2018) 

hsa-miR-16 Homo sapiens micro-
ribonucleic acid -16 

 

Involved in PDAC (Huang et al., 2019) 

hsa-miR-195 Homo sapiens micro-
ribonucleic acid -195 

Involved in Breast Cancer (Singh et al., 2015) 

hsa-miR-424 Homo sapiens micro-
ribonucleic acid -424 

Involved in PDAC (Lee et al., 2007) 

hsa-miR-506 Homo sapiens micro-
ribonucleic acid -506 

. 

Involved in Cervical Cancer (Li et al., 2011) 

hsa-miR-124 Homo sapiens micro-
ribonucleic-acid -124 

Involved in Nasopharyngeal 
Carcinoma 

(Peng et al., 2014) 

hsa-miR-590-3p Homo sapiens micro-
ribonucleic acid -590-

3p 

Involved in Colorectal Cancer (Elfar et al., 2019) 

hsa-miR-1 Homo sapiens micro-
ribonucleic acid -1 

Involved in PDAC and Colon 
Cancer 

(Zhu and Wang, 2016; Xu et 
al., 2015) 

hsa-miR-497 Homo sapiens micro-
ribonucleic acid -497 

Involved in different cancer (Wu et al., 2016) 

hsa-miR-9 Homo sapiens micro-
ribonucleic acid -9 

Involved in Lung Cancer (Han et al., 2017) 

 

Table 4: Summary of the selected miRNAs from miRNAs-DEGs network. 

 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.08.20016931doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.08.20016931
http://creativecommons.org/licenses/by/4.0/


 

 
 
 
 
 
 
 
 
 
 
 
 

Hub Proteins 

Target 
Name 

Drug Name Drug Category Drug Group Drug 
Score 

CREBBP Methylphenidate Membrane transport modulator, CNS stimulant, 
Neurotransmitter Uptake Inhibitor 

Approved 2 

 
 
 

MAPK14 

SB-220025 Calcium-calmodulin-dependent protein kinases, 
antagonists & inhibitor 

Experimental 5 

Talmapimod Heterocyclic compound Investigational 4 

Vasopressin Cardiovascular agent, Anti-diuretic agents, 
vasoconstrictor agent 

Approved 3 

 
 

MAPK1 

Isoprenaline Cardiovascular agent, Respiratory agent, Peripheral 
nervous system agent, Protective agent 

Approved 7 

Arsenic Trioxide Growth inhibitor, Antineoplastic agent, 
Myelosuppressive agent 

Approved 4 

Ulixertinib MAP kinase inhibitor Experimental 2 
 

GRB2 
Pegademase 

Bovine 
Nucleoside deaminase, 

Drug carriers, Aminohydrolase 
Approved 2 

Dactinomycin Nucleic acid synthesis inhibitor, Myelosuppressive 
agent, Immunosuppressive agent 

Approved 2 

 
RPL23A 

Puromycin Enzyme inhibitor, Antineoplastic agent, 
Antiparasistic agent 

Experimental 2 

Anisomycin Protein synthesis inhibitor, Nucleic acid synthesis 
inhibitor, Enzyme inhibitor 

Experimental 2 

 
 
 
 

Transcription 
Factors 

 
 

GATA2 

Bortezomib Myelosuppressive agent, Multiple myeloma 
treatment, Antineoplastic agent 

Approved 3 

Epoetin Alpha Antiamenic agent Approved 2 
Azactidine Myelosuppressive agent, Immunosuppressive 

agent, Enzyme inhibitor 
Approved 2 

 
 

PPARG 

Rosilitazone Hypoglycemic agent, Enzyme inhibitor Approved 11 
Piosilitazone Hypoglycemic agent, Enzyme inhibitor Approved 11 
Mesalamine Antirheumatic agent, Analgesic, Anti-inflammatory 

agent 
Approved 8 

Balsalazide 
Disodium 

Analgesic, Anti-inflammatory agent, 
Gastrointestinal agent 

Approved 6 

 
 
 

E2F1 

Etopside Atnineoplastic agent Approved 3 
Paclitaxel Mitosis modulator, Myelosuppressive agent, 

Tubulin modulators, Immunosuppressive agent 
Approved 2 

Bortezomib Myelosuppressive agent, Multiple myeloma 
treatment, Antineoplastic agent 

Approved 2 

Flourouracil Myelosuppressive agent, Immunosuppressive 
agent, Antineoplastic agent 

Approved 2 

Carmustine Myelosuppressive agent, Antineoplastic agent Approved 2 

 

Table 5: Summary of the selected candidate molecules on the basis of Drug-DEGs interaction. 
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