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ABSTRACT  

Background & Aims: Accurate and noninvasive diagnosis and staging of liver fibrosis is 

essential for effective clinical management of chronic liver disease (CLD). We aimed to 

identify serum metabolite markers that reliably predict the stage of fibrosis in CLD patients. 

Methods: We quantitatively profiled serum metabolites of participants in 2 independent 

cohorts. Based on the metabolomics data from Cohort 1 (504 HBV associated liver 

fibrosis patients and 502 normal controls, NC), we selected a panel of 4 predictive 

metabolite markers. Consequently, we constructed 3 machine learning models with the 4 

metabolite markers using random forest (RF), to differentiate CLD patients from normal 

controls (NC), to differentiate cirrhosis patients from fibrosis patients, and to differentiate 

advanced fibrosis from early fibrosis, respectively.  

Results: The panel of 4 metabolite markers consisted of taurocholate, tyrosine, valine, 

and linoelaidic acid. The RF models of the metabolite panel demonstrated the strongest 

stratification ability in Cohort 1 to diagnose CLD patients from NC (area under the receiver 

operating characteristic curve (AUROC) = 0.997 and the precision-recall curve (AUPR) = 

0.994), to differentiate fibrosis from cirrhosis (0.941, 0.870), and to stage liver fibrosis 

(0.918, 0.892). The diagnostic accuracy of the models was further validated in an 

independent Cohort 2 consisting of 300 CLD patients with chronic HBV infection and 90 

NC. The AUCs of the models were consistently higher than APRI, FIB-4 and AST/ALT 

ratio, with both greater sensitivity and specificity.  

Conclusion: Our study showed that this 4-metabolite panel has potential usefulness in 

clinical assessments of CLD progression. 
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INTRODUCTION 

Liver fibrosis is a wound-healing response to damage caused by chronic liver disease 

(CLD) [1]. Liver fibrosis can progress to cirrhosis over years or decades [2], and results 

in liver function decline and increased risk of hepatocellular carcinoma (HCC). Liver 

biopsy has been the gold standard for evaluating the presence and degree of liver fibrosis, 

but its clinical application is limited by inherent limitations such as invasiveness, sampling 

errors, and intra- and inter-observer variability [3]. Recent studies indicated that liver 

fibrosis could be reversed [1], creating the need for less invasive clinical tools to monitor 

and assess the responses of CLD patients to treatments. A number of scoring systems, 

such as the FibroTest,[4] the aspartate transaminase/alanine transaminase (AST/ALT) 

ratio [5], the AST/Platelet Ratio Index (APRI) [6], FIB-4 (patient age, AST, ALT, and 

platelet) [7], Wisteria floribunda agglutinin-positive Mac-2 binding protein (WFA+-M2BP) 

[8] and machine learning-based clinical predictive models [9] have recently been used to 

stage CLD and predict the development of liver fibrosis and cirrhosis. Imaging techniques, 

such as computed tomography, magnetic resonance imaging [10], and two recently 

approved ultrasound-based systems, shear wave elastography and transient 

elastography (FibroScan) [11], have also been used clinically to assess the degree of 

liver fibrosis. However, these imaging modalities have limited accuracy in some patients, 

such as those with ascites, elevated central venous pressure, and obesity [12]. 

    Developing noninvasive, accurate, and reliable markers to assess the severity and 

progression of liver fibrosis in CLD patients has become increasingly important for 

treatment decisions, for continuous monitoring of patients who have mild liver disease 
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and are not under treatment [13], and for risk stratification and longitudinal followup in 

clinical trials.  

Alterations of bile acids (BAs) [13-19], free fatty acids (FFAs) [20], and amino acids 

(AAs) [21, 22] are closely associated with CLD regardless of etiology. However, the 

relationship between serum AAs, BAs, and FFAs and the stages of liver fibrosis have not 

been thoroughly investigated. The aim of this study was to identify serum metabolite 

markers that reliably predict the stage of fibrosis in CLD patients with chronic hepatitis B 

virus (HBV) infection, a leading cause of CLD worldwide. We used a targeted 

metabolomics approach to quantify serum BAs, AAs, and FFAs in 1,006 participants in 

Cohort 1 (504 biopsy-proven fibrosis and cirrhosis CLD patients with chronic HBV 

infection and 502 normal controls, NC), and selected four predictive metabolite markers 

to construct three machine learning models using random forest (RF). Model 1 diagnosed 

CLD patients from NC, Model 2 differentiated cirrhosis patients from fibrosis patients, and 

Model 3 differentiated advanced fibrosis and early fibrosis patients. The diagnostic 

accuracy of the three models was further validated in an independent cohort consisting 

of 300 HBV-CLD patients and 90 NC.  

 

MATERIALS AND METHODS 

Study design and participants 

Two data sets were enrolled in this study. Cohort 1 was recruited between April 2013 and 

June 2015 at Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese 

Medicine, consisted of 1,006 participants, including 504 CLD patients with chronic HBV 

infection and 502 NC as our training cohort to identify serum metabolite markers and 
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establish predictive models (Table 1). More detailed inclusion and exclusion criteria can 

be found in the Supporting Information.  

    Cohort 2, recruited between December 2016 and December 2017 at Xiamen Hospital 

of Traditional Chinese Medicine, consisted of 300 CLD patients with chronic HBV infection 

and 90 NC. Data obtained from Cohort 2 were used as a validation set to further verify 

the performance of the models established from the Cohort 1. Detailed information about 

this cohort can be found in the Supporting Information. Sample size was not determined 

by statistical methods and was comparable to other studies in the field [4-8, 21, 22]. 

In this study, the diagnosis and the sample collection were performed using exactly the 

same protocols to avoid “external” influences. The samples were provided to lab staffs 

blind samples with respect to patient identity and other clinical information.  

The study was approved by the institutional review board of each hospital. All 

participants provided written informed consent. 

 

Liver biopsy. Detailed information is provided in the Supporting Materials and Methods. 

Histological assessment of liver injury. Detailed information is provided in the 

Supporting Materials and Methods and Fig. S7. 

Collagen proportionate area using digital image analysis (DIA). Detailed information 

is provided in the Supporting Materials and Methods and Fig. S8. 

Serum sample collection, blood clinical marker measurement, and metabolomics 

analysis. The procedure and analysis was performed as described in the Supporting 

Materials and Methods.   

Classification Performance Evaluation 
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ROC curve is a plot of the true positive rate (sensitivity/recall) against the false positive 

rate (1-specificity) at different cutoffs of a binary classifier. AUROC measures the area 

under the ROC curves and a higher value of AUROC suggests better classification 

performances while an AUROC of 0.5 represents the random guess. The PR curve 

demonstrates the relationship between positive predictive values (precision) and true 

positive rate (sensitivity/recall), and a higher value of AUPR indicates better diagnostic 

capacity of the model. PR curves are usually preferable for evaluating unbalanced data 

compared to ROC curves. NRI and IDI were also used for the evaluation of prediction 

improvement. We compared RF models to existing clinical indices by splitting the 

continuous risk scores into ten equal risk intervals (default). We used the R software 

version 3.2.3 for data analysis and the “PRROC” R package for binary ROC and PR 

curves[23], the “pROC” package for calculating the specificities and sensitivities of 

classifiers[24], and the “PredictABEL” package for NRI and IDI calculation[25]. 

Feature Selection and Method Comparison 

Quantitative variables were expressed as mean ± SD for clinical parameters and median 

(25% quantile, 75% quantile) of log10 transformed concentration for metabolites. 

Categorical variables were expressed as percentages. The univariate analysis (Wilcoxon 

rank-sum test) was carried out to identify the variables that were significantly different 

between CLD patients and NC, between fibrosis and cirrhosis (S0-3 vs. S4), and among 

CLD patients at different fibrotic stages (early stage fibrosis (S0-2) vs. advanced stage 

fibrosis (S3-4)). 

For differential metabolites with p < 0.001 across all univariate analyses were  used 

in two machine learning methods, LASSO[26] and RF[27] to further select markers for the 
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three classifications listed above. Data were log and z-score transformed before being 

fed into LASSO to ensure that the coefficients were comparable with each other. The 

regularization parameter lambda of LASSO was determined using 10-fold CV. The RF 

model used 500 decision trees. We ranked the metabolites according to their LASSO 

non-zero coefficients and RF mean decrease of accuracy, and kept the intersection of top 

5 LASSO and RF metabolites in the three classifications. Considering the overlaps of the 

second and the third classification tasks, we further selected the intersecting variables of 

these two situations and then, merged with variables selected from the first situation to 

construct our final metabolite markers (Fig. 2). 

To identify an appropriate classification method, we introduced two linear models, 

i.e., logistic regression (LR), linear discriminant analysis (LDA) and one decision tree-

based ensemble model, i.e., RF, for the classifier construction for the markers we 

selected. For RF, we used 500 decision trees and two candidate variables at each split. 

For LDA, the tolerance parameter was set to 1.0E-4 (default). We applied 10-fold CV on 

the training set (Cohort 1) to compare the classification performances of these four 

models and three established fibrosis markers, i.e., APRI, AST/ALT ratio, and FIB-4. 

AUROC and AUPR were recorded at each internal validation set in CV. We used R 

packages “randomForest”, “glmnet” and “MASS” for RF, LASSO and LDA constructions 

respectively [28, 29]. 

Predictive Model Construction and Validation 

We trained the final RF models for different classification objectives using the training 

data (Cohort 1), with Model 1 differentiating CLD and NC, Model 2 differentiating fibrosis 

and cirrhosis, and Model 3 differentiating early and advanced stages of liver fibrosis. A 
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total of 500 decision trees were included in a single RF model with two variables randomly 

sampled as candidates at each split. We re-balanced the sample size for different groups 

at each bootstrap resampling step for Models 2 and 3 considering the unbalanced 

samples.[30] 

In RF, each decision tree was fitted on the bootstrap samples and tested on the 

untouched OOB-samples. Thus, the OOB-predictions provided unbiased estimates of 

how the RF model performed on the training data and were used for the evaluation on 

Cohort 1. We further validated our mark panel-based RF models in the independent 

validation data sets from Cohort 2, and compared results with the established fibrosis 

markers, AST/ALT ratio, APRI and FIB-4. ROC and PR curves were drawn and AUROC 

and AUPR values, respectively, were calculated to evaluate their diagnostic 

performances. Optimal cut-offs were selected to maximize the sum of sensitivity and 

specificity for the RF model. For APRI, FIB-4 and AST/ALT, predefined cut-offs were used 

(1.0 and 2.0 for APRI to distinguish fibrosis and cirrhosis,[6] 1.45 and 3.25 for FIB-4 to 

distinguish S0-2 and S3-4,[7] and 0.8 and 1.0 for AST/ALT to distinguish S0-2 and S3-

4[5, 31]). Bootstrap resampling (1,000 times) was conducted to calculate 95% confidence 

intervals (CIs) of AUCs for all binary classifiers. A comparison of the AUROC of our 

biomarker panel vs. FIB-4, AST/ALT, or APRI was performed using DeLong's test. The 

significance level was adjusted for multiple testing according to the Benjamin and 

Hochberg procedure.[32] Log and z-score transformed data were also used for 

constructing heatmaps. The R packages “ggplot2” and “cowplot” were used for data 

visualization and multiple plots arrangement. 
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We further derived an RF risk score for each participant based on the marker panel 

and logit function of the predicted probability (Prob.) of the RF model for corresponding 

classification objective:  

 

RF-score = logit(𝑃𝑟𝑜𝑏. ) = log⁡(
𝑃𝑟𝑜𝑏.

1 − 𝑃𝑟𝑜𝑏.
) 

F1 scores were then calculated at the predefined cutoffs using following formula: 

𝐹1 = ⁡
2

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1 + 𝑅𝑒𝑐𝑎𝑙𝑙−1
 

 

To determine whether the RF score could independently predict the fibrosis 

staging in the presence of other potential confounding factors, we applied logistic 

regression on the RF-score to differentiate cirrhosis from fibrosis as well as discriminate 

early and advance fibrosis while adjusting for HBV DNA levels, the degree of necro-

inflammation, HBeAb status, HBeAg status, liver function tests (i.e., PT, ALB, DBIL, IBIL), 

platelets, BMI, and medication (entecavir) use. 

Multi-group Classification of S0-2 vs. S3 vs. S4 

We built a new RF model based on our metabolite marker panel and applied multinomial 

regressions to APRI, AST/ALT, and FIB-4 separately to differentiate S0-2 vs. S3 vs. S4 

in Cohort 1. Then, we compared and validated these multi-group classifiers on both 

Cohort 1 and Cohort 2 data sets using micro-average ROC and PR curves. Micro-average 

ROC and PR curves were calculated by stacking binary classification results from each 

group together to generate a concatenated binary classification result.[33] We then 

calculated AUROC and AUPR with 95% CIs using 100 times bootstrap resampling. We 
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used the “multiROC” R package for calculating the micro-average AUROC and AUPR as 

well as for plotting[34] . 

 

Code availability 

 R, GraphPad, and in-house metabolomic processing pipeline were used for the data 

analyses presented in this study. We used GraphPad Prism 7, R software version 3.2.3 

with packages including PRROC, pROC, PredictABEL, randomForest, glmnet, MASS, 

ggplot2, cowplot and multiROC. The metabolomics data were processed and analyzed 

by TargetLynx (Waters). The computer code used to generate the results reported in this 

study is available from the authors upon request. 

  

Data availability statement 

All the data supporting the findings of this study are available within the article and its 

Supplementary Information files or from the corresponding author upon reasonable 

request. 

 

RESULTS 

Characteristics of the participants 

Two independent cohorts were studied (Fig. 1). CLD groups were staged and assigned 

according to the results of their liver biopsy. Cohort 1 consisted of 1,006 participants (502 

NC and 504 biopsy-proven HBV-CLD patients (400 with liver fibrosis (S0-3) and 104 with 

cirrhosis (S4); or 349 with early stage fibrosis (S0-2) and 155 with advanced stage fibrosis 

(S3-4)). Cohort 2 consisted of 390 participants (90 NC and 300 biopsy-proven CLD 

patients comprising 141 with fibrosis and 159 with cirrhosis, or 134 with early stage 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 6, 2020. ; https://doi.org/10.1101/2020.01.02.20016352doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.02.20016352


14 
 

fibrosis (S0-2) and 166 with advanced stage fibrosis (S3-4). Models established from 

Cohort 1 were validated in Cohort 2 (Models 1, 2 and 3). The cohort stratification and 

major demographic and clinical characteristics are shown in Table 1. More detailed 

clinical data are provided in Table S1. 

 

Quantification of metabolites in serum 

Using targeted metabolomic protocols establlished in our lab,[35-37] we quantified the 

concentrations of 98 metabolites, including 24 BAs, 42 FFAs and 32 AAs, in the sera of 

all participants (Table S2). These metabolites were used for the subsequent metabolite 

marker selection.  

 

Serum metabolite marker selection 

From the 98 serum metabolites, we identified 26 differential metabolites in three 

classification situations (i.e., to diagnose CLD patients from NC, to differentiate fibrosis 

from cirrhosis, and to differentiate advanced fibrosis from early fibrosis) using univariate 

analysis (Wilcoxon rank sum test, P<0.001). The 26 statistically significant metabolites 

were then entered into least absolute shrinkage and selection operator (LASSO)[26] and 

random forest (RF)[27]. According to the rank of LASSO non-zero coefficients and RF 

mean decrease of accuracy, four metabolite markers were selected, which included one 

FFA, linoelaidic acid (C18:2 n6t), one BA, taurocholate (TCA), and two AAs, tyrosine (Tyr) 

and valine (Val) (Fig. 2). The principal component analysis (PCA) of these four metabolite 

markers also showed a clear separation between CLD patients and NC (Fig. S1). We 

also derived one ratio, the Tyr/Val ratio to further improve the classification performances 
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while also including one extra accessible risk factor, age, to our panel for the 

differentiation of fibrosis and cirrhosis and the staging of fibrosis. Correlations of the four 

metabolites with fibrosis stage, necro-inflammation, CPA, AST, ALT, AST/ALT ratio, PLT, 

FIB-4, and APRI were assessed using Spearman correlation analysis (Fig. S2). The four 

metabolite markers (including the Tyr/Val ratio) all significantly correlated with fibrosis 

stage (ρ=0.38 for TCA, ρ=0.50 for Tyr, ρ=0.53 for Tyr/Val ratio and ρ=0.23 for C18:2 n6t) 

using Spearman’s correlation analysis. In addition, we found our metabolite markers 

showed stronger associations with the fibrosis stage than the previously used clinical 

indices. 

To determine an appropriate classification model, we applied 10-fold cross-

validation (CV) on Cohort 1 to compare the classification performances of RF models and 

two linear models (i.e., logistic regression (LR), linear discriminant analysis (LDA)) as well 

as the clinical indices, APRI, AST/ALT ratio, and FIB-4. The CV-area under the receiver 

operating characteristic curve (CV-AUROC) and area under the precision-recall curve 

(CV-AUPR) were employed as the evaluation metrics. We found that, to differentiate CLD 

from control, APRI, LR, LDA and RF had the highest AUROCs and AUPR, while RF 

demonstrated the most robust classification performance (Fig. S3a). For the 

differentiation of fibrosis and cirrhosis and S0-2 vs. S3-4, RF outperformed other methods 

with the highest CV-AUROC and CV-AUPR overall (Figs. S3b, c). PCA scores plot 

showed linearly separable discrimination between the most CLD and control subjects (Fig. 

S1), thus linear models could achieve good classification performances. However, for a 

situation where there is more extensive overlapping of groups (Fig. S4), the decision tree-
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based ensemble learning algorithm, RF, achieved improved classification performances 

compared to other methods (Fig. S3). 

 

Model 1: Differentiating CLD patients from NC 

The concentration of linoelaidic acid (C18:2 n6t) was significantly higher in the control 

group than in the CLD group, conversely the levels of TCA, and Tyr, and Tyr/Val ratio 

were higher in the CLD group than in the control group (Figs. 3a, b). 

Model 1 was constructed using an RF model that utilized these four metabolite 

markers, to differentiate CLD patients from NC in Cohort 1. Out-of-bag (OOB) estimates 

were employed for the RF model evaluations. Model 1 showed an AUROC of 0.997 

(0.993-1.000) and AUPR of 0.994 (0.998-1.000) (Figs. 3c, d) which was significantly 

higher than the APRI (AUROC=0.973, p<0.001), FIB-4 (AUROC=0.848, p<0.001) and 

AST/ALT ratio (AUROC=0.665, p<0.001) (Table 2). An example decision tree from the 

RF model is shown in Fig. S5a, where we observed that the lower concentration of C18:2 

n6t and the higher concentration of TCA would lead to higher risk of CLD. 

Based on the OOB predicted probabilities, we calculated a diagnostic RF-score for 

Model 1 using the logit function. The waterfall plot showed a clear ascending trend of RF-

scores from NC (lower RF-scores) to CLD patients (higher RF scores) along with the 

differentiation trend shown in the heatmap of the four markers (Fig. 3b). We observed 

significant differences in the RF-score between both groups in Cohort 1 (p<0.001, Fig. 

3g), yielding a sensitivity of 98.4% and specificity of 99% for CLD patients in the training 

set at a cutoff value of 0.434 (Table 2). The sensitivity and specificity of our RF model 

were superior to those of AST/ALT ratio, APRI, and FIB-4 for differentiating CLD patients 
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from NC using the optimal cutoffs generated in Cohort 1 using the Youden index (Table 

S4). 

 

Model 2: Differentiating cirrhosis from fibrosis among CLD patients  

The discriminant prediction model was constructed using an RF model employing the four 

metabolite markers along with age to differentiate CLD patients with cirrhosis from those 

without cirrhosis in Cohort 1. This model demonstrated an AUROC of 0.941 (0.914-0.964) 

and AUPR of 0.87 (0.824-0.913) (Figs. 4a, b) based on OOB predictions. These results 

were better than those of the APRI (AUROC=0.698, p<0.001), AST/ALT (AUROC=0.815, 

p<0.001) and FIB-4 (AUROC=0.869, p<0.001) (Table 2). We showed an example 

decision tree for Model 2 in Fig. S5b, and we found that the higher the Tyr/Val ratio, Tyr 

and C18:2 n6t, the higher the risk of CLD with cirrhosis. 

The Model 2 RF-score differentiated CLD patients with cirrhosis from fibrosis in 

Cohort 1 (p<0.001) (Fig. 4e). The constructed model yielded a sensitivity of 87.0% and 

specificity of 90.4% in the Cohort 1 data set at a cutoff value of 0.01 (Table 2). The RF-

scores remained significant with a coefficient of 0.755 (p<0.001) after adjusting for HBV 

DNA levels, degree of necro-inflammation, HBeAb status, HBeAg status, body mass 

index (BMI), platelets (PLT), liver function tests (i.e., prothrombin time (PT), albumin 

(ALB), direct bilirubin (DBIL), indirect bilirubin (IBIL)), and medication (Entecavir) (Table 

S3). The accuracy of our RF model was superior to those of AST/ALT ratio, APRI, and 

FIB-4 (Table 2 and Table S4).  

 

Model 3: Differentiating advanced fibrosis from early fibrosis among CLD patients  
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In this study, fibrosis stages 0-2 were defined as early fibrosis, and stages 3-4 were 

defined as advanced fibrosis. Model 3 was established based on age and the four 

metabolite markers selected from Cohort 1 data using the RF model. It was then shown 

to successfully separate CLD patients with early fibrosis from those with advanced fibrosis 

in Cohort 1 with AUROC of 0.918 (0.889-0.946) and AUPR = 0.892 (0.854 - 0.925) (Figs. 

4f, g). Model 3 results demonstrated better classification performances than those of 

APRI (AUROC=0.647, p<0.001), AST/ALT (AUROC=0.714, p<0.001) and FIB-4 

(AUROC=0.802, p<0.001) in predicting liver fibrosis stages (Table 2). An example 

decision tree from Model 3 showed that the higher Tyr/Val ratio, Tyr, age and TCA 

indicated a higher risk of CLD with advanced firbosis (Fig. S5c). 

A logit diagnostic RF-score for Model 3 differentiated CLD patients with early stage 

fibrosis from those with advanced fibrosis in Cohort 1 (Fig. 4j). The model yielded a 

sensitivity of 86.7% and specificity of 90.5% in Cohort 1 at a cutoff value of -0.115 (Table 

2). After adjusting for HBV DNA levels, degree of necro-inflammation, HBeAb status, 

HBeAg status, liver function tests (i.e., PT, ALB, DBIL, IBIL), platelets, BMI, and 

medication (Entecavir) use, RF-scores remained statistically significant with a coefficient 

of 0.805 (p<0.001) (Table S3). The accuracy of our RF model was superior to those of 

AST/ALT ratio, APRI, and FIB-4 (Table 2 and Table S4).  

 

Validation of the predictive models in an independent HBV cohort (Cohort 2) 

The metabolite markers identified and related models obtained in Cohort 1 were further 

validated for their liver fibrosis staging performance as well as for CLD diagnosis 
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performance in Cohort 2, and the results were similar to those obtained from Cohort 1 

(Table 2). 

For the diagnosis of CLD patients, compared to APRI (AUROC = 0.879, AUPR = 0.958), 

AST/ALT (AUROC = 0.603, AUPR = 0.849), and FIB-4 (AUROC = 0.707, AUPR = 0.897), 

we again observed higher classification performances for Model 1 with AUROC of 0.977 

(0.963-0.988) and AUPR of 0.993 (0.989-0.997) in the validation set (Figs. 3e, f). In 

addition, the Model 1 predicted RF-score in Cohort 2 differentiated CLD from NC with a 

sensitivity of 92.2% and specificity of 94.4% at the cutoff values determined for Cohort 1 

(Fig. 3g, Table 2). 

Applying Model 2 to Cohort 2 successfully discriminated cirrhotic patients from fibrotic 

patients with an AUROC of 0.844 (0.797-0.884) and AUPR of 0.827 (0.761-0.884) (Figs. 

4c, d) and outperformed those of the APRI (AUROC=0.608, p<0.001), AST/ALT 

(AUROC=0.684, p<0.001) and FIB-4 (AUROC=0.758, p<0.001) indices. The Model 2 RF-

score in Cohort 2 differentiated cirrhotic patients from fibrotic patients with a sensitivity of 

71.8% and specificity of 81.6% at the same cutoff value used for the Cohort 1 data set 

(Fig. 4e, Table 2). Similarly, applying Model 3 to grade fibrosis stage in Cohort 2 resulted 

in greater performance with AUROC of 0.807 (0.756-0.852) and AUPR of 0.817 (0.764-

0.866) (Figs. 4h, i) than those of APRI (AUROC=0.595, p<0.001), AST/ALT 

(AUROC=0.667, p<0.001) and FIB-4 (AUROC=0.739, p=0.01) indices. And the Model 3 

RF-score also differentiated S0-2 fibrosis from S3-4 fibrosis with a sensitivity of 72.9% 

and specificity of 76.1% (Fig. 4j, Table 2).  

We then introduced net reclassification improvement (NRI) and integral discriminant 

improvement (IDI) to quantify the improvement of our model to existing clinical indices. 
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For different classification aims (Control vs. CLD, Fibrosis vs. Cirrhosis, S0-2 vs. S3-4) in 

an independent validation cohort (Cohort 2), the categorical and the continuous NRI and 

IDI of the RF models all achieved positive values when compared to FIB-4, APRI and 

AST/ALT, suggesting an augmentation of classification performances for our biomarker 

panel and RF models (Table S5). 

 

Classification of S0-2 vs. S3 vs. S4 

In addition to the binary classifications that we have performed, we further determined 

whether our biomarker panel could classify multiple groups among CLD patients. We 

trained a new RF model with the marker panel and applied multinomial regression to 

APRI, AST/ALT and FIB-4 respectively for the discrimination of S0-2 vs. S3 vs. S4 using 

Cohort 1. We compared their performances on Cohort 1 (OOB predictions of RF model) 

and Cohort 2 using micro-average AUROC and AUPR and we found that our marker 

panel-based multi-group classifier outperformed other methods. In the Cohort 1 data, our 

classifier showed higher AUROC of 0.944 (0.928-0.963) and AUPR of 0.908 (0.883-0.938) 

compared to APRI (AUROC=0.79, AUPR=0.658), AST/ALT (AUROC=0.817, 

AUPR=0.688), and FIB-4 (AUROC=0.858, AUPR=0.774) (Fig. S6a, b). In the Cohort 2 

validation data, our marker panel classifier consistently displayed higher AUROC of 0.841 

(0.799-0.885) and AUPR of 0.748 (0.674-0.81) compared to APRI (AUROC=0.790, 

AUPR=0.608), AST/ALT (AUROC=0.772, AUPR=0.597), and FIB-4 (AUROC=0.816, 

AUPR=0.699) (Figs. S6c, d). 

 

DISCUSSION 
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As the prevalence of CLD rises worldwide, accurate and reliable assessments for the 

severity of this disease are increasingly important for treatment selection and longitudinal 

monitoring [13]. Attempts to develop noninvasive tools for staging CLD have yielded 

multiple scores, indices, and imaging modalities [4-7, 10] that might be used in lieu of liver 

biopsy, with the AST/ALT ratio, APRI, and FIB-4 as examples [5-7]. Current noninvasive 

assessments have the advantage of allowing repeated applications and are well-received 

by the patients. In this study, we identified a panel of metabolite markers that consisted 

of C18:2 n6t, TCA, Tyr, and a Tyr/Val ratio, that was highly correlated with discrete stages 

of CLD progression in patients with HBV infection. 

Histologic staging of CLD by liver biopsy provided a reference standard for our study. 

In the Scheuer system, one of the most clinically validated systems for staging liver 

fibrosis, S0 is defined as no fibrosis, S1 as portal fibrosis, S2 as periportal fibrosis, S3 as 

septal fibrosis, and S4 as cirrhosis [38]. The clinically overt stage of cirrhosis includes 

compensated cirrhosis with/without portal hypertension and decompensated cirrhosis 

[39]. In this study, we first identified candidate markers that significantly differed between 

NC  and patients with CLD that correlated well with fibrotic stage and necro-inflammation 

based on univariate, LASSO and RF analyses. We then constructed diagnostic models 

to discriminate CLD patients from NC, and to discriminate CLD patients at different 

fibrosis stages, i.e., early vs. advanced fibrosis (S0-2 vs. S3-4) and fibrosis vs. cirrhosis 

(S0-3 vs. S4). This resulted in three optimized marker panel-based RF predictive models 

for staging liver fibrosis that, upon validation, showed acceptable performance across 

independent cohort. The AUROC and AUPR of our biomarker panel were significantly 
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greater than those of the AST/ALT ratio, APRI and FIB-4, suggesting superior predictive 

value for this metabolite marker panel. 

Altered BA profile and BA synthesis are associated with various hepatic diseases, such 

as chronic hepatitis B, primary biliary cirrhosis, chronic hepatitis C, and NAFLD. 

Circulating BAs are commonly used in clinical practice to assist evaluation of the severity 

of CLD [40, 41]. Several studies, including our previous work, on cirrhosis and HCC have 

shown dramatically increased levels of GCA, GCDCA, TCA, and TCDCA in the circulation 

of patients with NAFLD [42], NASH [42], HBV [43], cirrhosis [44], and HCC [44]. The liver 

also plays a major role in lipid metabolism by taking up FFAs, and manufacturing, storing, 

and transporting lipid metabolites [45, 46]. A characteristic pattern of plasma amino acids 

has been described in cirrhotic subjects [47-49] and in samples collected in England and 

the USA, metabolic and biochemical differences have been shown between stable and 

unstable cirrhotics [47, 48]. Advanced liver fibrosis, especially cirrhosis, was also 

associated with altered plasma AA patterns, including decreased levels of branched chain 

amino acids (leucine, isoleucine, valine) and increased concentrations of the aromatic 

amino acids phenylalanine and tyrosine [21]. An index based on AA concentration has 

already been proposed for diagnosing liver fibrosis [22]. In patients admitted to either the 

Veterans Administration Hospital or the Yale-New Haven Medical Center between 1 

January 1965 and 1 May 1966, fasting tyrosine levels tended to be slightly increased in 

patients with hepatitis and markedly increased in patients with cirrhosis [50]. The present 

study showed that a combined panel of FFA, BA, and AA was a strong predictor for CLD 

progress. 
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Linoelaidic acid is an isomer of linoleic acid. It has been reported that linoelaidic acid 

may inhibit the development of tumors through its antioxidant effects, has a role in the 

prevention of atherosclerosis and modulates certain aspects of immune system [51]. The 

significantly decreased levels of linoelaidic acid may thus be an indication of a disease 

state. Further research on these findings and human epidemiological data is warranted 

to confirm this. 

The major strengths of our study were the use of large sample sizes to construct and 

verify all models, and the quantification of the metabolite markers (BA, FFA and AA) using 

standardized protocols. Furthermore, participants in the validation set (Cohort 2) were 

recruited independently from those in Cohort 1, and this new set of patients confirmed the 

robustness of our marker panel and predictive models.  

The limitations of our study included: (1) Use of medications was a confounding factor 

for our model but key findings were not altered after correcting for medication use. Larger 

studies are needed to further evaluate the effect of these medications; (2) HBV infection 

was the only or major cause of CLD in this study, and the participants were all Chinese. 

Therefore, the results may not be extrapolated to CLD with other etiologies outside these 

diseases, or to other racial/ethnic groups. Future large-scale validation studies should 

include CLD with other etiologies, and participants of other race/ethnicity, before 

implementing this 4-marker panel in clinical practice; (3) In addition to cross-sectional 

studies, longitudinal studies are needed to further validate the reproducibility of the 

current findings and the predictive values of the models, especially those used to 

differentiate early from advanced liver fibrosis; and (4) The cost of full spectrum 

metabolomic analysis is high. However, if the robustness of this 4-marker panel is proven 
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in future validation studies, specific tests may be developed for only C18:2 n6t, TCA, Tyr, 

and Val to decrease the cost, and to translate this marker panel to clinical practice. 

     

Conclusions 

In summary, using targeted metabolomics analyses, we identified four metabolite markers 

from serum that accurately differentiated CLD patients from NC, and differentiated varied 

stages of liver fibrosis, including S0-2 vs. S3-4, and S0-3 vs. S4. The diagnostic 

performance of this novel, noninvasive 4-marker panel was superior to FIB-4, AST/ALT 

ratio, and APRI. If validated in future studies, this 4-marker panel will be useful in reducing 

the need for liver biopsies in identifying patients with non-significant fibrosis, as well as 

aiding in the continued assessment of CLD in patients previously diagnosed with CLD.  
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FIGURE LEGENDS 

Figure 1. Study design.  

Serum metabolites were quantified in Cohort 1 (504 biopsy-proven HBV-CLD patients 

and 502 NC) and were used to identify candidate markers. After data analysis and feature 

selection, four metabolites were selected to compose our marker panel. Different machine 
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models and clinical indices were compared using 10-fold cross validation. Three RF 

models were constructed to diagnose CLD from NC (Model 1), differentiate fibrosis vs. 

cirrhosis (Model 2) and grade early fibrosis vs. advanced fibrosis (Model 3) in Cohort 1. 

These three were further validated in the independent HBV Cohort 2.  

 

Figure 2. Workflow chart of feature selection.  

For a total of 98 metabolites (including AAs, BAs and FFAs), univariate analyses 

(Wilcoxon rank-sum test) were employed for three clinical aims (aim-1: CLD vs. NC, aim-2: 

Cirrhosis vs. Fibrosis, aim-3: Early fibrosis vs. Advanced fibrosis). 26 metabolites with P 

< 0.001 in all three clinical aims were selected and fed into LASSO and Random Forest 

algorithms for three aims. The overlap of top-5 LASSO non-zero coefficients and top-5 

important variables from Random Forest (by mean decrease of accuracy) were selected. 

For aim-2 and aim-3, we selected the overlapped variables and combined with variables 

selected from aim-1 to yield the final panel four metabolites. 

Note: “OR” means the union of two sets, “AND” means the intersection of two or more sets. 

 

 

 

Figure 3. Metabolite marker panel and Model 1 for CLD with chronic HBV infection 

diagnosis. 

(a) Comparison of the four markers between CLD patients and NC in Cohorts 1 and 2. (b) 

Waterfall plot of RF-score and corresponding heatmap for the four markers in all data 

sets. (c) ROC curves of Model 1 (RF model constructed with four markers), APRI, 

AST/ALT and FIB-4 in Cohort 1. (d) PR curves of Model 1, APRI, AST/ALT and FIB-4 in 
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Cohort 1. (e) ROC curves of Model 1, APRI, AST/ALT and FIB-4 in Cohort 2 validation 

set. (f) PR curves of Model 1, APRI, AST/ALT and FIB-4 in Cohort 2 validation set. (g) 

The diagnosis RF-score in NC and CLD patients in training and validation sets. *** p < 

0.001, Wilcoxon rank sum test. The optimal cut-off value of the RF-score was 0.434. 

 

Figure 4. Model 2 for differentiating fibrosis vs. cirrhosis and Model 3 for 

differentiating early fibrosis vs. advanced fibrosis in CLD patients with chronic 

HBV infection. 

(a) ROC curves of Model 2 (RF model constructed with four metabolite markers and age), 

APRI, AST/ALT, and FIB-4 in Cohort 1. (b) PR curves of Model 2, APRI, AST/ALT, and 

FIB-4 in Cohort 1. (c) ROC curves for Model 2, APRI, AST/ALT, and FIB-4 for the Cohort 

2 validation set. (d) PR curves for Model 2, APRI, AST/ALT, and FIB-4 for the Cohort 2 

validation set. (e) The RF-score in CLD patients with fibrosis and cirrhosis in the HBV 

training, validation sets. The optimal cut-off value of the RF-score was 0.01. (f) ROC 

curves of Model 3 (RF model constructed with four metabolite markers and age), APRI, 

AST/ALT, and FIB-4 in Cohort 1. (b) PR curves of Model 3, APRI, AST/ALT, and FIB-4 in 

Cohort 1. (c) ROC curves for Model 3, APRI, AST/ALT, and FIB-4 for the Cohort 2 

validation set. (d) PR curves for Model 3, APRI, AST/ALT, and FIB-4 for the Cohort 2 

validation set. (e) The RF-score in CLD patients with S0-2 and S3-4 in the HBV training, 

validation sets. The optimal cut-off value of the RF-score was -0.115. *** p < 0.001, 

Wilcoxon rank sum test. 
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Table 1 Demographic and clinical data of patients with CLD and NC in Cohort 1 (training set) and Cohorts 2 (validation set)  

Dataset Cohort 1 training set   Cohort 2 validation set 

Group Control CLD S0-2 S3-4 Fibrosis Cirrhosis Control CLD S0-2 S3-4 Fibrosis Cirrhosis 

n 502 504 349 155 400 104 90 300 134 166 141 159 

Sex (M/F) 365/137 361/143 257/92 104/51 299/101 62/42 59/31 202/98 81/53 121/45* 86/55 116/43* 

Age (Year) 36.65±11.7
3 

36.58±11.88 33.23±9.95 44.88±12.22*** 34.05±10.31 48.65±11.51**
* 

47.13±9.9
5 

47.96±13.28 41.55±12.8
3 

53.14±11.26**
* 

41.21±12.72 53.95±10.67**
* 

BMI (kg/m2) 23.08±3.16 22.28±3.18*** 22.02±3.26 22.91±2.91** 22.15±3.22 22.87±2.97* 22.35±1.8
3 

23.18±3.13* 23.28±2.48 23.1±3.61 23.21±2.49 23.15±3.65 

APRI 0.09±0.04 0.79±1.33*** 0.6±0.81 1.27±2.08*** 0.63±0.92 1.55±2.4**   0.65±0.7 0.61±0.78 0.69±0.57** 0.6±0.76 0.72±0.58*** 

AST/ALT 0.82±0.32 0.69±0.44*** 0.6±0.31 0.94±0.59*** 0.61±0.33 1.1±0.63***   1.09±0.6 0.98±0.57 1.24±0.61*** 0.97±0.57 1.27±0.61*** 

FIB-4 0.62±0.33 2.86±7.21*** 1.42±1.48 6.57±12.71*** 1.56±1.7 9.42±15.8***   3.64±3.64 2.49±2.58 5.26±4.27*** 2.45±2.53 5.54±4.3*** 

ALT (IU/L) 30.97±15.6
3 

176.49±199.81
*** 

195.3±213.
41 

128.51±150.32
*** 

193.08±208.
27 

94.18±121.97*
** 

17.92±7.7
9 

81.57±117.77
*** 

111.4±141.
39 

57.2±87.35*** 108.45±138.
58 

57.43±89.06**
* 

AST (IU/L) 21.81±6.84 93.21±99.71*** 95.65±100.
23 

86.98±98.47 96.32±102.0
1 

77.75±86.32 20.25±4.3
7 

68.73±73.78**
* 

85.6±91.48 54.95±51.62* 83.2±89.82 55.74±52.57 

TBIL (μmol/L) 15.5±4.84 27.73±32.98*** 21.75±13.2
7 

42.87±55.62*** 23.06±20.64 50.58±61.18**
* 

13.98±3.6
2 

33.67±47.77**
* 

23.77±38.4 41.77±52.99**
* 

23.54±37.45 42.77±53.94**
* 

ALP (IU/L) 85.57±19.1
8 

89.72±76.26 81.3±65.24 111.05±95.86*
* 

82.37±61.46 125.77±119.9
8** 

77.82±19.
21 

93.68±70.86* 70.57±55.7
5 

112.56±76.25
*** 

70.97±54.47 114.08±77.53
*** 

GGT (IU/L) 17.12±10.7

2 

69.18±97.06*** 61.13±69.7

5 

89.73±143.43* 66.72±74.55 81.42±169.46 26.26±19.

07 

76.87±82.16**

* 

77.22±83.5

8 

76.59±81.23 76.14±81.77 77.53±82.76 

TP (g/L) 74.41±4.76 73.47±8.55* 75.68±5.31 67.87±12.03*** 75.42±5.24 63.82±13.76**
* 

73.65±3.1
9 

71.31±17.94**
* 

72.89±5.84 69.97±23.74**
* 

73.07±5.82 69.66±24.23**
* 

ALB (g/L) 49.23±2.77 40.19±5.91*** 42.14±3.37 35.23±7.81*** 41.75±3.54 32.47±8.67*** 44.92±2.1
9 

37.86±7.18*** 41.44±4.79 34.93±7.48*** 41.39±4.71 34.69±7.54*** 

TBA (μmol/L) 4.67±3.18 28.47±45.11*** 20.33±37.2
8 

49.68±55.81*** 21.3±36.44 65.41±63.96**
* 

3.6±2.63 43.41±55.16**
* 

25.05±37.8
6 

58.89±62.37**
* 

24.33±37.04 61.11±62.91**
* 

PLT (10^9/L) 261.02±65.

25 

164.52±61.7*** 184.2±47.7

4 

114.68±65.05*

** 

179.06±49.8

6 

93.23±64.82**

* 

  132.44±62.97 163.58±51 106.03±60.14

*** 

161.54±51.1

8 

105.27±60.9**

* 

Collagen proportionate 
area 

  7.46±4.01 1.96±1.43 9.95±6.03*** 2.71±2.45 15.17±7.11***             

HBV DNA (log10)   6.25±2.42 6.32±2.44 5.99±2.34 6.33±2.38 5.39±2.66             

Negative HbeAg, n   191 115 76 142 49             

Negative HbeAb, n   223 153 70 175 48             

Negative HbsAg, n   29 24 5 26 3             

 

Note: Values are expressed as mean ± SD.          
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ALT, alanine transaminase; AST, aspartate transaminase; TBIL, total bilirubin; ALP, alkaline phosphatase; GGT, gamma-glutamyl transferase; ALB, Albumin; TBA, 

Total bile acid; PLT, platelet  

* p < 0.05, **, p<0.01, ***, p<0.001, by Student’s t test, CLD vs. NC, S3-4 vs. S0-2, cirrhosis vs. fibrosis         
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Table 2 Results for measurement of the metabolite marker panel, APRI, FIB-4, and AST/ALT ratio in the prediction of liver fibrosis 

  Cohort 1 training set Cohort 2 validation set 

  CLD vs controls 
Fibrosis vs 
Cirrhosis 

S0-2 vs S34 CLD vs controls 
Fibrosis vs 
Cirrhosis 

S0-2 vs S34 

Metabolite marker panel 

AUROC (95% CI)# 0.997 (0.993-1) 0.941 (0.914-0.964) 0.918 (0.889-0.946) 0.977 (0.963-0.988) 0.844 (0.797-0.884) 0.807 (0.756-0.852) 

AUPR (95% CI) 0.994 (0.986-1) 0.87 (0.824-0.913) 0.892 (0.854-0.925) 0.993 (0.989-0.997) 0.827 (0.761-0.884) 0.817 (0.764-0.866) 

Cutoff value (Sensitivity (%)/Specificity 
(%)/F1(%))† 

0.434 
(98.4/99/98.7) 0.01 (87/90.4/78.4) 

-0.115 
(86.7/90.5/84.6) 

0.434 
(92.2/94.4/95.2) 

0.01 
(71.8/81.6/73.3) -0.115 (72.9/76.1/71.8) 

FIB-4 

AUROC (95% CI) 
0.848 (0.823-

0.87) 
0.869 (0.829-0.906) 0.802 (0.762-0.844) 0.707 (0.652-0.762) 0.758 (0.692-0.815) 0.739 (0.68-0.798) 

AUPR (95% CI) 
0.863 (0.84-

0.883) 
0.725 (0.657-0.79) 0.707 (0.651-0.761) 0.897 (0.873-0.918) 0.726 (0.657-0.794) 0.726 (0.66-0.795) 

Cutoff value-1 (Sensitivity (%)/Specificity 
(%)/F1(%))* 

    1.45 (68/73.6/62)     1.45 (81.5/42.5/68.1) 

Cutoff value-2 (Sensitivity (%)/Specificity 
(%)/F1(%))* 

    3.25 (44.2/93.4/56.3)     3.25 (57/81.3/65.5) 

APRI 

AUROC (95% CI) 
0.973 (0.965-

0.981) 
0.698 (0.644-0.752) 0.647 (0.595-0.698) 0.879 (0.841-0.915) 0.608 (0.534-0.671) 0.595 (0.529-0.669) 

AUPR (95% CI) 
0.977 (0.969-

0.983) 
0.416 (0.345-0.497) 0.492 (0.434-0.554) 0.958 (0.942-0.972) 0.53 (0.474-0.605) 0.542 (0.488-0.614) 

Cutoff value-1 (Sensitivity (%)/Specificity 

(%)/F1(%))** 
  1 (33.9/86.2/37.1)     1 (22.7/84.4/32.4)   

Cutoff value-2 (Sensitivity (%)/Specificity 
(%)/F1(%))** 

  2 (18.3/94.6/26.6)     2 (3.9/94.3/8.5)   

AST/ALT 

AUROC (95% CI) 
0.665 (0.631-

0.697) 
0.815 (0.766-0.862) 0.714 (0.668-0.759) 0.603 (0.54-0.657) 0.684 (0.619-0.75) 0.667 (0.597-0.728) 

AUPR (95% CI) 
0.714 (0.685-

0.747) 
0.579 (0.496-0.674) 0.582 (0.516-0.654) 0.849 (0.819-0.875) 0.641 (0.573-0.721) 0.648 (0.583-0.727) 

Cutoff value-1 (Sensitivity (%)/Specificity 
(%)/F1(%))*** 

    0.8 (48.1/84.8/54.2)     0.8 (78.5/42.5/66.7) 

Cutoff value-2 (Sensitivity (%)/Specificity 
(%)/F1(%))*** 

    1 (33.1/92.8/45.1)     1 (65.9/59/63.8) 

Comparison of AUROC 

Metabolite marker panel versus FIB-4 **** p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 0.01 

Metabolite marker panel versus APRI **** p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 

Metabolite marker panel versus AST/ALT **** p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 
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 95% CI was calculated using 1,000 times bootstrap resampling on ROC and PR curves. CI, confidence interval. 

† Cut-off values were determined to maximize the sum of sensitivity and specificity for the Cohort 1 training data set. 

* Predetermined cut-off values of FIB-4 were used (1.45 and 3.25 to distinguish extensive fibrosis). 

** Predetermined cut-off values of APRI were used (1.0 and 2.0 to distinguish cirrhosis). 

*** Predetermined cut-off values of AST/ALT were used (0.8 and 1.0 to distinguish extensive fibrosis). 

APRI, AST-to-platelet ratio index; AST/ALT; aspartate transaminase/alanine transaminase ratio; FIB-4, fibrosis-4 index; AUROC, area under the receiver operating characteristic 

curve; AUPR, area under the precision-recall (PR) curve. 

**** Comparisons of AUROC between biomarker panel vs. FIB-4, AST/ALT, or APRI were performed using DeLong's test.
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Figure 1 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 6, 2020. ; https://doi.org/10.1101/2020.01.02.20016352doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.02.20016352


 

Figure 2 
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Figure 3 
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Figure 4 
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