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Readmission in the intensive care unit (ICU) is associated with
poor clinical outcomes and high costs. Traditional scoring meth-
ods to help clinicians deciding whether a patient is ready for
discharge have failed to meet expectations, paving the way for
machine learning based approaches. Freely available datasets
such as MIMIC-III have served as benchmarking media to com-
pare such tools. We used the OMOP-CDM version of MIMIC-
1 (MIMIC-OMOP) to train and evaluate a lightweight tree
boosting method to predict readmission in ICU at different time
points after discharge (3, 7, 15 and 30 days), outperforming ex-
isting solutions with an AUROC of 0.802 (SD=0.011) and a recall
of 0.837 (SD=0.016) for 3-days readmission.
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Introduction

Recent studies have shown that readmission in the intensive
care unit (ICU) is associated with poor clinical outcomes, in-
creased length of ICU and hospital stay, and high costs (1, 2).
One of the main reasons for ICU readmission that has been
identified is premature discharge (3); in fact the transfer of
patients from an ICU to a general hospital ward represents a
high-risk event, and thus the decisions about which patients
are ready to be discharged are daily struggles for ICU clini-
cians (4). Other studies have shown that determining the best
timing for ICU discharge is usually based on subjective in-
tuitions and that readmission prediction tools can help physi-
cians in this endeavor, provided their performance and ease of
adoption (5, 6). As traditional scores based on logistic regres-
sion or Cox proportional hazards models such as the Stability
and Workload Index for Transfer score (SWIFT) or the LACE
index have failed to meet expectations (6—10), numerous pre-
diction models using machine learning have been proposed
in the recent past, several of which trained and evaluated on
the Multiparameter Intelligent Monitoring in Intensive Care
(MIMIC-II or MIMIC-III) open database (11-15).

MIMIC-III is a large ICU EHR database widely accessible
to researchers internationally under a data use agreement, al-
lowing clinical studies to be reproduced and benchmarked
(16, 17). In order to make multicenter ressearch possible, a
valuable effort has been made to convert MIMIC-III to the
Observational Medical Outcomes Partnership common data
model (OMOP-CDM), which provides structural and con-
ceptual models relying on international reference terminolo-
gies (18, 19). For the sake of reproducibility and ease of sub-
sequent implementation in other centers using the same data
model, we chose to use the OMOP-CDM version of MIMIC-

III (MIMIC-OMOP), for which documentation and a map-
ping Extract-Transform-Load (ETL) process are freely avail-
able.

Related works

Among the numerous works aiming to provide decision-
making tools for ICU clinicians at discharge time, two in
particular caught our attention in terms of performance and
similarity to our own.

Lin et al. (12) proposed an advanced neural network for 30-
day ICU readmission prediction (LSTM-CNN based model)
achieving an Area Under Curve of the Receiver Operating
Characteristic (AUROC) metric of 0.791 on MIMIC-III, us-
ing chart events 48h time series, diagnostic ICD-9 codes em-
beddings, and demographic information of the patients. The
authors claim to offer higher accuracy and sensitivity com-
pared to existing solutions.

Pakbin et al. (13) trained a simpler and more interpretable
gradient boosting model (XGBoost) for predicting risk of
ICU bounceback and readmission at a variety of time points
using MIMIC-III, achieving AUROC of 0.76 and 0.75 for 72h
and 30-days ICU readmission respectively with chart events
time series, ICD-9 codes indicators, as well as admission, de-
mographic and length-of-stay information of the patients.

Methods

Data and patients. MIMIC-III integrates deidentified, com-
prehensive clinical data of patients admitted from 2001 to
2012 at the Beth Israel Deaconess Medical Center in Boston,
Massachusetts. We restricted our analyses to ICU stays of
patients over 18 years old, ending up with a dataset of 55136
stays. Variables used in the model were provenance from
a surgery ward, age, gender, length of stay, current count
of ICU visits for the same patient, and three values for a
number of measures and blood tests: the first entry for a
given stay, the last one (which could be the same as the first)
and the absolute difference between the two. Those mea-
sures were total glasgow coma scale (GCS), motor GCS,
verbal GCS, eye movement GCS, systolic blood pressure,
heart rate, respiratory rate, body temperature, oxygen sat-
uration, oxygen inspired fraction, body weight, urine out-
put, serum bicarbonate, serum urea, total bilirubin, serum
sodium, serum potassium, serum creatinine, blood platelets,
hemoglobinemia, blood hematocrit, blood leukocytes, serum
lactates, blood PH, blood glucose and the International Nor-
malized Ratio (INR). Three variables were extracted from

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

NGUYEN etal. | medRxiv | December26,2019 | 14


https://doi.org/10.1101/2019.12.26.19015909
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2019.12.26.190159009; this version posted December 30, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

medical and nurses text notes: history of AIDS, metastatic
cancer and/or of advanced hematologic condition (myeloma,
lymphoma or leukemia). Finally, one feature counting the
number of available values for all the previous variables was
added. Missing data were then imputed via multivariate im-
putation (20), with a Bayesian ridge regression as the estima-
tor (21).

We used a similar outcome definition to by Lin et al. (12),
where positive cases were regarded as the ones where the
patients could benefit from a prediction of readmission be-
fore being transferred or discharged: patients who were trans-
ferred or discharged but returned to ICU or died before a de-
fined time limit (3, 7, 15 or 30 days).

Models. Several models were tested in a screening phase.
Among those, XGBoost, a gradient tree boosting method that
is widely used by data scientists to achieve state-of-the-art re-
sults on many machine learning challenges, was consistently
more performant than the others and was thus selected as the
prediction model for this study (22). Gradient boosting meth-
ods work by iteratively fitting "weak" models to the residuals
of the previous model, and adding the newly estimated resid-
uals to the previous model’s prediction, thus forming a "new"
prediction, and so on until a stopping criterion is met. XG-
Boost implements this algorithm with decision trees, an ad-
ditional custom regularization term in the objective function,
and several tweaks to optimize speed and performance.

Evaluation. Combining both clinical usefulness and compa-
rability with other studies, area under the receiver operating
characteristic curve (AUROC) was chosen as the main eval-
uation metric. Precision (=positive predicted value), recall
(=sensitivity) and F1-score, the harmonic mean between the
last two, were also reported. The probability threshold to
classify a subject was chosen to be the class imbalance rate
for each evaluated outcome, equal to the proportion of pos-
itive cases among the population. Stratified cross-validation
was used in two ways; 5-fold for hyperparameter selection in
a grid-search setting, and 10-fold for model evaluation.
Calibration of the models were assessed by separating the
predicted probabilities over the whole dataset into deciles,
and assessing the proportion of real outcomes in each bin.
A model is said to be well calibrated when each bin’s true
outcomes proportion is close to the bin’s predicted probabili-
ties, resulting in a calibration curve close to the diagonal line
when plotted.

Contributions of each feature to the final model were reported
via feature importance; the more a feature is used to separate
groups within the model’s trees, the higher its relative impor-
tance. It is important to note that this might not necessarily
mean that features with a higher importance are significantly
associated with the outcome in real life, but it is nonetheless
a good way to assess what the model has learned.

Reproducibility. Al code used to produce this
work, essentially written in Python, is available at
http://github.com/deepphong/icu-readmission, accompa-
nied by a step by step example Jupyter notebook and generic
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Fig. 1. Receiver Operating Characteristic (ROC) response for 3-days readmission
prediction of different datasets, created from 10-fold cross-validation, showing how
the output is affected by changes in the training data, and how different the splits
are from one another and from the mean ROC curve and area under curve (AUC).

functions to exploit any database in OMOP format for other
use cases.

Results

The stratified 10-fold cross-validation results are reported in
Tablel for each metric and outcome. Overall, our model con-
sistently outperforms the results previously reported by Lin
et al. (12) for 30-days readmission (mean AUROC 0.795
vs. 0.791, mean recall 0.778 vs. 0.742) and Pakbin et al.
(13) for 3-days, 7-days and 30-days readmission (mean AU-
ROC 0.80 vs. 0.76, 0.81 vs. 0.77 and 0.80 vs. 0.75 respec-
tively; mean Fl-score 0.36 vs. 0.22, 0.44 vs. 0.32 and 0.50
vs. 0.37 respectively). Performance was stable across all ten
folds, as seen in Figure 1 for 3-days readmission prediction
(mean AUROC = 0.802, range across folds = [0.79; 0.82]).
Calibration of the model was overall very good, as visually
assessed in Figure 2, with a near perfect fit towards the ex-
tremes, meaning that the model is more frequently right the
more confident it is in making its predictions. Figure 3 shows
the model’s feature importance for 3-days readmission pre-
diction. Apart from the expected high reliance on elements
of the Glasgow Coma Scale (GCS), the most discriminative
feature by far seems to be the one representing the number
of non-missing features of an individual for a given stay; this
feature is akin to the number of different measurements had
by an individual for a given stay, and is plausibly correlated
with the severity of the patient’s condition.

Receiver Operating Characteristic (ROC) curves and calibra-
tion plots for all evaluated ICU readmission times are avail-
able in Appendix.
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3-days readmission 7-days readmission 15-days readmission 30-days readmission

(CIR=15.8%)

(CIR=19.7%)

(CIR=23.5%)

(CIR=27.3%)

Mean AUROC (SD) 0.802 (0.011) 0.809 (0.008) 0.803 (0.007) 0.795 (0.004)
Mean recall (SD) 0.837 (0.016) 0.821 (0.015) 0.799 (0.011) 0.778 (0.013)
Mean precision (SD) 0.421 (0.01) 0.494 (0.012) 0.547 (0.013) 0.587 (0.012)
Mean f1 (SD) 0.363 (0.024) 0.439 (0.022) 0.482 (0.015) 0.502 (0.009)

Table 1. Mean and standard deviation (SD) of the metrics measuring model performance for different outcomes, computed over a stratified 10-fold cross-validation. CIR =

class imbalance ratio (proportion of positive cases among the population).
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Fig. 2. Calibration plot showing the actual proportion of readmission in each decile
of predicted probability of readmission.

Discussion

While this work improves on existing solutions for ICU read-
mission prediction as measured by commonly used metrics,
several points still need to be addressed.

The prediction model was trained and evaluated on MIMIC-
OMOP, and as of this time, no external validation has been
conducted yet. To facilitate this process, all code needed to
reproduce the results has been made freely available, and ef-
forts have been put into its ease-of-transfer on any other elec-
tronic health records (EHR) database using the OMOP-CDM
standard. External validation is planned to be conducted on
several French EHR databases.

Further work needs to be done to integrate and evaluate such
prediction models in real life settings. The choice of develop-
ing on common health data standards such as OMOP-CDM
and/or HL7’s Fast Health Interoperability Resources (FHIR)
(23) is a step forward in this direction.

Apart from the performance, an interesting finding was the
importance of including a variable accounting for the avail-
able measures among the ones selected for the model. This
shows that the missing measures were missing not at random
(MNAR), and the rationale behind this is that patients with a
poorer prognosis usually have more tests and measurements
done to them. This feature could possibly be indirectly corre-
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lated with the care providers’ overall feeling of the patient’s
current state, and we postulate that existing models could po-
tentially be improved by adding similar information.
Overall, when compared with previously published alterna-
tives, our solution appears to be more accurate and sensitive,
but also simpler, easier-to-implement and lighter than others
such as deep learning based models and/or time-series based
prediction methods.

Conclusion

In this study, we proposed a model based on a tree boost-
ing method to predict ICU readmission at 3, 7, 15 and 30
days using data of patients at discharge on the freely avail-
able MIMIC-III database. With a 3-days readmission AU-
ROC of 0.802 (SD=0.011) and recall of 0.837 (SD=0.016),
or solution outperforms existing ones and has the advantage
of having been conceived with the OMOP-CDM standard,
allowing for easier external validation and implementation.

ACKNOWLEDGEMENTS

This work has been made possible thanks to the support of the WIND-DSI depart-
ment of AP-HP hospitals and the DIM department of Bicetre hospital, especially
Christel DANIEL and Marie FRANK. Special thanks to Julien DUBIEL from WIND-
DSl for his constant help with logistics.

Bibliography

1. Sydney Brown, Sarah Ratcliffe, Jeremy Kahn, and Scott Halpern. The Epidemiology of
Intensive Care Unit Readmissions in the United States. American Journal of Respiratory
and Critical Care Medicine, 185(9):955-964, May 2012. ISSN 1073-449X. doi: 10.1164/
rcem.201109-17200C.

2. Carolina R. Ponzoni, Thiago D. Corréa, Roberto R. Filho, Ary Serpa Neto, Murillo S. C.
Assuncéo, Andreia Pardini, and Guilherme P. P. Schettino. Readmission to the Intensive
Care Unit: Incidence, Risk Factors, Resource Use, and Outcomes. A Retrospective Cohort
Study. Annals of the American Thoracic Society, 14(8):1312—-1319, May 2017. ISSN 2329-
6933. doi: 10.1513/AnnalsATS.201611-8510C.

3. Uchenna R. Ofoma, Yue Dong, Ognjen Gajic, and Brian W. Pickering. A qualitative explo-
ration of the discharge process and factors predisposing to readmissions to the intensive
care unit. BMC Health Services Research, 18(1):6, January 2018. ISSN 1472-6963. doi:
10.1186/s12913-017-2821-z.

4. Daniel Niven, Jaime Bastos, and Henry Stelfox. Critical Care Transition Programs and the
Risk of Readmission or Death After Discharge From an ICU: A Systematic Review and
Meta-Analysis*. Critical Care Medicine, 42(1):179-187, January 2014. ISSN 0090-3493.
doi: 10.1097/CCM.0b013e3182a272c0.

5. Claudia-Paula Heidegger, Miriam M. Treggiari, Jacques-André Romand, and and the Swiss
ICU Network. A nationwide survey of intensive care unit discharge practices. Inten-
sive Care Medicine, 31(12):1676-1682, Dec 2005. ISSN 1432-1238. doi: 10.1007/
$00134-005-2831-x.

6. Uchenna R. Ofoma, Subhash Chandra, Rahul Kashyap, Vitaly Herasevich, Adil Ahmed,
Ognjen Gajic, Brian W. Pickering, and Christopher J. Farmer. Findings from the imple-
mentation of a validated readmission predictive tool in the discharge workflow of a medical
intensive care unit. Annals of the American Thoracic Society, 11(5):737-743, June 2014.
ISSN 2325-6621. doi: 10.1513/AnnalsATS.201312-4360C.

7. Marc Kastrup, Robert Powollik, Felix Balzer, Susanne Réber, Robert Ahlborn, Vera von
Dossow-Hanfstingl, Klaus D. Wernecke, and Claudia D. Spies. Predictive ability of the sta-
bility and workload index for transfer score to predict unplanned readmissions after ICU
discharge. Critical Care Medicine, 41(7):1608-1615, July 2013. ISSN 1530-0293. doi:
10.1097/CCM.0b013¢31828a217b.

medRxiv | 3


https://doi.org/10.1101/2019.12.26.19015909
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2019.12.26.190159009; this version posted December 30, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

last_serum_sodium
first_blood_platelets
first
delta_blood_hematocrit
irst_heart_rate
delta_serum_creatinine
history_metastases
last_fotal_bilirubin
delta_glasgow_motor
Tast_body_temp
delta_glasgow_verbal
first_total_bilirubin
délta_sao2
delta_blood Ieulkoq%teg
las! art_rate
delta glas owTotaI
elta_blood_ph
delta_blood_hémoglobin
first_fio2
delta_total_bilirubin
last_blood platelets
Tast_systolic_b
last_bloodp!
la tTNR
delta fio2
last_blood hemoglbbln

last_urine outp%t
delta_body _weight
last_serum_bicarbonate
last_serum_urea
last_sao2
delta_serum_sodium
first_glasgow_verbal
first_glasgow_eye
visit_detail_rank
first_glasgow total
delta_INR

||HH|\HIHH\M||||||H||||||

delta_serum blcarbonate
delta_bTood_glucose
“length_of stay

Iast __glasgow_motor
%I sgow_verbal
delta lood_platelets
from_surgery
delta_serum_urea
last_glasgow_eye
last_glas ow Total
ull_Tount

0.

o

0 0.02 0.04 0.06 0.08 0.10 0.12

Fig. 3. Feature importance of the model for 3-days readmission prediction. Each feature prefixed by "first_", "last_" and "delta_" represent the first measure in the current
stay, the last one and the difference between the two respectively. "full_count" represents the amount of non-missing features of an individual for a given stay.

8. Regis Goulart Rosa, Cintia Roehrig, Roselaine Pinheiro de Oliveira, Jucara Gasparetto 20. Stef van Buuren and Karin Groothuis-Oudshoorn. mice: Multivariate imputation by chained
Maccari, Ana Carolina Peganha Anténio, Priscylla de Souza Castro, Felippe Leopoldo Dex- equations in r. Journal of Statistical Software, Articles, 45(3):1-67, 2011. ISSN 1548-7660.
heimer Neto, Patricia de Campos Balzano, and Cassiano Teixeira. Comparison of Un- doi: 10.18637/jss.v045.103.
planned Intensive Care Unit Readmission Scores: A Prospective Cohort Study. PloS One, 21. J.L. Schafer. Analysis of Incomplete Multivariate Data. Chapman & Hall/CRC Monographs
10(11):e0143127, 2015. ISSN 1932-6203. doi: 10.1371/journal.pone.0143127. on Statistics & Applied Probability. CRC Press, 1997. ISBN 9781439821862.

9. Devan Kansagara, Honora Englander, Amanda Salanitro, David Kagen, Cecelia Theobald, 22. Tiangi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. CoRR,
Michele Freeman, and Sunil Kripalani. Risk Prediction Models for Hospital Readmission: abs/1603.02754, 2016.

A Systematic Review. JAMA, 306(15):1688—-1698, October 2011. ISSN 0098-7484. doi: 23. D. Bender and K. Sartipi. HI7 fhir: An agile and restful approach to healthcare information
10.1001/jama.2011.1515. exchange. In Proceedings of the 26th IEEE International Symposium on Computer-Based
10. Carl van Walraven, Irfan A. Dhalla, Chaim Bell, Edward Etchells, lan G. Stiell, Kelly Zarnke, Medical Systems, pages 326-331, June 2013. doi: 10.1109/CBMS.2013.6627810.

Peter C. Austin, and Alan J. Forster. Derivation and validation of an index to predict early
death or unplanned readmission after discharge from hospital to the community. CMAJ :
Canadian Medical Association Journal, 182(6):551-557, April 2010. ISSN 0820-3946. doi:
10.1503/cmaj.091117.

11. Ye Xue, Diego Klabjan, and Yuan Luo. Predicting ICU readmission using grouped physio-
logical and medication trends. Artificial Intelligence in Medicine, 95:27-37, April 2019. ISSN
1873-2860. doi: 10.1016/j.artmed.2018.08.004.

12. Yu-Wei Lin, Yugian Zhou, Faraz Faghri, Michael J. Shaw, and Roy H. Campbell. Analysis
and prediction of unplanned intensive care unit readmission using recurrent neural networks
with long short-term memory. PLOS ONE, 14(7):¢0218942, July 2019. ISSN 1932-6203.
doi: 10.1371/journal.pone.0218942.

13. A. Pakbin, P. Rafi, N. Hurley, W. Schulz, M. Harlan Krumholz, and J. Bobak Mortazavi.
Prediction of ICU Readmissions Using Data at Patient Discharge. In 20718 40th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
pages 4932-4935, July 2018. doi: 10.1109/EMBC.2018.8513181.

14. J. Venugopalan, N. Chanani, K. Maher, and M. D. Wang. Combination of static and temporal
data analysis to predict mortality and readmission in the intensive care. In 2017 39th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
pages 2570-2573, July 2017. doi: 10.1109/EMBC.2017.8037382.

15. A. S. Fialho, F. Cismondi, S. M. Vieira, S. R. Reti, J. M. C. Sousa, and S. N. Finkelstein.
Data mining using clinical physiology at discharge to predict ICU readmissions. Expert
Systems with Applications, 39(18):13158—-13165, December 2012. ISSN 0957-4174. doi:
10.1016/j.eswa.2012.05.086.

16. Alistair E.W. Johnson, Tom J. Pollard, Lu Shen, Li-wei H. Lehman, Mengling Feng, Moham-
mad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G. Mark.
MIMIC-III, a freely accessible critical care database. Scientific Data, 3, May 2016. ISSN
2052-4463. doi: 10.1038/sdata.2016.35.

17. Hrayr Harutyunyan, Hrant Khachatrian, David C. Kale, Greg Ver Steeg, and Aram Galstyan.
Multitask learning and benchmarking with clinical time series data. Scientific Data, 6(1):96,
2019. ISSN 2052-4463. doi: 10.1038/s41597-019-0103-9.

18. George Hripcsak, Jon D. Duke, Nigam H. Shah, Christian G. Reich, Vojtech Huser, Martijn J.
Schuemie, Marc A. Suchard, Rae Woong Park, lan Chi Kei Wong, Peter R. Rijnbeek, Johan
van der Lei, Nicole Pratt, G. Niklas Norén, Yu-Chuan Li, Paul E. Stang, David Madigan, and
Patrick B. Ryan. Observational health data sciences and informatics (ohdsi): Opportunities
for observational researchers. Studies in health technology and informatics, 216:574-578,
2015. ISSN 1879-8365.

19. J. Marc Overhage, Patrick B. Ryan, Christian G. Reich, Abraham G. Hartzema, and Paul E.
Stang. Validation of a common data model for active safety surveillance research. Journal
of the American Medical Informatics Association : JAMIA, 19(1):54-60, 2012. ISSN 1527-
974X. doi: 10.1136/amiajnl-2011-000376.

4 | medRxiv NGUYEN etal. | Prediction of ICU readmissions


https://doi.org/10.1101/2019.12.26.19015909
http://creativecommons.org/licenses/by-nc-nd/4.0/

