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Summary: A systematic review and limited metanalysis of 89 host biomarkers revealed that most 

individual biomarkers offer modest performance in predicting the severity of acute febrile illness; 

several however have performance characteristics which have shown promise in multiple studies.   
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Abstract 
Background: Acute febrile illness (AFI) ranges from mild to mortal, yet severity is difficult to assess. 

Host biomarkers may identify patients with AFI who require a higher level of care; choosing appropriate 

biomarkers for this role among an expanding pool of candidates is challenging. We performed a scoping 

review to evaluate the performance of novel host biomarkers to predict AFI severity. 

 

Methods: PubMed was systematically searched for manuscripts published January 1, 2013 to February 

10, 2018 for studies reporting the association of host biomarker levels and a measure of disease severity 

among patients with a suspected or diagnosed cause of AFI. Identified abstracts and full text 

manuscripts were reviewed for eligibility by 2 reviewers. Biomarker performance was evaluated 

primarily by the area under the curve (AUC) of the receiver operator characteristic to distinguish severe 

disease. We aggregated data describing biomarker performance by AUC using weighted mean, fixed 

effects meta-analyses, and random effects meta-analyses. 

 

Results: Among 2,303 manuscripts identified, 281 manuscripts met criteria for analysis. Data was 

extracted for 278 biomarkers evaluated in 45,737 participants. Among 89 biomarkers evaluated by ≥2 

studies, there were 6 biomarkers (proadrenomedullin, copeptin, pro-atrial natriuretic peptide, serum 

triggering receptor expressed on myeloid cells-1, chitinase-3-like protein-1, and the pediatric sepsis 

biomarker risk model), that showed a weighted mean AUC >0.75 (range 0.75-0.84) in >500 patients 

over >2 studies. 

  

Conclusions: Although several biomarkers show promise in predicting AFI severity across multiple 

studies, their test characteristics do not suggest that they may be used alone to determine AFI prognosis.  
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Introduction 
Acute febrile illness (AFI) is among the most common medical problems in low- and middle-income 

countries (LMICs).[1, 2] Causes of AFI vary by geographical location, season, and year and can range 

from minor ailments to mortal illness.[3-9] Provision of disease-specific diagnostic tests to determine 

AFI etiology may not always be feasible.[10] Many patients with AFI can be treated in a community 

outpatient setting; others require referral to a higher level of care to prevent further complications and 

death.[11, 12]  

Accurately predicting the prognosis of patients with AFI, even in high-income countries is challenging; 

clinical signs and symptoms may be difficult to recognize and do not consistently predict poor disease 

outcome.[13-19] In LMICs, limited epidemiologic data on disease incidence, lack of diagnostics, 

limited healthcare worker training, and overburdened healthcare systems pose additional 

challenges.[20, 21] Determining the severity of AFI to rapidly identify the patients who require a higher 

level of care is important particularly in settings where human resources and diagnostic tests are 

limited.[22-26]  

Host biomarkers have shown promise as prognostic indicators of disease severity in conditions ranging 

from cancer to inflammatory bowel disease and tuberculosis.[27-29] Novel biomarkers have also been 

able to discriminate bacterial from viral infection in certain cohorts.[10, 30] C-reactive protein (CRP) 

has been used as a measure of disease severity, including AFI, for almost 90 years.[31] Other laboratory 

tests in common clinical use such as procalcitonin (PCT), white blood cell count, and liver function 

tests have been evaluated for their ability to predict the severity of AFI.[32-38]  

There is now growing interest in using biomarkers to guide referral and management of patients with  

AFI in LMICs.[39, 40] CRP and PCT are already available for routine clinical use, thus the evidence 

base describing their ability to predict illness severity is already well described.[41-43] However, 

advances in highly multiplex immunoassay platforms, next-generation sequencing, proteomics, and 

metabolomics have sharply increased the availability of data describing the host response to AFI and 

the ability to predict its severity.[44-47] We performed a scoping review of recently published literature 
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on the performance of novel host biomarkers to predict the severity of AFI with the aim to inform 

development of diagnostics for clinical use. 

Methods 
Search strategy  

Search terms were selected to identify studies which evaluated the performance of a biomarker to 

classify patients at risk for severe disease or death in an analyzable population consisting entirely of 

patients with a syndrome known to cause AFI. A non-exhaustive list of causes of AFI in LMICs was 

determined by review of AFI etiology in primary papers and systematic reviews.[48-50] Tuberculosis 

was intentionally excluded from this list as there is already a separate evidence base describing the 

performance of biomarkers for tuberculosis diagnosis and prognosis.[51] Causes of AFI explicitly 

included in the process to select search terms included sepsis, septic shock, pneumonia, diarrhea, 

malaria, dengue, leptospirosis, meningitis, typhoid fever and scrub typhus. Multiple manual searches 

were performed to identify 32 manuscripts that met our inclusion criteria and 16 near-misses. 

Controlled vocabulary and text words were identified from these manuscripts. A custom-built Python 

script was written to maximize the ratio of correctly identified manuscripts to incorrectly identified 

manuscripts using the most parsimonious search terms. Briefly, individual phrases were extracted 

from the titles, abstracts, and Medical Subject Heading terms for all 48 manuscripts. Each phrase was 

ranked for its sensitivity and specificity to identify manuscripts meeting inclusion criteria. Phrases 

were chosen that identified all 32 manuscripts warranting inclusion, and then sequentially eliminated 

to create the most parsimonious search query while not missing any manuscripts warranting inclusion.  

Using the selected terms, a search was conducted on February 10, 2018 in PubMed as shown in Table 

1. 

 

Study Selection 

Study population 

Studies analyzing populations with one or multiple, suspected or diagnosed causes of AFI were 

included. If the analyzed study population included patients without a suspected or diagnosed cause of 
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AFI, the study was excluded (i.e., patients with systemic inflammatory response syndrome without 

sepsis). Hospital-acquired infections were not considered cases of AFI and their presence in the study 

population was cause for study exclusion. Studies in which all participants had malignancy, 

neutropenia, or organ transplantation were excluded. Studies that included only participants under 6 

months of age were not considered. Interventional trials were excluded. Papers included only English 

language papers published from January 1, 2013 to February 10, 2018. 

Biomarkers 

The studies included in this review tested one or more biomarkers produced by human hosts and used 

the tests to assess the severity of AFI. Studies were restricted to those reporting biomarker measurement 

in a routinely available body fluid - blood or its components, saliva, and urine. Biomarker measurement 

of bodily fluids requiring invasive sampling (e.g. cerebrospinal fluid, pleural fluid) were not considered. 

Biomarkers already available for routine clinical use were excluded including: complete blood count 

(CBC) and its components, CRP, PCT, liver function tests, kidney function tests, lactate, routine 

endocrine tests like thyroid function tests and cardiac biomarkers such as troponin and pro-BNP. 

Biomarkers reported from large-scale discovery data sets such as generated in transcriptomic or 

proteomic studies without subsequent validation were excluded. 

Measure of severity 

Only studies reporting disease severity in terms of association with mortality, organ dysfunction, 

established severe disease classification system, or clinical severity score were included. Studies that 

reported kidney injury as the only measure of disease severity were excluded. Studies reporting only 

biomarker levels collected after 48 hours of presentation to healthcare were excluded. If the 

investigators performed more than one biomarker measurement, only the earliest measurement was 

considered. If more than one measure of disease severity was reported, preference was given to 

mortality as an outcome for further analysis. 
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Screening Process 

Each abstract was reviewed for inclusion by 2 independent reviewers. When the 2 reviewers did not 

reach agreement, a third reviewer was sought. After abstract review, provisionally included abstracts 

were subject to full text review again by 2 independent reviewers. Inter-reviewer disagreement on full-

text reviews was handled similarly to abstracts. Abstract and full text review were managed using 

Covidence.[52] 

Quality Assessment 

We adapted the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2)[53] into a 

simplified scoring system to report the risk of bias and concern for applicability using the QUADAS-2 

domains of patient selection, index test, reference standard, and flow and timing. One point each was 

given if the study design was prospective, participants were enrolled consecutively, and biomarker 

cutoff values were defined prospectively. One point each was subtracted if the study employed a case 

control design, participants with hospital-acquired infections were not explicitly excluded, or 

ambiguous methods or reporting did not explicitly exclude patients without infections. 

Data Extraction 

Information was extracted from individual studies into a custom Microsoft Access database. Key 

information extracted from each study included the level of care at the time of patient enrollment 

which was categorized nonexclusively as outpatient, emergency department, inpatient ward, and 

intensive care unit (ICU). The age groups of participants were categorized as including children under 

age 5 years, children between age 5 to 18 years, and adults. Non-exclusive diagnoses of the study 

population were recorded. Disease severity or patient outcome was recorded either categorically or in 

correlation with existing severity scores. Categorical patient outcome measures included death, septic 

shock, severe sepsis, respiratory failure, subsequent requirement for ICU admission, and severe 

disease according to disease-specific standards. The p-value results of significance testing of an 

association of a biomarker with an unfavorable patient outcome or severe disease was extracted. The 

strength of the association as reported by area under the curve (AUC) of the receiver operator 
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characteristic (ROC), logistic regression odds ratio, and Cox proportional hazard ratio. Unadjusted 

measures of association were recorded preferentially over adjusted measures if both were reported as 

adjustment was performed infrequently and heterogeneously. Correlation with severity scores 

including Acute Physiology and Chronic Health Evaluation-II (APACHE-II),[54] Sequential Organ 

Failure Assessment (SOFA), CURB-65, Mortality in Emergency Department Sepsis (MEDS), 

Multiple Organ Dysfunction Score (MODS), Pneumonia Severity Index (PSI) was recorded by 

Spearman r values, p values, and by severity score above or below a defined biomarker cutoff where 

reported.  

Biomarker Categorization 

Each reported protein biomarker was queried for its inclusion in the Uniprot database.[55] Biomarkers 

found to be reported by multiple names were assigned one name for further analysis. Additionally, 

biomarkers and their prologues or breakdown products (e.g. adrenomedullin and pro-adrenomedullin) 

were reported together. The function of each biomarker reported by more than one study was 

determined by query of Uniprot and Cytoscape as well as additional literature review.[56] A flowchart 

was created placing the biomarkers in their primary immunological pathway. These immunological 

pathways were grouped into eight immune functions to simplify analysis and interpretation. 

Biomarkers that had been analyzed in more than one study were grouped parsimoniously according to 

their immune function, where applicable: vasoactivity, proinflammatory cytokines, pathogen-

associated molecular pattern (PAMP), and danger associated molecular pattern (DAMP) recognition, 

macrophage differentiation, leukocyte migration, innate effector mechanism, and immune regulation.  

Data Analysis 

For each biomarker, summary statistics describing the available evidence base to predict the severity 

of AFI were compiled including number of studies, combined number of participants, diagnoses, and 

level of care of participants. A weighted median and mean AUC was assigned for each biomarker by 

calculating the median and mean AUC across studies weighted by the number of participants in each 

study. The most promising biomarkers were shortlisted by the following criteria: inclusion of > 500 

participants in ≥ 2 studies with a weighted mean AUC of > 0.70 where ≥ 75% of studies showed an 
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association with the outcome of interest. The most promising biomarkers were further shortlisted by 

restricting to biomarkers with a weighted mean >0.75. Additional sub-analyses were performed by 

restricting to studies performed only in LMICs that did not include participants admitted to the ICU at 

the time of enrollment. 

 

Results 
Search results 

The initial search yielded 2,303 results (Figure 1). Abstract review identified 444 publications that 

provisionally fit inclusion criteria. Review of full text manuscripts eliminated 163 publications due to 

reasons identified in Figure 1, leaving 281 manuscripts for data review.  

Study and patient characteristics  

The included manuscripts reported results for 45,737 participants in 49 countries (Figure 2). The median 

number of participants per study was 104 (interquartile range [IQR] 53-186). Participants were 

classified as having 21 distinct diagnoses or clinical syndromes (Figure 3); sepsis was the most 

common. Among the included manuscripts, 146 (52%) studies were conducted in 24 LMICs and 

included 19,513 (43%) participants. Further restricting to studies conducted in LMICs in non-ICU 

settings, there were 11,630 participants included in 20 countries.  

Diversity of evaluated biomarkers.  

Data for 278 unique biomarkers were extracted. Individual publications reported a median of 1 (IQR 

1-3) biomarkers. The most frequently evaluated host biomarkers were IL-6 (n = 50), IL-10 (n = 33), 

and TNF-α (n = 26). Most biomarkers (n = 189) were only evaluated in a single publication. There 

were 89 biomarkers evaluated in at least 2 studies (Supplementary Table); 52 biomarkers were 

evaluated in ≥ 3 studies. The most commonly studied biomarker categories were pro-inflammatory 

cytokines (19 biomarkers) followed by biomarkers involved in innate effector mechanisms (13 

biomarkers), immune regulation (12 biomarkers), leukocyte migration (12 biomarkers) and 

vasoactivity (12 biomarkers) (Supplementary Figure 1). 
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Biomarker performance 

Mortality was the reported outcome in 193 (65%) studies. Disease-specific measures of severity were 

the second most commonly reported outcome (n = 53, 18%). A measure of strength of association was 

reported by 168 (60%) studies. The most commonly reported measure of strength of association was 

AUC-ROC, which was reported in 151 (54%) of studies (Table 2). Among the biomarkers studied, there 

were 15 biomarkers that showed a weighted mean AUC > 0.7 studied in > 500 patients over ≥ 2 studies 

in which ≥ 75% of studies showed an association of the biomarker with the severity outcome; 6 of 

which showed a weighted mean AUC > 0.75 (Figure 4). Among studies conducted in LMICs without 

ICU patients, there were 4 biomarkers which showed a weighted mean AUC > 0.7 studied in > 500 

patients over ≥ 2 studies (Supplementary Figure 2). 

Discussion 
In this scoping review, we report data for 278 novel biomarkers studied in 45,737 patients with 21 

causes of acute febrile illness in 281 studies from 50 countries, yielding an understanding of the current 

evidence base for biomarkers to predict the severity of AFI. Among the biomarkers studied, there were 

6 biomarkers that showed a weighted mean AUC greater than 0.75 in more than 500 patients over more 

than 2 studies. The current evidence base reports mostly the performance of biomarkers predominantly 

in high-income intensive care settings; a smaller, yet still robust evidence base describes the 

performance of biomarkers outside of ICUs in LMICs. The overall performance of biomarkers suggests 

that although they may aid in determining the prognosis of AFI; they are insufficient as the sole 

predictors of severity of febrile illness.  

Biomarkers in 8 categories demonstrated potentially useful performance in multiple studies exceeding 

600 total study patients, suggesting their promise for future study.  The number of studies exploring a 

biomarker, the number of participants in each study, as well as the variation in ages, disease states, and 

settings in which the patient population has been studied, contributes to the breadth of evidence 

supporting biomarker performance. As AUC is a single number that accounts for both sensitivity and 

specificity independent of a cutoff value, we chose to use AUC as the measure to aggregate biomarker 

performance across studies. We found several biomarkers including proadrenomedullin and copeptin 
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that had sufficiently large evidence bases and favorable performance to suggest that they may warrant 

further exploration as fever triage candidates. Proadrenomedullin has been studied in >4,800 patients 

in 18 studies across varied geographical settings, age groups, and disease states. Almost all of the studies 

of proadrenomedullin reported an AUC, with a weighted mean AUC of 0.78. Similarly, copeptin has 

been studied in >3,000 patients with a weighted mean AUC of 0.81. 

Current research reporting the performance of biomarkers to predict AFI severity has not been 

primarily conducted in the settings where their potential impact is greatest. The highest burden of AFI 

is in tropical LMICs1 where inpatient and critical care beds are limited. The most likely intended use 

for a fever triage test would be among patients under assessment for the appropriate level care where 

the capacity for clinical assessment is limited. Most of the studies in this review were conducted in 

ICU settings where patients already likely show frank clinical signs of the requirement for a higher 

level of care. Almost half of the included studies were conducted in the US and Europe which may 

not represent the population and healthcare systems that would most benefit from an AFI severity 

biomarker.  

Readily available clinical signs such as respiratory rate and simple scoring systems such as qSOFA 

are already used routinely to asess AFI clinical severity. The evidence compiled in this scoping 

review does not suggest that single biomarkers, even the most promising ones, perform sufficiently 

well enough to clearly supercede existing clinical severity assessment tools such as qSOFA, which 

has an AUC of 0.66-0.85 to predict severe or mortal AFI.[57, 58] However, unlike subjective clinical 

assessment, biomarkers may be standardized and not rely on the skill of a clinical assessor. Earlier 

experience with combining qSOFA and biomarkers have shown promising results, with a higher AUC 

for the combination than any individual method of prognosis assessment.[59-61] 

There are a several limitations to this scoping review. The available data are highly heterogeneous in 

patient population, disease state, and study design. The majority of observations in this scoping 

review only reported the presence or absence of an association with an unfavorable outcome; only 

48% of observations reported the strength of the association. Only studies published in the last 5 years 

were analyzed which may miss earlier and important contributions. The quality assessment that we 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 27, 2019. ; https://doi.org/10.1101/2019.12.21.19014753doi: medRxiv preprint 

https://doi.org/10.1101/2019.12.21.19014753


11 

 

 

performed was basic. Because we required only that patients be suspected or diagnosed to have a 

syndrome that is known to cause AFI, a significant proportion of participants may not have been 

febrile at the time of study enrollment which may limit the generalizability of the findings to the 

intended use case of evaluating febrile patients. 

Biomarkers which demonstrated promising performance but have a limited evidence base such as 

serum Triggering Receptor Expressed on Myeloid cells-1 may show further promise as triage 

candidates when studied in more patients. A formal meta-analysis of pro-inflammatory cytokines and 

vasoactive biomarkers, or a prospective study in larger and more varied cohorts would provide higher 

confidence evidence than obtained in this scoping review. Additionally, it would allow the 

formulation and testing of algorithms with overall improved performance characteristics. Finally, 

prospective evaluation of biomarkers in clinical practice will be necessary to show that determination 

of AFI prognosis impacts meaningful treatment outcomes. 

AFI impacts a significant portion of the global population every year. This scoping review 

synthesized a large amount of data to shortlist biomarkers that may be useful in the assessment of AFI 

severity as triage test candidates. Further research is necessary to determine whether biomarkers can 

be integrated with existing fever assessment guidelines to improve clinical practice and patient 

outcome. 
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Table 1: Terms included in PubMed search 

Category Terms 

Biomarker 
biomarkers[mh] OR protein precursors[mh] OR metabolome[mh] OR 

biomarker[tiab] OR biomarkers[tiab] 

Severity 
severity of illness index[mh] OR survival analysis[mh] OR prognosis[mh] 

OR prognostic[tiab] OR mortality[tiab] 

Acute febrile illness 

sepsis[mh] OR pneumonia[mh] OR fever[mh] OR malaria[mh] OR 

dengue OR typhoid fever[mh] OR leptospirosis OR diarrhea[mh] OR 

influenza[tiab] OR meningitis[tiab] 

Other English[la] NOT review[pt] NOT (animals[mh] NOT humans[mh] 

Each category was joined by an AND statement 
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Table 2: Evidence base and performance of leadinga biomarkers to predict acute febrile illness severity 

Biomarker Studies, 

nb 
Patients 

studied 

Studies 

reporting 

positive 

association with 

severity, n (%) 

Studies reporting 
Number  

of patients 

included in 

AUC 

Weighted 

mean 

AUCc 

Random 

effects 

meta-

analysis 

I2 
Odds 

ratio 

Logistic 

regression 

Hazard 

ratio 
AUC 

copeptin 9 3326 9 (100) 1 0 0 5 2953 0.81 0.79 0.67 

IL-8 18 2282 17 (94) 1 2 0 6 755 0.73 0.74 0.65 

NGAL 9 2770 8 (89) 1 3 0 6 1522 0.71 0.66 0.89 

PAI-1 5 925 5 (100) 0 1 0 3 612 0.73 0.75 0.92 

PDL-1 2 730 2 (100) 1 1 0 2 730 0.72 0.72 0 

PERSEVERE 3 802 3 (100) 0 0 0 3 802 0.80 0.82 0 

proADM 18 4724 17 (94) 4 0 1 14 4261 0.78 0.80 0.58 

proANP 4 3208 4 (100) 0 0 0 3 3123 0.80 0.80 0 

PTX-3 8 1434 7 (88) 0 0 1 4 890 0.72 0.76 0 

sTREM-1 8 997 7 (88) 1 1 1 6 569 0.75 0.8 0.77 

suPAR 5 529 5 (100) 0 1 0 5 529 0.71 0.68 0 

TIMP-1 6 1627 6 (100) 0 2 0 3 1212 0.71 0.76 0.93 

TM 4 1647 3 (75) 1 1 0 2 1253 0.81 0.81 0.9 

VCAM-1 11 1174 10 (91) 2 0 0 8 878 0.73 0.73 0.9 

YKL-40 3 521 3 (100) 0 0 0 3 521 0.84 0.87 0.91 
aReported in >500 participants in ≥2 studies with a weighted mean AUC of >0.70. bReferences are available in the 

supplementary materials. cWeighted by number of participants in study. AUC; Area under the curve; IL-8, interleukin-8; NGAL, 

neutrophil gelatinase-associated lipocalin; PAI-1, plasminogen activator inhibitor-1; PDL-1, programmed cell death ligand-1; 

PERSEVERE, pediatric sepsis biomarker risk model; proADM, pro-adrenomedullin; proANP, pro-atrial natriuretic peptide; 

PTX-3, pentraxin- 3; sTREM-1, serum triggering receptor expressed on myeloid cells-1; suPAR, soluble urokinase-type 

plasminogen activator receptor; TIMP-1, metalloproteinase inhibitor-1; TM, thrombomodulin; vCAM-1, vascular cell adhesion 

molecule-1; YKL-40, chitinase-3-like protein-1 
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Figure Legends 

Figure 1: Identification, screening, eligibility assessment, and data extraction 

Figure 2: Number of manuscripts included by country 

Figure 3: Diagnoses of participants, N = 45,737 

Figure 4: Participants studied, effect size, and quality of leading biomarkers to predict the severity of 

acute febrile illness. Each shaded tile represents one study. The width of the tile is proportional 

to the number of subjects enrolled; the height is proportional to the effect size of the association 

as measured by AUC or odds ratio. 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 27, 2019. ; https://doi.org/10.1101/2019.12.21.19014753doi: medRxiv preprint 

https://doi.org/10.1101/2019.12.21.19014753


All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 27, 2019. ; https://doi.org/10.1101/2019.12.21.19014753doi: medRxiv preprint 

https://doi.org/10.1101/2019.12.21.19014753


All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 27, 2019. ; https://doi.org/10.1101/2019.12.21.19014753doi: medRxiv preprint 

https://doi.org/10.1101/2019.12.21.19014753


All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 27, 2019. ; https://doi.org/10.1101/2019.12.21.19014753doi: medRxiv preprint 

https://doi.org/10.1101/2019.12.21.19014753


All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 27, 2019. ; https://doi.org/10.1101/2019.12.21.19014753doi: medRxiv preprint 

https://doi.org/10.1101/2019.12.21.19014753

