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Abstract	

Magnetic	Resonance	 Imaging	 (MRI)	 is	 routinely	 used	 to	 visualize	 the	 prostate	 gland	 and	

manage	 prostate	 cancer.	 The	 Prostate	 Imaging	 Reporting	 And	 Data	 System	 (PI-RADS)	 is	

used	to	evaluate	the	clinical	risk	associated	with	a	potential	tumor.	However	the	PI-RADS	

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 19, 2019. ; https://doi.org/10.1101/2019.12.16.19015057doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2019.12.16.19015057


 
2 

score	 is	 subjective	 and	 its	 assessment	 varies	 between	 physicians.	 As	 a	 result,	 a	 definite	

diagnosis	 of	 prostate	 cancer	 requires	 a	 biopsy	 to	 obtain	 tissue	 for	 pathologic	 analysis.	 A	

prostate	 biopsy	 is	 an	 invasive	 procedure	 and	 is	 associated	with	 complications,	 including	

hematospermia,	hematuria,	and	rectal	bleeding.		

We	hypothesized	that	an	Artificial	Intelligence	(AI)	can	be	trained	on	prostate	cases	where	

both	imaging	and	biopsy	are	available	to	distinguish	aggressive	prostate	cancer	from	non-

aggressive	lesions	using	MRI	imaging	only,	that	is,	without	the	need	for	a	biopsy.		

Our	 computational	method,	 named	AI-biopsy,	 can	 distinguish	 aggressive	 prostate	 cancer	

from	non-aggressive	disease	with	an	AUC	of	0.855	and	a	79.02%	accuracy.	We	used	Class	

Activation	Maps	 (CAM)	 to	 highlight	which	 regions	 of	MRI	 images	 are	 being	 used	 by	 our	

algorithm	for	classification,	and	found	that	AI-biopsy	generally	focuses	on	the	same	regions	

that	 trained	 uro-radiolosts	 focus	 on,	 with	 a	 few	 exceptions.	 In	 conclusion,	 AI-biopsy	

provides	 a	 data-driven	 and	 reproducible	way	 to	 assess	 cancer	 aggressiveness	 from	MRI	

images	and	a	personalized	strategy	to	reduce	the	number	of	unnecessary	biopsies.			
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Introduction	

Prostate	 cancer	 is	 the	 most	 commonly	 diagnosed	 cancer	 in	 adult	 men1.	 Distinguishing	

patients	with	 aggressive	 (tumor	 tissue	 growing	 faster)	 and	non-aggressive	 (tumor	 tissue	

growing	 slowly)	 forms	 of	 prostate	 cancer	 is	 important	 because	 the	 former	 needs	 more	
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aggressive	 treatment	 while	 the	 latter	 may	 only	 necessitate	 monitoring.	 Indeed	 early	

detection	 and	 intervention	 of	 aggressive	 prostate	 cancer	 improves	 survival	 rate2,3.	 In	

addition,	accurate	diagnosis	prevents	over-treatment4.	

Magnetic	 Resonance	 Imaging	 (MRI)	 is	 used	 by	 radiologists	 to	 visualize	 abnormalities	

within	 the	 prostate	 gland.	 The	 European	 Society	 of	 Urogenital	 Radiology	 (ESUR)	

established	 the	 Prostate	 Imaging	 Reporting	 And	 Data	 System	 (PI-RADS),	 a	 standardized	

guideline	 for	 interpretation	 and	 reporting	 prostate	MRI	 for	 the	 purpose	 of	 harmonizing	

MRI	 use5,6.	 PI-RADS	 is	 designed	 to	 improve	 detection,	 localization,	 characterization,	 and	

risk	stratification	in	patients	with	suspected	cancer7.	PI-RADS	uses	subjective	features	such	

as	 lesion	 shape	 and	 margins	 for	 categorization	 of	 prostate	 cancer8.	 PI-RADS	 categories	

range	 from	 one	 to	 five	 and	 higher-grade	 lesions	 have	 higher	 PI-RADS	 assessment	

categories	(PI-RADS	categories	4	and	5)9.	Although	PI-RADS	has	been	found	to	be	effective	

in	evaluating	the	clinical	risk	associated	with	prostate	cancer10,	it	is	subjective	and	relies	on	

visual	assessment11.	As	a	result,	histology	assessment	based	on	prostate	biopsies	remains	

the	standard	approach	for	assessing	prostate	cancer	aggressiveness.		

There	 are	 currently	 two	main	 scores	 used	 to	 assess	 histology	 slides	 for	 prostate	 cancer	

aggressiveness.	 The	 Gleason	 Score	 (GS)	 is	 the	most	 commonly	 used	 prognostic	 score	 to	

predict	 the	 clinical	 status	 of	 prostate	 cancer	 (aggressive	 and	 non-aggressive	 prostate	

cancer)	based	on	biopsy	material.	GS	describes	how	much	the	 tissue	 from	a	biopsy	 looks	

like	healthy	tissue	(lower	score)	or	abnormal	tissue	(higher	score)12-14.	GS	is	a	sum	of	the	

primary	and	 secondary	patterns	with	a	 range	of	3	 to	5.	Thus,	 tumors	are	 scored	as	 a	GS	

ranging	from	6	(3	+	3)	to	10	(5	+	5).	Another	score,	Grade	Group	(GG),	subdivides	prostate	

cancer	into	five	categories	using	pathological	characteristics15,16.	Pathologists	use	either	of	
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these	 scores	 in	 routine	 clinical	 practice.	 Although	 a	 biopsy	 usually	 provides	 a	 definitive	

diagnosis	of	prostate	cancer,	patients	undergoing	prostate	biopsy	may	experience	incorrect	

staging	 and	 complications	 such	 as	 infection	 and	 sepsis	 that	 it	 is	 associated	 with	 life-

threatening	organ	dysfunction	and	death17.		

In	this	paper,	we	hypothesize	that	prostate	cancer	aggressiveness	can	be	predicted	directly	

from	MRI	images	using	machine	learning	techniques,	perhaps	reducing	or	even	removing	

the	need	for	a	tissue	biopsy.	In	recent	years,	machine	learning	and	especially	deep	learning	

approaches	 have	 been	 applied	 to	 a	 variety	 of	medical	 problems18-20,	 such	 as	 lung	 cancer	

subtype	 diagnosis	 using	 pathology	 images21,	 assessing	 human	 blastocyst	 quality	 after	 in	

vitro	fertilization22,	and	prostate	cancer	classification	by	MRI	images23.	In	the	latter	study23,	

the	 authors	 used	 deep	 learning	 and	 non-deep	 learning	 algorithms	 to	 classify	 benign	

prostate	 from	prostate	 cancer	 using	 axial	 2D	T2-weighted	MRI	 images	 of	 172	patients23.	

They	were	able	to	distinguish	benign	from	cancer	lesions	with	the	Area	Under	Curve	(AUC)	

of	 0.84	 and	 0.70,	 respectively23.	 In	 another	 related	 study,	 Kwon	 et	 al.	 described	 a	

radiomics-based	approach	to	classify	clinically	significant	 lesions	in	multi-parametric	MRI	

(mp-MRI)	 using	 three	 feature-based	 methods:	 regression	 trees,	 random	 forests,	 and	 a	

regularization	 techniques	 for	 simultaneous	 estimation	 and	 variable	 selection	 (adaptive	

LASSO).	 Random	 forest	 achieved	 highest	 performance	 with	 an	 AUC	 of	 0.8224.	 Recently	

Rubinstein	 et	 al.	 used	 an	 unsupervised	 deep	 learning	 method	 to	 detect	 and	 localize	

prostate	 tumors	 in	 PET/CT	 images25.	 This	 study	 demonstrated	 the	 utility	 of	 feature	

selection	using	deep	learning	methods	in	finding	tumors	with	AUC	of	0.89925.	

Despite	these	related	attempts,	currently,	there	are	no	robust	approaches	that	can	serve		as	

an	alternative	to	prostate	biopsy	for	the	detection	of	prostate	cancer	aggressiveness.	Here,	
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we	 introduce	 an	 AI-based	 computational	 technique	 that	 uses	MRI	 imaging	 data	 as	 input	

and	 recognizes	 aggressive	 prostate	 cancer	 from	 non-aggressive	 forms	 as	 defined	 by	

pathology	 assessment	 such	 as	 Gleason	 Score	 and	 Grade	 group.	 While	 the	 training	 uses	

pathology	assessment	obtained	from	a	biopsy,	our	objective	is	to	train	a	predictive	model	

that	can	eventually	assess	MRI	images	without	the	need	of	a	biopsy.	

To	train	and	test	our	predictive	models,	we	utilize	three	publicly	available	datasets	as	well	

as	data	generated	in	our	radiology	practice	at	Weill	Cornell	Medicine.	Using	supervised	and	

unsupervised	analyses,	we	curated	a	dataset	which	contains	thousands	of	high-quality	MRI	

prostate	 images.	 These	 images	 originate	 from	 four	 different	 databases	 with	 pathology	

labels,	 and	 form	 the	 largest	 collection	 of	 de-identified	 human	MRI	 prostate	 images	 ever	

created	so	 far.	We	used	 this	 large-scale	 imaging	dataset	 to	 train	and	assess	 several	Deep	

Neural	Network	(DNN)	models	 to	classify	aggressive	and	non-aggressive	prostate	cancer.	

These	 models	 automate	 prostate	 cancer	 diagnosis	 directly	 from	 MRI	 images,	 thus	

empowering	uro-radiologists	to	provide	earlier	and	reduced-risk	diagnosis.		

	

Results							

In	 total,	we	 used	 26,257	MRI	 images	 from	 376	 patients,	 obtained	 from	 public	 resources	

(The	Cancer	 Imaging	Archive	 (TCIA))	 and	our	medical	 center	 (Department	 of	Urology	 at	

Weill	Cornell	Medicine).	All	376	patients	were	labeled	with	Gleason	score	or	Grade	group.		

Some	datasets	(e.g.,	PROSTATE-DIAGNOSIS)	used	Gleason	scores,	others	(e.g.,	PROSTATEx)	

use	 Grade	 group.	 Gleason	 scores	 and	 Grade	 groups	 were	 mapped	 onto	 one	 another	 as	

shown	in	Table	1	based	on	the	National	Comprehensive	Cancer	Network	(NCCN)	guidelines	

(see	Methods).		
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Instead	of	predicting	Gleason	score	or	Grade	group	which	contain	too	many	categories	for	

effective	machine	 learning,	we	 grouped	patients	 into	 four	non-overlapping	major	 groups	

based	on	Gleason	 score	 (either	 from	original	dataset	or	mapped	 from	Grade	group).	The	

first	two	groups,	aggressive	prostate	cancer	(n	=	49	patients	with	Gleason	score	³	8)	and	

non-aggressive	 prostate	 cancer	 (n	 =	 86	 patients	with	 Gleason	 score	 =	 6)	with	 total	 135	

patients	 are	 used	 for	 training	 and	 validation.	 Two	 other	 groups,	 intermediate	 prostate	

cancer	 (n	 =	 167	 patients	 with	 Gleason	 score	 =	 7),	 and	 benign	 prostate	 tissue	 (n	 =	 74	

patients)	are	used	as	independent	test	sets	(Table	2).		

MRI	is	able	to	image	in	various	standard	orthogonal	imaging	planes	such	as	axial	images	as	

well	 as	 sagittal	 and	 coronal	 images,	 or	 any	 degree	 in	 between26.	 Therefore,	 our	 datasets	

contain	 multiple	 images	 from	 each	 patient	 (Figure	 1a).	 Each	 image	 is	 320x320	 pixel	

resolution	 in	 black	 and	 white	 (Figure	 1a	 shows	 a	 subset	 of	 images	 for	 one	 randomly	

selected	patient).	However,	not	all	these	layers	and	rotation	of	images	shows	the	prostate	

gland.	 Therefore,	we	 use	 a	 preprocessing	method	 to	 identify	 informative	 images,	 that	 is,	

images	whose	 orientation	 or	 focal	 depth	 are	most	 helpful	 for	 determining	 aggressive	 vs.	

non-aggressive	classification	(Figure	1).	

	

Unsupervised	method	extracts	uninformative	images		

We	initially	reasoned	that	unsupervised	analysis	of	MRI	images	followed	by	examination	of	

the	 main	 image	 cluster	 may	 help	 identify	 many	 of	 the	 informative	 images	 or	 eliminate	

uninformative	 ones.	 We	 used	 a	 state-of-the-art	 deep	 learning	 algorithm,	 ResNet-15227,	

pretrained	 on	 ImageNet	 to	 extract	 features	 from	 the	 original	 images	 (10,904	 images	 for	

135	patients	with	GS	=	6	and	GS	³	8)	as	described	elsewhere25.	This	resulted	in	a	feature	
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vectors	containing	2,048	floating	point	values	per	image.	t-Distributed	Stochastic	Neighbor	

Embedding	(t-SNE)28,	a	non-linear	algorithm	for	dimensionality	reduction,	was	then	used	

to	 reduce	 the	 dimensionality	 of	 the	 2,048-dimensional	 vectors	 into	 three	 dimensions29	

(Figure	1b).		

	

Figure	 1:	 Preprocessing	 approach	 to	 generate	 informative	 images	 for	 each	 patient.	 (a)	 Each	 patient’s	MRI	

series	contains	different	orientation	and	focal	depth	of	images;	here	for	example	the	patient	has	102	images;	

(b)	After	 feature	extraction	using	a	Convolutional	Neural	Network	(CNN),	 the	 t-SNE	algorithm	was	used	 to	

reduce	feature	dimension.	A	gaussian	mixture	model	was	used	to	separate	the	low-dimensional	data	into	four	

clusters;	(c)	An	unsupervised	algorithm	detects	some	of	the	most	uninformative	images	(e.g.	these	31	images)	

whose	 orientation	 or	 focal	 depth	 are	 not	 useful	 for	 aggressive	 vs.	 non-aggressive	 classification;	 (d)	

Subsequently,	an	expert	uro-radiologist	 trimmed	remaining	 images	(=	71	 images)	of	each	patient	manually	

and	selected	informative	images	(e.g.,	these	19	images)	with	useful	orientations	and	focal	depths.	
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From	 there	 a	 Gaussian	Mixture	Model	 (GMM)	was	 applied	 to	 the	 data,	 and	 four	 clusters	

(components)	were	set	as	 the	 input.	We	consider	 four	clusters	because	 the	configuration	

with	 four	clusters	 is	 the	most	conservative	based	on	 the	amount	of	 information	 included	

(=biggest	possible	number	of	 clusters)	 and	on	 the	 stability	of	 the	 fitting	procedure	 (data	

not	shown).	

Then,	we	asked	expert	uro-radiologists	to	examine	representative	images	for	each	cluster.	

Although	 the	 unsupervised	 clustering	 method	 could	 not	 classify	 images	 into	 clinically	

relevant	groups	 	 (i.e.	 all	 clusters	 contains	aggressive	and	non-aggressive	 images),	 images	

that	were	 deemed	 informative	 by	 a	 uro-radiologist	 clustered	 into	 three	 distinct	 clusters.	

The	 fourth	 cluster	 largely	 contained	 uninformative	 images	 (Figure	 1c).	 Therefore,	 we	

eliminated	 the	 single	 cluster	 of	 images	 (cluster	 1	 in	 Figure	 1b)	 that	 contains	 all	

uninformative	images	(n	=	3,170).	To	discover	additional	uninformative	images,	we	asked	

our	 uro-radiologists	who	were	 blinded	 to	 PI-RADS	 score	 and	 Gleason	 score	 to	manually	

select	 images	 (out	of	 the	 remaining	7,734	 images)	whose	orientation	or	 focal	depth	 they	

considered	most	 useful	 for	 determining	 aggressive	 or	 non-aggressive	 status	 (Figure	 1d).		

1,619	images	were	selected	using	this	approach.			

	

Deep	Neural	Network	classify	MRI	images		

The	 aggressive/non-aggressive	 images	 (Gleason	 score	 ³	 8	 and	 Gleason	 score	 =	 6,	

respectively)	 for	 135	 patients	 include	 a	 total	 of	 10,904	 images	 (original	 dataset).	 Out	 of	

these,	 7,734	 were	 automatically	 selected	 based	 on	 clustering	 described	 in	 the	 previous	

section		(clustered	dataset)	and	1,619	were	manually	selected	(manually-selected	dataset)	

(Table	2).		
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Based	 on	 these	 initial	 datasets,	 we	 trained	 Inception-V1	 models	 using	 the	 two	 prostate	

status	 groups	 at	 both	 ends	 of	 the	 spectrum,	 i.e.,	 Gleason	 score	 =	 6	 (non-aggressive)	 and	

Gleason	score	³	8	(aggressive).	We	used	a	transfer	learning	strategy	to	train	the	Inception-

V1	architecture30,	where	we	initially	performed	fine-tuning	of	the	parameters	for	all	of	the	

layers.	 We	 used	 5,000	 steps	 for	 training	 the	 DNNs	 and	 subsequently	 evaluated	 the	

performance	of	our	DNNs	using	a	randomly	selected	independent	test	set	with	1323,	958,	

and	224	 images	 from	 the	original	 (Model	 1),	 clustered	 (Model	 2),	 and	manually-selected	

(Model	3)	datasets.		Table	3	summarizes	the	different	groups,	models	and	dataset	sizes.		

Our	results	showed	that	the	trained	algorithm	was	able	to	distinguish	aggressive	from	non-

aggressive	images	with	AUCs	of	0.754,	0.760,	and	0.853	for	Model	1,	Model	2,	and	Model	3	

images,	 respectively	 (Figure	 2a).	 The	 performance	 of	 Model	 2	 (accuracy	 =	 71.26%,	

sensitivity	 =	 76.65%,	 specificity	 =	 67.74%)	 in	 detection	 of	 aggressive	 cases	 (aggressive	

predictive	 value	 =	 60.78%)	 (Figure	 2b)	 is	 slightly	 higher	 than	 Model	 1	 (aggressive	

predictive	 value	 =	 54.99%),	 hinting	 that	 detecting	 and	 removing	 uninformative	 images	

improves	 performance	 (accuracy	 =	 71.04%,	 sensitivity	 =	 75.58%,	 specificity	 =	 68.74%).	

Model	 3	 has	 the	 highest	 accuracy	 for	 classification	 of	 aggressive	 cases	 (aggressive	

predictive	 value	 =	 71.43%),	 suggesting	 that	 manual	 selection	 of	 informative	 images	

outperforms	 (accuracy	 =	 75.45%,	 sensitivity	 =	 77.67%,	 specificity	 =	 73.55%)	 automated	

selection.	When	separating	 images	 from	public	 and	WCM	sources	 in	 the	 test	 set,	we	 find	

that	Model	3	can	classify	aggressive	and	non-aggressive	 images	by	AUC	of	0.821	(public)	

and	0.788	(WCM)	(Figure	2c).	

We	 sought	 to	 determine	whether	 training	 predictive	models	 from	 a	 single	 source	would	

improve	or	decrease	performance.	We	thus	trained	Inception-V1	models	using	images	from	
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the	manually-selected	dataset,	focusing	on	WCM	data	only	(Model	4),	and	public	data	only	

(Model	5;	Figure	2d).		

	

Figure	2:	Performance	of	various	trained	models	using	different	test	sets.	 (a)	Comparing	Model	1,	Model	2,	

and	Model	 3	 performance	 using	 test	 data	 comes	 from	 combined	 (public	 and	WCM)	 shows	 that	 manually	

selection	of	images	are	the	best	method	to	detect	the	informative	images;	(b)	While	training	the	algorithm	by	

the	original	images	is	not	accurate	for	detecting	aggressive	cases,	the	manually	selection	method	is	the	best	

one	for	this	purpose;	(c)	Integration	of	data	from	various	datasets	increase	the	performance	of	algorithm.	The	

figure	shows	Model	3,	Model	4,	and	Model	5	that	are	trained	and	tested	using	combined	WCM	and	Public	data,	

WCM	only	data,	and	public	only	data,	respectively;	(d)	Model	3	versus	Model	4	and	Model	5	for	classification	

of	prostate	states	through	various	databases.	The	figures	show	the	Model	3,	Model	4,	and	Model	5	that	are	

trained	using	Mix	data,	WCM	only	data,	and	public	only	data,	respectively.	The	models	also	tested	by	Mix	data,	

WCM	only	data,	and	public	only	data,	respectively.	
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We	then	tested	the	trained	models	with	blind	test	sets.		We	observed	low	accuracy	(Figure	

2d)	 in	 both	 Model	 4	 (=	 66.5%)	 and	Model	 5	 (=	 51.8%).	 This	 is	 mainly	 due	 to	 a	 strong	

imbalance	of	aggressive	vs.	non-aggressive	cases:	there	was	a	higher	proportion	of	images	

of	 aggressive	 prostate	 cancer	 images	 in	 public	 databases	 while	 the	 WCM	 database	

contained	mainly	non-aggressive	prostate	cancer	images	(Table	2).	Therefore,	 integration	

of	 images	 from	 various	 databases	 (Model	 3)	 make	 the	 classes	 more	 balanced,	 thus	

increasing	the	accuracy	(=	75.4%	accuracy)	of	the	trained	Model	(Figure	2d).	

	

Deep	learning	algorithm	outperforms	PI-RADS	for	classification	

To	further	evaluate	Model	3,	we	also	tested	it	using	images	from	74	patients	with	benign	

prostate	tissue	(not	a	malignant	tumor)	obtained	from	the	WCM	database	and	not	included	

in	the	original	training	set.	We	expected	the	trained	algorithm	to	classifies	all	the	patients	

as	non-aggressive	patients.	Indeed	the	result	showed	that	the	Model	3	classify	the	benign	

status	with	an	86.5%	accuracy	in	assessing	images.		

We	also	assessed	how	Model	3	would	assess	intermediate	class	images	(Gleason	score	=	7).	

Here	 we	 take	 advantage	 of	 the	 granularity	 of	 grade	 groups	 in	 that	 intermediate	 class,	

divided	into	Grade	group	=	2	(less	aggressive)	and	3	(more	aggressive).		

Model	3	 correctly	 recovered	79.7%	of	 these	 labels	 (Figure	3a).	We	wondered	 if	 PI-RADS	

scores	had	comparable	accuracy.	A	single	PI-RADS	score	is	available	for	each	patient	in	our	

database.	 To	 measure	 the	 accuracy	 of	 Model	 3	 for	 individual	 patients	 (as	 opposed	 to	

images),	we	used	a	simple	voting	system	across	multiple	images	for	each	patient.	 If	 the	

majority	of	the	images	from	the	same	patients	were	predicted	to	be	aggressive,	then	the	

final	 label	 of	 the	 patient	was	 considered	 aggressive.	Of	 the	 intermediate	 class,	 PI-RADS	
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score	 distinguished	 52	 patients	 as	 more	 aggressive	 (PI-RADS	 score	 =	 4	 and	 5)	 and	 10	

patients	 as	 less	 aggressive	 (score	 =	 1,	 2,	 and	 3).	When	 compared	 to	 pathology,	 PI-RADS	

score	predict	37.5%	of	the	patients	correctly	in	this	intermediate	group.		

To	 assess	 the	 agreement	 between	 Model	 3	 and	 PI-RADS	 scores,	 we	 also	 calculated	 the	

Cohen’s	 kappa	 for	 PI-RADS	 and	 Model	 3	 in	 comparison	 to	 the	 pathology	 results	 in	 this	

intermediate	 group	 (Gleason	 score	 =	 7,	 Grade	 group	 2	 or	 Grade	 group	 3).	 The	 results	

showed	that	while	the	Model	3	has	moderate	agreement	(=	49.02%)	with	pathology	result,	

the	PI-RADS	 score	estimated	by	uro-radiologist	has	poor	agreement	with	pathologists	 (=	

7.68%)	 (Figure	 3b).	 This	 suggests	 that	 the	 trained	 algorithm	 (Model	 3)	 finds	 sufficient	

structure	within	patients	with	Gleason	Score	=	7	to	make	clinically	relevant	predictions.		

	

AI-biopsy	is	a	reliable	alternative	for	biopsy	

In	 previous	 studies21,	 we	 showed	 that	 increasing	 the	 number	 of	 images	 in	 each	 class	

reduces	the	discordance	of	machine	learning	model	predictions	and	pathology	results.	We	

started	with	582	images	for	aggressive	class	and	813	images	for	the	non-aggressive	class.	

To	produce	a	more	balanced	dataset,	we	added	all	those	images	with	intermediate	grades	

that	 are	 classified	 as	 aggressive	 cancer	 using	 pathology	 result	 (Gleason	 score	 =	 4+3	 or	

Grade	 group	 =	 3),	 PI-RADS	 score	 (³	 4),	 and	 the	 Model	 3)	 to	 the	 training	 dataset.	 We	

obtained	 728	 images	 for	 aggressive	 class	 and	 813	 images	 for	 the	 non-aggressive	 class.	

Then,	 we	 again	 trained	 Inception-V1	 using	 5,000	 steps	 on	 this	 new	 dataset	 (Model	 6).	

Model	6,	also	called	AI-biopsy	moving	forward	(Figure	3d)	can	classify	aggressive	vs.	non-

aggressive	 classes	 with	 a	 higher	 performance	 (accuracy	 =	 79.02%,	 sensitivity	 =82.18%,	
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specificity	 =	 76.42%)	 compared	 to	 Model	 3	 (accuracy	 =	 75.45%,	 sensitivity	 =77.67%,	

specificity	=	73.55%)	(Figure	3c).		

	

Figure	3:	Comparing	the	result	of	PI-RADS	and	the	trained	models.	(a)	The	algorithm	(Model	3)	has	a	higher	

accuracy	 in	predicting	 the	 intermediate	 class	 compared	 to	 the	performance	of	PI-RADS	score	 for	 the	 same	

diagnosis;	(b)	The	algorithm	result	is	in	more	agreement	with	the	pathology	result	compared	to	PI-RADS;	(c)	

The	performance	of	the	Model	3	in	detecting	aggressive	and	non-aggressive	cases;	(d)	Model	6	(AI-biopsy)	is	

more	accurate	in	detecting	aggressive	prostate	cancer	status	compared	to	Model	3;	(e)	Using	more	complex	

algorithms	 such	 as	 Inception-V3	 and	 Inception-ResNet-V2	 cannot	 increase	 the	 performance	 of	 the	 trained	

algorithm	using	Inception-V1.	
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We	also	compared	various	CNN	architectures	to	assess	their	performance	on	classification	

of	prostate	MRI	 images.	These	 included	Google's	 Inceptions	versions	1	and	3,	 fine-tuning	

the	parameters	for	all	layers	of	our	network,	and	the	ensemble	of	two	the	state-of-the-art	

algorithms	(i.e.,	Inception	and	ResNet)	via	fine-tuning	all	the	layers	(Inception-ResNet-V2-

FineTune)	and	training	the	last	layer	(Inception-ResNet-V2-LastLayer).	

As	Figure	3e	demonstrates,	the	inception-based	architecture	networks	(V1	and	V3)	as	well	

as	 Inception-ResNet-V2	 that	 are	 fine-tuned	 for	 all	 layers,	 are	 consistently	 superior	

compared	to	the	Inception-ResNet-V2	trained	for	last	layer	(Figure	3e).	We	also	found	that	

using	 Inception-V3	 and	 Inception-ResNet-V2	 did	 not	 increase	 the	 performance	 in	

classifying	aggressive	and	non-aggressive	patients	compared	to	Inception-V1.		

	

Investigation	of	discriminative	localization	using	deep	features	analysis	

We	 reviewed	 the	 AI-biopsy	 (Model	 6)	 result	 for	 the	 test	 set	 (n	 =	 18	 patients).	 We	 also	

analyzed	9	randomly	selected	intermediate	cases	not	part	of	the	training	set,	resulting	in	27	

patients	from	each	of	which	1	image	was	selected	at	random	(n	=	27	images).	The	results	

indicated	 the	 AI-biopsy	 was	 correct	 in	 predicting	 21	 out	 of	 27	 images	 from	 different	

patients	(Figure	4a).	We	wondered	if	the	disagreement	between	AI-biopsy	and	pathologists	

for	the	six	patients	is	due	to	the	incorrect	pathology	labeling	or	it	shows	the	AI-biopsy	did	

not	look	at	the	correct	region	of	the	images.	To	this	end,	we	have	to	identify	which	regions	

of	an	 image	are	exactly	being	used	by	CNNs	 for	discrimination.	We	used	Class	Activation	

Map	(CAM)31	as	introduced	by	Zhou	et	al.31.	We	used	the	same	procedure	as	in	Zhou	et	al.	

for	 generating	CAM	using	Global	Average	Pooling	 (GAP)	 in	CNNs.	Before	 the	 final	output	

layer	(softmax)	of	the	AI-biopsy,	we	performed	global	average	pooling	on	the	convolutional	
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feature	maps	and	used	those	as	features	for	a	fully-connected	layer.	Given	this	connectivity	

structure,	we	 could	 identify	 the	 importance	 of	 the	 image	 regions	 by	 projecting	 back	 the	

weights	of	the	output	layer	onto	the	convolutional	feature	maps	(Figure	4b).	In	parallel,	we	

independently	asked	an	expert	uro-radiologist	to	highlight	the	region	of	each	image	that	is	

important	for	categorization	as	aggressive	or	non-aggressive	(Figure	4c).	We	compared	the	

CAM	result	 (Figure	4b)	with	uro-radiologist	 result	 (Figure	4c)	 to	assess	 the	power	of	AI-

biopsy	in	detecting	the	prostate	gland	region	and	the	reason	of	disagreement	between	AI-

biopsy	and	pathology	labels	in	the	six	cases.		

Applying	CAM	on	AI-biopsy	 showed	 that	 the	probability	 score	of	AI-biopsy	 is	 lower	 than	

90%	for	 three	out	of	 the	six	discordant	cases;	 this	 indicates	 that	AI-biopsy	was	relatively	

uncertain	regarding	the	prediction	(Figure	4a).	For	two	out	of	these	three	cases,	the	CAM	

analysis	 indicates	 that	 the	 algorithm	 is	 not	 looking	 at	 the	 prostate	 gland	 (Figure	 4b).	 In	

addition,	 for	 the	 remaining	 three	 incorrect	 predicted	 cases,	 the	 AI-biopsy	 algorithm	

predicts	 them	as	aggressive,	aggressive,	and	non-aggressive,	 respectively	with	more	 than	

90%	 confidence	 (Figure	 4a).	 The	 PI-RADS	 (available	 for	 two	 out	 of	 three	 cases)	 also	

confirms	 the	 AI-biopsy	 results	 in	 detecting	 aggressive	 and	 non-aggressive	 cases.	 The	

agreement	 between	 AI-biopsy	 and	 PI-RADS	 may	 suggest	 partially	 incorrect	 pathology	

assessments	for	these	cases.		
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Figure	4:	The	highlighted	prostate	 gland	using	CAM	and	uro-radiologists.	 (a)	The	 algorithm	classifies	 each	

images	as	aggressive	or	non-aggressive;	(b)	Deep	feature	analysis	highlights	the	discriminative	regions	of	the	

images	 for	various	 images;	 (c)	An	uro-	radiologist	 reviewed	some	of	 images	and	highlighted	 the	 important	

part	of	each	image	to	show	regions	of	images	that	are	used	for	discrimination	by	uro-radiologists.	
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Discussion	

The	 early	 and	 precise	 diagnosis	 of	 prostate	 cancer	 is	 critical	 for	 proper	management	 of	

patients.	Currently	a	prostate	biopsy	is	the	most	common	method	of	diagnosis	but	it	carries	

risks	including	infection.	Prostate	MRI	is	used	to	improve	the	biopsy	process	by	identifying	

the	 most	 suspicious	 area	 to	 biopsy.	 The	 most	 commonly	 used	 prostate	 MRI	 annotation	

system	 is	 the	PI-RADS	score.	PI-RADS	 is	 subjective	and	 currently	no	 robust	non-invasive	

method	 exist	 leveraging	MRI	 images	 for	 determining	 prostate	 cancer	 aggressiveness.	 To	

overcome	 this	 problem,	we	 sought	 to	 determine	whether	 a	 deep	 learning	method	 using	

MRI	 that	 are	 labeled	 based	 on	 histology	 results	 could	 be	 used	 instead	 of	 biopsy.	 We	

proposed	 a	 novel	 CNN-based	 method,	 AI-biopsy,	 to	 fully	 utilize	 MRI	 images	 and	 jointly	

detect	prostate	cancer	using	Gleason	score.	We	trained	and	validated	AI-biopsy	using	MRI	

images	 of	 376	 patients	 that	 are	 labeled	 with	 histopathology	 information.	 AI-biopsy	

achieved	an	AUC	of	0.855	(accuracy	=	79.02%,	sensitivity	=82.18%,	specificity	=	76.42%)	

for	classification	of	aggressive	vs.	non-aggressive	prostate	cancer	(GS	≥	8	vs.	GS	=	6).	Our	

method	also	achieved	an	accuracy	of	79.7%	to	classify	 	GS	≥	4+3	vs.	GS	≤	3+4	which	was	

higher	than	experienced	radiologists	using	PI-RADS	(=	37.5%).		

Several	groups	before	us	have	attempted	to	use	different	deep	learning-based	approaches	

for	assessment	of	prostate	cancer	aggressiveness	with	varying	degrees	of	success32-34.	Cao	

and	 colleagues	 proposed	 multi-class	 CNN	 (named	 FocalNet)	 to	 detect	 prostate	 lesion34.	

They	 used	 the	 MRI	 images	 of	 417	 patients	 to	 predict	 Gleason	 score	 using	 an	 in-house	

cohort	and	showed	that	their	method	outperformed	U-Net35	and	Deeplab36,	both	of	which	

are	CNN-based	methods34.	They	trained	their	model	to	predict	four	GS	groups	such	as	GS	≥	

7	vs.	GS	<	7,	GS	≥	4+3	vs.	GS	≤	3+4,	GS	≥	8	vs.	GS	<	8,	and	GS	≥	9	vs.	GS	<	9.	Their	result	
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showed	 that	FocalNet	achieved	AUC	of	0.81,	0.79,	0.67,	and	0.57,	 respectively34.	A	 recent	

study32	 has	 used	 Apparent	 Diffusion	 Coefficient	 (ADC),	 a	 metric	 that	 is	 correlated	 with	

Gleason	score	and	is	an	essential	component	of	mp-MRI	for	determining	aggressiveness	of	

prostate	 cancer.	 They	 used	MRI	 images	 of	 165	 patients	 and	 predict	 high-grade	 (GS	 ≥	 7)	

from	 low-grade	 (GS	 =	 6)	 prostate	 cancer	 with	 AUC	 of	 0.7932.	 In	 addition,	 Yuan	 et	 al.	

presented	 a	deep	 learning-based	method	 to	 classify	123	patients	with	high-grade	 cancer	

(GS	=	4	+	3,	and	8)	and	98	patients	with	low-grade	cancer	(GS	=	3	+	4,	and	6)33	based	on	

cropped	mp-MRI	images.	The	best	performance	was	obtained	using	a	patch	size	of	28x28	

pixels,	which	led	to	classifying	the	two	groups	with	an	AUC	of	0.89633.		

Although	 these	 methods	 achieved	 good	 accuracy	 in	 assessing	 prostate	 cancer	

aggressiveness,	they	require	several	preprocessing	steps.	Also,	they	often	do	not	 leverage	

diverse	 enough	 datasets.	 Moreover	 their	 data	 does	 not	 cover	 all	 Gleason	 scores.	 The	

advantage	 of	 our	method	 is	 that	 instead	 of	 only	 focusing	 on	 predetermined,	 segmented	

features	to	analyze,	the	entire	image	of	the	prostate	is	assessed,	allowing	for	quantification	

of	 all	 the	 available	 data.	 However,	 our	 dataset	 also	 has	 limitations.	 Our	MRI	 images	 are	

labeled	using	pathology	labels	that	may	include	inaccurate	histologic	finding.	Moreover	the	

MRI	 images	 do	 not	 provide	 the	 information	 of	 the	 exact	 shape,	 location,	 and	 size	 of	 the	

lesions.	Further	study	 is	needed	to	consolidate	the	connection	between	MRI	and	prostate	

cancer	aggressiveness,	particularly	with	available	molecular	subtypes	of	prostate	cancer.	

In	 spite	 of	 these	 limitations,	 our	 study	 and	 training	 dataset	 are	 larger	 than	 those	 used	

previous	 investigations	 that	 have	 sought	 to	 determine	 aggressiveness	 of	 the	 prostate	

cancer.	Also,	our	method	covers	all	Gleason	scores	ranges	(GS	=	3+3,	3+4,	4+3,	4+4,	3+5,	
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5+3,	4+5,	5+4,	and	5+5)	in	addition	to	benign	lesion.	Our	novel	method	is	developed	using	

thousands	of	images	from	various	resources	in	addition	to	our	own	WCM	database.		

Finally,	 AI-biopsy	 is	 automated	 and	 does	 not	 require	 any	manual	 augmentations	 or	 pre-

processing	for	testing	any	new	images.	AI-biopsy	can	be	implemented	in	clinical	practice	by	

providing	 uro-radiologists	 a	 straightforward	 platform	 to	 use	 without	 requiring	

sophisticated	computational	knowledge.		

	

Methods	

Providing	databases	from	four	different	resources	

This	 study	 included	203	patients	 from	our	 own	Urology	 center	 (2015/02–2019/03).	We	

referred	 to	 this	 dataset	 as	 WCM	 throughout	 this	 manuscript.	 This	 study	 used	 fully	 de-

identified	 data	 and	 was	 approved	 by	 the	 Institutional	 Review	 Board	 at	 Weill	 Cornell	

Medicine	(IRB	number:	1601016896).	The	 images	were	provided	using	3-T	mp-MRI	with	

various	 orientation	 and	 layers,	 representing	 about	 15,000	 images	 (320x320	 pixels).	We	

also	 used	 three	 external	 public	 datasets	 obtained	 from	 TCIA	 including	 the	 PROSTATEx	

Challenge	 with	 99	 patients,	 PROSTATE-MRI	 which	 comprises	 a	 total	 of	 26	 patients	 of	

prostate	MRI,	and	PROSTATE-DIAGNOSIS	of	Prostate	cancer	MRIs	(48	patients).	

The	patients	in	each	database	are	labeled	for	Gleason	score	(6	to	10)	or	Grade	group	(1	to	

5)	by	pathologists	and	PI-RADS	(1	to	5)	by	uro-radiologists	(if	it	is	available).		

The	Gleason	Score	is	the	grading	system	used	to	determine	the	aggressiveness	of	prostate	

cancer37.	 This	 grading	 system	 can	be	used	 to	 choose	 appropriate	 treatment	 options.	 The	

Gleason	scores	ranges	from	6-10	and	describes	how	much	the	cancer	from	a	biopsy	looks	

like	healthy	tissue	(lower	score)	or	abnormal	tissue	(higher	score).	Since	prostate	tumors	
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are	often	made	up	of	cancerous	cells	that	have	different	grades,	two	grades	are	assigned	for	

each	patient.	A	primary	grade	is	given	to	describe	the	cells	that	make	up	the	largest	area	of	

the	tumor	and	a	secondary	grade	is	given	to	describe	the	cells	of	the	next	largest	area.	For	

instance,	if	the	Gleason	Score	is	written	as	3+4=7,	it	means	most	of	the	tumor	is	grade	3	and	

the	next	 largest	 section	of	 the	 tumor	 is	grade	4,	 together	 they	make	up	 the	 total	Gleason	

Score.	If	the	cancer	is	entirely	made	up	of	cells	with	the	same	score,	the	grade	for	that	area	

is	 counted	 twice	 to	 calculate	 the	 total	 Gleason	 Score.	 The	 higher	 the	 Gleason	 Score,	 the	

more	likely	the	cancer	will	grow	and	spread	quickly.	Score	of	6	describes	cancer	cells	are	

likely	to	grow	slowly.	Scores	of	8	or	higher	describe	high	risk	for	aggressive	cancer	that	are	

likely	to	spread	more	rapidly.	These	cancers	are	often	referred	to	as	poorly	differentiated	

or	high	grade.	Finally,	score	7	indicates	intermediate	risk.		

Although	 Gleason	 Score	 is	 routinely	 used	 to	 determine	 the	 prostate	 cancer	 risk,	 some	

resources	report	the	aggressiveness	of	prostate	cancer	with	a	grading	system	which	shows	

the	prostate	cancer	aggressiveness	based	on	grade	group.	Grade	group	uses	1	to	5	different	

grades	 (Table	 1).	 In	 Table	 1	we	map	 the	 cancer	 Grades	 groups	with	 Gleason	 scores	 for	

those	images	that	shows	the	aggressiveness	with	different	system.	This	table	was	provided	

and	 simplified	based	on	 the	National	 Comprehensive	Cancer	Network	 (NCCN)	 guidelines	

version	4.2018	prostate	cancer38.	In	addition,	we	labeled	those	images	without	label	based	

on	their	pathology	report	(as	excel	file	or	histological	whole	slide	image).		

	

	

	

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 19, 2019. ; https://doi.org/10.1101/2019.12.16.19015057doi: medRxiv preprint 

https://doi.org/10.1101/2019.12.16.19015057


 
21 

Table1:	 Grade	 group	 and	 Gleason	 score	 and	 their	 association	 with	 aggressiveness	 of	

prostate	 cancer.	 These	 two	 different	 systems	 are	 mapped	 together	 based	 on	 the	 below	

table	for	this	project.	

Grade	group	 Gleason	score	 Combined	Gleason	
score	

Aggressiveness	
degree	

Grade	group	1	 3	+	3	 6	 Low	risk	
Grade	group	2	 3	+	4	 7	 Intermediate	risk	but	

closer	to	low	risk	
Grade	group	3	 4	+	3	 7	 Intermediate	risk	but	

closer	to	high	risk	
Grade	group	4	 4	+	4,	3	+	5,	5	+	3	 8	 High	risk	
Grade	group	5	 4	+	5,	5	+	4,	5	+	5	 9	and	10	 High	risk	
	

Characteristics	of	all	four	databases	and	their	images	are	summarized	in	Table	2.			

This	study	presents	a	framework	to	classify	MRI	images	based	on	Gleason	scores	and	Grade	

group	and	map	those	scores	and	grades	to	aggressive	and	non-aggressive	prostate	cancer.		

	

Table2:	Characteristics	of	all	four	cohorts	and	the	comprised	images.	

database	 Refer	
name	

Annotated	
patients	

Annotation	
method	

Patients	
with	 high	
risk	label	
(GS	³	8)	
(G4	&	G5)	

Patients	
with	 low	
risk	label	
(GS	=	6)	
(G1)	

Patients	
with	
intermediate	
risk	label	
(GS	=	7)	
(G2	&	G3)	

Patients	
with	
benign	
label	

Weill	Cornell	
Medicine	

WCM	 203	 Gleason	
Score	

15	 50	 64	 74	

PROSTATEx	 Ex	 99	 Grade	
group	

13	 29	 57	 0	

PROSTATE-
DIAGNOSIS	

Dx	 48	 Pathology	
result	

10	 7	 31	 0	

PROSTATE-
MRI	

MIP	 26	 Pathology	
result	

11	 0	 15	 0	

Total	 Public	
and	
WCM	

376	 Grade	
group	

49	
	

86	 167	 74	
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Finally,	we	divided	the	images	into	training,	validation,	and	test	groups.	We	allocated	70%	

of	 the	 images	 to	 the	 training	 group	 and	 the	 remaining	 30%	 to	 the	 validation	 and	 test	

groups.	 The	 training,	 validation,	 and	 test	 sets	 did	 not	 overlap.	 Characteristics	 of	 training	

and	test	sets	of	trained	models	and	the	comprised	images	are	summarized	in	Table	3.	

	

Table3:	Characteristics	of	all	trained	models	and	the	comprised	images.	

Models	 Data	
resources	

Total	 number	 of	
images	in	test	set	

Number	 of	 images	
in	 aggressive	 class	
(train	set)	

Number	 of	 images	
in	 non-aggressive	
class	(train	set)	

Model1	
(mix-original)	

WCM	 and	
public	

1281	images		
(18	patients)	

2742	images		
(40	patients)	

6881	images		
(77	patients)	

Model2	
(mix-cluster)	

WCM	 and	
public	

922	images		
(18	patients)		

2137	images	
(40	patients)	

4675	images	
(77	patients)	

Model3	
(mix-manual)	

WCM	 and	
public	

224	images		
(18	patients)		

582	images	
(40	patients)	

813	images	
(77	patients)	

Model4	
(WCM-manual)	

WCM	 73	images	
(6	patients)	

159	images	
(13	patients)	

508	images	
(46	patients)	

Model5	
(public-manual)	

Public	 151	images	
(12	patients)	

423	images	
(27	patients)	

305	images	
(31	patients)	

Model6		
(AI-biopsy)	

WCM	 and	
public	

224	images		
(18	patients)	

728	images	
(51	patients)	

813	images	
(77	patients)	

	

Algorithm	Architectures	and	Training	Methods	

For	 the	 unsupervised	 learning	 process	 prior	 to	 model	 training,	 feature	 extraction	 was	

performed	 using	 Resnet-15227	 pretrained	 on	 ImageNet	 	 in	 PyTorch.	 The	 last	 fully-

connected	layer	was	removed,	such	that	the	output	of	a	single	image	was	2048	x	1.	From	

there	 t-SNE28	was	used	 for	dimensionality	 reduction	 to	 three	dimensions,	and	a	gaussian	

mixture	model	using	the	scikit-learn	package	in	python	was	used	to	cluster	image	features	

into	four	clusters	based	on	manual	inspection.		

For	supervised	learning,	we	used	Google’s	Inception-V130	and	Inception-V339	architectures,	

which	offers	 an	 effective	 run-time	 and	 computational	 cost.	 To	 train	 this	 architecture,	we	
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used	 transfer	 learning	 and	 pretrained	 network	 on	 the	 ImageNet	 dataset.	 We	 then	 fine-

tuned	all	outer	layers	using	the	MRI	images	obtained	from	WCM	and	public	resources.	We	

also	 used	 the	 ensemble	 architecture,	 Inception-Resnet-V2	 for	 supervised	 learning40.	 We	

trained	 the	 latter	 architecture	 using	 two	 strategies:	 fine-tuned	 all	 outer	 layers	 and	 last	

layer	training.	To	implement	our	framework	called	AI-biopsy,	we	used	Tensorflow	version	

1.4.028	 and	 the	 TF-Slim	 Python	 library	 for	 defining,	 training,	 and	 evaluating	 models	 in	

TensorFlow.	 Training	 of	 our	 DNN	method	was	 performed	 on	 a	 server	 running	 the	 SMP	

Linux	operating	system.	This	server	 is	powered	by	 four	NVIDIA	GeForce	GTX	1080	GPUS	

with	8	GB	of	memory	for	each	GPU	and	12	1.7-GHz	Intel	Xeon	CPUs41.	

	

Evaluation	of	the	Developed	Method	

To	evaluate	 the	performance	of	 our	method,	we	used	an	 accuracy	measure,	which	 is	 the	

fraction	of	correctly	 identified	 images.	To	assess	 the	performance	of	different	algorithms,	

Receiver	Operating	Characteristics	 (ROCs)	were	estimated.	The	ROC	curve	 is	depicted	by	

plotting	 the	 True	 Positive	 Rate	 (TPR)	 versus	 the	 False	 Positive	 Rate	 (FPR)	 at	 various	

threshold	settings.	The	accuracy	is	measured	by	the	area	under	the	ROC	curve	(AUC)42,43.	

We	 also	 address	 other	 measures	 such	 as	 Cohen's	 kappa44	 which	 is	 a	 popular	 way	 of	

measuring	 the	 accuracy	 of	 presence	 and	 absence	 predictions.	 The	 kappa	 statistic	 ranges	

from	-1	to	+1,	where	+1	indicates	perfect	agreement	and	values	of	zero	or	 less	 indicate	a	

performance	no	better	than	random44.	
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Code	availability	

The	source	code	and	 the	guideline	are	publicly	available	at	https://github.com/ih-lab/ai-

biopsy.	In	addition,	AI-biopsy	is	available	through	a	web-based	user	interface	at	https://ai-

biopsy.eipm-research.org	(password	protected).	
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