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Abstract 13 

Background: Hand rehabilitation is core to helping stroke survivors regain activities of daily 14 

living. Recent studies have suggested that the use of electroencephalography-based brain-15 

computer interfaces (BCI) can promote this process. Here, we report the first systematic 16 

examination of the literature on the use of BCI-robot systems for the rehabilitation of fine 17 

motor skills associated with hand movement and profile these systems from a technical and 18 

clinical perspective. 19 

Methods: A search for January 2010-October 2019 articles using Ovid MEDLINE, Embase, 20 

PEDro, PsycINFO, IEEE Xplore and Cochrane Library databases was performed. The 21 

selection criteria included BCI-hand robotic systems for rehabilitation at different stages of 22 

development involving tests on healthy participants or people who have had a stroke. Data 23 

fields include those related to study design, participant characteristics, technical 24 

specifications of the system, and clinical outcome measures.  25 

Results: 30 studies were identified as eligible for qualitative review and among these, 11 26 

studies involved testing a BCI-hand robot on chronic and subacute stroke patients. 27 

Statistically significant improvements in motor assessment scores relative to controls were 28 

observed for three BCI-hand robot interventions. The degree of robot control for the majority 29 

of studies was limited to triggering the device to perform grasping or pinching movements 30 

using motor imagery. Most employed a combination of kinaesthetic and visual response via 31 

the robotic device and display screen, respectively, to match feedback to motor imagery. 32 

Conclusion: 19 out of 30 studies on BCI-robotic systems for hand rehabilitation report 33 

systems at prototype or pre-clinical stages of development. We identified large heterogeneity 34 

in reporting and emphasise the need to develop a standard protocol for assessing technical 35 

and clinical outcomes so that the necessary evidence base on efficiency and efficacy can be 36 

developed.37 
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Background 38 

There is growing interest in the use of robotics within the field of rehabilitation. This interest 39 

is driven by the increasing number of people requiring rehabilitation following problems such 40 

as stroke (with an ageing population), and the global phenomenon of insufficient numbers of 41 

therapists able to deliver rehabilitation exercises to patients [1,2]. Robotic systems allow a 42 

therapist to prescribe exercises that can then be guided by the robot rather than the therapist. 43 

An important principle within the use of such systems is that the robots assist the patient to 44 

actively undertake a prescribed movement rather than the patient’s limb being moved 45 

passively. This means that it is necessary for the system to sense when the patient is trying to 46 

generate the required movement (given that, by definition, the patient normally struggles with 47 

the action). One potential solution to this issue is to use force sensors that can detect when the 48 

patient is starting to generate the movement (at which point the robot’s motors can provide 49 

assistive forces). It is also possible to use measures of muscle activation (EMGs) to detect the 50 

intent to move [3].  In the last two decades there has been a concerted effort by groups of 51 

clinicians, neuroscientists and engineers to integrate robotic systems with brain signals 52 

correlated with a patient trying to actively generate a movement, or imagine a motor action, 53 

to enhance the efficacy and effectiveness of stroke rehabilitation- these systems fall under the 54 

definition of Brain Computer Interfaces, or BCIs [4].  55 

 56 

BCIs allow brain state-dependent control of robotic devices to aid stroke patients during 57 

upper limb therapy. While BCIs in their general form have been in development for almost 58 

50 years [5] and were theoretically made possible since the discovery of the scalp-recorded 59 

human electroencephalogram (EEG) in the 1920s [6], their application to rehabilitation is 60 

more recent [7–9]. Graimann et al. [10] defined a BCI as an artificial system that provides 61 

direct communication between the brain and a device based on the user’s intent; bypassing 62 
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the normal efferent pathways of the body’s peripheral nervous system. A BCI recognises user 63 

intent by measuring brain activity and translating it into executable commands usually 64 

performed by a computer, hence the term “brain-computer interface”. 65 

 66 

Most robotic devices used in upper limb rehabilitation exist in the form of exoskeletons or 67 

end-effectors. Robotic exoskeletons (i.e., powered orthoses, braces) are wearable devices 68 

where the actuators are biomechanically aligned with the wearer’s joints and linkages; 69 

allowing the additional torque to provide assistance, augmentation and even resistance during 70 

training [11]. In comparison, end-effector systems generate movement through applying 71 

forces to the most distal segment of the extremity via handles and attachments [11]. 72 

Rehabilitation robots are classified as Class II-B medical devices (i.e., a therapeutic device 73 

that administers the exchange of energy, mechanically, to a patient) and safety considerations 74 

are important during development [12,13]. Most commercial robots are focused on arms and 75 

legs, each offering a unique therapy methodology. There is also a category of device that 76 

target the hand and finger. While often less studied than the proximal areas of the upper limb, 77 

hand and finger rehabilitation are core component in regaining activities of daily living 78 

(ADL) [14]. Many ADLs require dexterous and fine motor movements (e.g. grasping and 79 

pinching) and there is evidence that even patients with minimal proximal shoulder and elbow 80 

control can regain some hand capacity long-term following stroke [15].  81 

 82 

The strategy of BCI-robot systems (i.e. systems that integrate BCI and robots into one unified 83 

system) in rehabilitation is to recognise the patient's intention to move or perform a task via a 84 

neural or physiological signal, and then use a robotic device to provide assistive forces in a 85 

manner that mimics the actions of a therapist during standard therapy sessions [16]. The 86 

resulting feedback is patient-driven and is designed to aid in closing the neural loop from 87 
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intention to execution. This process is said to promote use-dependent neuroplasticity within 88 

intact brain regions and relies on the repeated experience of initiating and achieving a 89 

specified target [17,18]; making the active participation of the patient in performing the 90 

therapy exercises an integral part of the motor re-learning process [19,20].  91 

 92 

The aforementioned scalp-recorded EEG signal is a commonly used instrument for data 93 

acquisition in BCI systems because it is non-invasive, easy to use and can detect relevant 94 

brain activity with high temporal resolution [21,22]. In principle, the recognition of motor 95 

imagery (MI), the imagination of movement without execution, via EEG can allow the 96 

control of a device independent of muscle activity [10]. It has been shown that MI-based BCI 97 

can discriminate motor intent by detecting event-related spectral perturbations (ERSP) 98 

[23,24] and/or event-related desynchronisation/synchronisation (ERD/ERS) patterns in the µ 99 

(9-11 Hz) and β (14-30 Hz) sensorimotor rhythm of EEG signals [24]. However, EEG also 100 

brings with it some challenges. These neural markers are often concealed by various artifacts 101 

and may be difficult to recognise through the raw EEG signal alone. Thus, signal processing 102 

(including feature extraction and classification) is a vital part of obtaining a good MI signal 103 

for robotic control. A general pipeline for EEG data processing involves several steps. First, 104 

the data undergo a series of pre-processing routines (e.g., filtering and artifact removal) 105 

before feature extraction and classification for use as a control signal for the robotic hand. 106 

There are variety of methods to remove artifact from EEG and these choices depend on the 107 

overall scope of the work [25]. For instance, Independent Component Analysis (ICA) and 108 

Canonical Correlation Analysis (CCA) can support real-time applications but are dependent 109 

on manual input. In contrast, regression and wavelet methods are automated but support 110 

offline applications. There also exist automated and real-time applications such as adaptive 111 

filtering or using blind source separation (BSS) based methods. Recently, the research 112 
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community has been pushing real-time artifact rejection by reducing computational 113 

complexity e.g. Enhanced Automatic Wavelet-ICA (EAWICA) [26], hybrid ICA - Wavelet 114 

transform technique (ICA-W) [27] or by developing new approaches such as adaptive de-115 

noising frameworks [28] and Artifact Subspace Reconstruction (ASR) [29].  Feature 116 

extraction involves recognising useful information (e.g., spectral power, time epochs, spatial 117 

filtering) for better discriminability among mental states. For example, the common spatial 118 

patterns (CSP) algorithm is a type of spatial filter that maximises the variance of band pass-119 

filtered EEG from one class to discriminate it from another [30]. Finally, classification 120 

(which can range from linear and simple algorithms such as Linear Discriminant Analysis 121 

(LDA), Linear Support Vector Machine (L-SVM) up to more complex techniques in deep 122 

learning such as Convolutional Neural Networks (CNN) and Recurrent Neural Networks 123 

(RNN) [31,32] involves the translation of these signals of intent to an action that provides the 124 

user feedback and closes the loop of the motor intent-to-action circuit.  125 

 126 

The potential of MI-based BCIs has gained considerable attraction because the neural activity 127 

involved in the control of the robotic device may be a key component in the rehabilitation 128 

itself. For example, MI of movement is thought to activate some of the neural networks 129 

involved in movement execution (ME) [33–36]. The resulting rationale is that encouraging 130 

the use of MI could increase the capacity of the motor cortex to control major muscle 131 

movements and decrease the necessity to use neural circuits damaged post-stroke. The 132 

scientific justification for this approach was first provided by Jeannerod [36] who suggested 133 

that the neural substrates of MI are part of a shared network that is also activated during the 134 

simulation of action by the observation of action (AO) [36]. These ‘mirror neuron’ systems 135 

are thought to be an important component of motor control and learning [36] - hence the 136 

belief that activating these systems could aid rehabilitation. The use of a MI-BCI to control a 137 
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robot in comparison to traditional MI and physical practice provides a number of benefits to 138 

its user and the practitioner. These advantages include the fact that the former can provide a 139 

more streamlined approach such as sensing physiological states, automating visual and/or 140 

kinaesthetic feedback and enriching the task and increasing user motivation through 141 

gamification. There are also general concerns around the utility of motor imagery without 142 

physical movement (and the corresponding muscle development that comes from these) and 143 

it is possible that these issues could be overcome through a control strategy that progressively 144 

reduces the amount of support provided by the MI-BCI system and encourages active motor 145 

control [37,38].  146 

 147 

A recent meta-analysis of the neural correlates of action (MI, AO and ME) quantified 148 

‘conjunct’ and ‘contrast’ networks in the cortical and subcortical regions [33]. This analysis, 149 

which took advantage of open-source historical data from fMRI studies, reported consistent 150 

activation in the premotor, parietal and somatosensory areas for MI, AO and ME. Predicated 151 

on such data, researchers have reasoned that performing MI should cause activation of the 152 

neural substrates that are also involved in controlling movement and there have been a 153 

number of research projects that have used AO in combination with MI in neurorehabilitation 154 

[39–41] and motor learning studies [42,43] over the last decade.  155 

 156 

One implication of using MI and AO to justify the use of BCI approaches is that great care 157 

must be taken with regard to the quality of the environment in which the rehabilitation takes 158 

place. While people can learn to modulate their brain rhythms without using motor imagery 159 

and there is variability across individuals in their ability to imagine motor actions, MI-driven 160 

BCI systems require (by design at least) for patient to imagine a movement. Likewise, AO 161 

requires the patients to clearly see the action. This suggests that the richness and vividness of 162 
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the visual cues provided is an essential part of an effective BCI system. It is also reasonable 163 

to assume that feedback is important within these processes and thus the quality of feedback 164 

should be considered as essential. Afterall, MI and AO are just tools to modulate brain states 165 

[40] and the effectiveness of these tools vary from one stroke patient to another [44]. Finally, 166 

motivation is known to play an important role in promoting active participation during 167 

therapy [20,45]. Thus, a good BCI system should incorporate an approach (such as gaming 168 

and positive reward) that increases motivation. Recent advances in technology make it far 169 

easier to create a rehabilitation environment that provides rich vivid cues, gives salient 170 

feedback and is motivating. For example, the rise of immersive technologies, including 171 

virtual reality (VR) and augmented reality (AR) platforms [46,45,47], allows for the creation 172 

of engaging visual experiences that have the potential to improve a patient’s self-efficacy [48] 173 

and thereby encourage the patient to maintain the rehabilitation regime. One specific example 174 

of this is visually amplifying the movement made by a patient when the movement is of 175 

limited extent so that the patient can see their efforts are producing results [49]. 176 

 177 

In this review we set out to examine the literature to achieve a better understanding of the 178 

current value and potential of BCI-based robotic therapy with three specific objectives: 179 

(1) Identify how BCI technologies are being utilised in controlling robotic devices for 180 

hand rehabilitation. Our focus was on the study design and the tasks that are 181 

employed in setting up a BCI-hand robot therapy protocol. 182 

(2) Document the readiness of BCI systems. Because BCI for rehabilitation is still an 183 

emerging field of research, we expected that most studies would be in their proof-of-184 

concept or clinical testing stages of development. Our purpose was to determine the 185 

limits of this technology in terms of: (a) resolution of hand MI detection and (b) the 186 

degree of robotic control.  187 
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(3) Evaluate the clinical significance of BCI-hand robot systems by looking at the 188 

outcome measures in motor recovery and determine if a standard protocol exists for 189 

these interventions. 190 

 191 

It is important to note that there have been several recent reviews exploring BCI for stroke 192 

rehabilitation. For example, Monge-Pereira et al. [50] compiled EEG-based BCI studies for 193 

upper limb stroke rehabilitation. Their systematic review (involving 13 clinical studies on 194 

stroke and hemiplegic patients) reported on research methodological quality and 195 

improvements in the motor abilities of stroke patients. Cervera et al. [51] performed a meta-196 

analysis on the clinical effectiveness of BCI-based stroke therapy among 9 randomised 197 

clinical trials (RCT). McConnell et al. [52] undertook a narrative review of 110 robotic 198 

devices with brain-machine interfaces for hand rehabilitation post-stroke. These reviews, in 199 

general, have reported that such systems provide improvements in both functional and 200 

clinical outcomes in pilot studies or trials involving small sample sizes. Thus, the literature 201 

indicates that EEG-based BCI are a promising general approach for rehabilitation post-stroke. 202 

The current work complements these previous reports by providing the first systematic 203 

examination on the use of BCI-robot systems for the rehabilitation of fine motor skills 204 

associated with hand movement and profiling these systems from a technical and clinical 205 

perspective.206 
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Methods 207 

Protocol Registration 208 

Details of the protocol for this systematic review were registered on the International 209 

Prospective Register of Systematic Reviews (PROSPERO) and can be accessed at 210 

www.crd.york.ac.uk/PROSPERO (ID: CRD42018112107). 211 

 212 

Search Strategy and Eligibility 213 

An in-depth search of articles from January 2010 to October 2019 was performed on Ovid 214 

MEDLINE, Embase, PEDro, PsycINFO, IEEE Xplore and Cochrane Library. Only full-text 215 

articles published in English were selected for this review. Table 1 shows the combination of 216 

keywords used in the literature searching. 217 

 218 

Table 1. Keyword Combinations 219 

Set 1 (OR)  Set 2 (OR)  Set 3 (OR) 

Brain-computer interface/BCI  

Electroencephalography/EEG 

Brain-machine interface/BMI 

Neural control interface 

Mind-machine interface 

 

 

 

AND 

Stroke (rehabilitation/ 

therapy/treatment/recovery) 

Motor (rehabilitation, 

therapy/treatment/recovery) 

Neurorehabilitation 

Neurotherapy 

Hand (rehabilitation/therapy/ 

recovery/exercises/movement) 

 

 

 

AND 

Robotic (exoskeleton/ 

orthosis) 

Powered (exoskeleton/ 

orthosis) 

Robot 

Device 

 220 

The inclusion criteria for the articles were: (1) publications that reported the development of 221 

an EEG-based BCI; (2) studies targeted towards the rehabilitation of the hand after stroke; (3) 222 

studies that involved the use of BCI and a robotic device (e.g., exoskeleton, end-effector type, 223 

platform-types, etc.); (4) studies that performed a pilot test on healthy participants or a 224 

clinical trial with people who have had a stroke. The articles were also screened for the 225 
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following exclusion criteria: (1) studies that targeted neurological diseases other than stroke; 226 

(2) studies that used other intention sensing mechanisms (electromyography/EMG, 227 

electrooculography/EOG, non-paretic hand, other body parts, etc.). 228 

 229 

Two authors performed independent screenings of titles and abstracts based on the inclusion 230 

and exclusion criteria. The use of a third reviewer was planned a priori in cases where a lack 231 

of consensus existed around eligibility. However, consensus was achieved from the first two 232 

authors during this stage. Full-text articles were then obtained, and a second screening was 233 

performed until a final list of studies was agreed to be included for data extraction. 234 

 235 

Data Extraction 236 

The general characteristics of the study and their corresponding results were extracted from 237 

the full-text articles by the reviewers following the Preferred Reporting Items for Systematic 238 

Reviews and Meta-Analysis (PRISMA) checklist. Data fields were extracted and categorised 239 

as follows: 240 

• Participant characteristics: sample population, healthy or stroke patients, handedness, 241 

age, sex, acute or chronic stroke classification, and mean duration since stroke 242 

• Study design: general description of study design, experimental and control groups 243 

• Task design: description of the task instructed, and stimuli presentation (cue and 244 

feedback modalities, i.e.: visual, kinaesthetic, auditory, etc.) 245 

• Technical specifications of the system: EEG system used (including number of 246 

channels), robot device used (e.g. hand exoskeleton, end-effector, etc.), actuation 247 

mode, and control strategy 248 
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• Main outcomes of the study: clinical outcomes (for studies involving stroke patients), 249 

classification accuracies (participant, group and study-levels), other significant 250 

findings 251 

This data extraction strategy allowed us to further evaluate the technology and clinical use of 252 

the BCI-robot systems used in this study.  253 

 254 

Technology Evaluation 255 

EEG Acquisition 256 

The signal acquisition element of an EEG-based BCI is critical to its success in recognising 257 

task-related intent. To better understand current practice, we gathered the type of electrode 258 

used (i.e., standard saline-soaked, gel or dry electrodes), the number of channels and its 259 

corresponding placement in the EEG cap. To illustrate where signals are recorded from, we 260 

plotted the frequency with which electrodes were used across studies on a topographical map 261 

using the 10-20 international electrode placement system.  262 

 263 

Signal Processing 264 

We evaluated the signal processing strategies used by each study looking specifically at the 265 

feature extraction and classification techniques within the data pipeline. For the studies that 266 

reported classification accuracies (i.e., comparing the predicted class against the ground 267 

truth), we were able to compare their results among the current state-of-the-art classification 268 

accuracies published in literature. 269 

 270 

Robot-Assisted Rehabilitation 271 

As the receiving end of the BCI pipeline and the provider of kinaesthetic feedback to the 272 

user, the robot-assisted device for hand rehabilitation plays a key role in providing the 273 
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intervention in this therapy regimen. The robot components were evaluated based on their 274 

actuation type, targeted body-part (i.e., single-finger, multi-finger, whole hand), and control 275 

strategy. We also reported on commercially available systems, which having passed a series 276 

of regulatory processes making them fit for commercial use, were classified as gold standard 277 

devices. 278 

 279 

Technological Readiness 280 

We assessed the development stages of the system as a whole by performing a Technological 281 

Readiness Assessment (TRA). Using this strategy, we were able to determine the maturity of 282 

the systems through a Technology Readiness Level (TRL) scale of 1-9 and quantify its 283 

implementation in a research or clinical setting [56]. Since a BCI-robot for rehabilitation can 284 

be categorised as a Class II-B medical device we have adapted a customised TRL scale to 285 

account for these requirements [56]. The customised TRL accounts for prototype 286 

development and pilot testing in human participants (TRL 3), safety testing (TRL 4-5), and 287 

small scale (TRL 6) to large scale (TRL 7-8) clinical trials. Performing a TRA on each device 288 

should allow us to map out where the technology is in terms of adoption and perceived 289 

usefulness. For example, if most of the studies have used devices that have TRL below the 290 

clinical trials stage (TRL 6-8), then we can have some confidence that said BCI-robot system 291 

is not yet widely accepted in the clinical community. In this way we can focus on questions 292 

that improve our understanding on the factors that impede its use as a viable therapy option 293 

for stroke survivors.  294 

 295 

Clinical Use 296 

Clinical Outcomes Measures 297 
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For studies involving stroke patients, clinical outcomes were obtained based on muscle 298 

improvement measures such as Fugl-Meyer Motor Assessment Upper Extremity (FMA-UE) 299 

scores [53], Action Research Arm Test (ARAT) scores [54], United Kingdom Medical 300 

Research Council (UK-MRC) muscle grade [55], Grip Strength (GS) Test and Pinch Strength 301 

(PS) Test scores (i.e., kilogram force collected using an electronic hand dynamometer) 302 

among others.  303 

 304 

Physiotherapy Evidence Database (PEDro) Scale for Methodological Quality 305 

A methodological quality assessment was also performed for clinical studies based on the 306 

PEDro Scale [57]. This scale evaluates studies with a checklist of 11 items based on experts’ 307 

consensus criteria in physiotherapy practice. The complete details of the criteria can be found 308 

online [58]. A higher score in the PEDro scale (6 and above) implied better methodological 309 

quality but are not used as a measure of validity in terms of clinical outcomes. Pre-defined 310 

scores from this scale were already present in studies appearing in the PEDro search. 311 

However, studies without PEDro scores or are not present in the PEDro database at all had to 312 

be manually evaluated by the authors against the 11-item checklist (five of seven studies).313 
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Results 314 

Search Results 315 

Figure 1 shows the study selection process and the number of articles obtained at each stage. 316 

 317 

Figure 1. Study Selection Flowchart 318 

 319 

A total of 590 studies were initially identified. After deduplication, 330 studies underwent 320 

title and abstract screening. Forty six studies passed this stage and among these, 16 were 321 

removed after full-text screening due to the following reasons: insufficient EEG and robotic 322 

data [59–65], the study was out of scope [66–68], the study design was not for hand/finger 323 

movement [69–72], no robot or mechatronic device was involved in the study [73,74]. A final 324 

sample of 30 studies were included in the qualitative review. Among the 30 studies, 11 [75–325 

85] were involved in testing the BCI-hand robot system on chronic and subacute stroke 326 
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patients ([75,80] are RCTs) while the rest involved testing on healthy participants [86–104]. 327 

Table 2 shows a summary of the relevant data fields extracted from these studies. 328 

 329 

[Table 2 Around Here] 330 

 331 

Studies with Healthy Participants (Prototype Group) 332 

The studies which involved pilot testing on healthy human participants had a combined total 333 

of 207 individuals (sample size ranging from 1-32) who had no history of stroke or other 334 

neurological diseases. Right-handed individuals made up 44.24% of the combined population 335 

while the other 55.76% were unreported. These studies aimed to report the successful 336 

implementation of a BCI-robot system for hand rehabilitation and were more heterogeneous 337 

in terms of study and task designs than those studies that involved clinical testing. The most 338 

common approach was to design and implement a hand orthosis controlled by MI which 339 

accounted for 9 out of the 19 studies and were measured based on classification accuracy 340 

during the calibration/training period and online testing. Li et al. [88] and Stan et al. [94] also 341 

aimed to trigger a hand orthosis but instead of MI, the triggers used by Li et al. is based on an 342 

attention threshold while Stan et al. used a vision-based P300 speller BCI. Bauer et al. [97] 343 

compared MI against ME using a BCI-device while Ono et al. [100] studied the 344 

implementation of an action observation strategy with a combined visual and kinaesthetic 345 

feedback or auditory feedback. Five more studies [91,95,96,98,99] focused on varying the 346 

feedback while two more [89,101] assessed the performance and safety of a hybrid BCI with 347 

EMG, EOG or both. 348 

 349 

Studies with Stroke Patients (Clinical Group) 350 
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A total of 208 stroke patients (with sample size varying 3-74) were involved in the 11 clinical 351 

studies. One study [75] reported a 3-armed RCT with control groups as device-only and SAT 352 

while another study [80] was a multi-centre RCT with sham as the control group. Five studies 353 

were uncontrolled – where the aims were either to study classification accuracies during 354 

sessions [76], to monitor clinical outcomes improvement from Day 0 until the end of the 355 

programme [77,85] or both [79,82].  Two studies [83,84] compared effects of the intervention 356 

against SHAM feedback. Another study [78] compared the classification accuracies of healthy 357 

and hemiplegic stroke patients against two BCI classifiers while the remaining study [81] 358 

compared classification accuracies from stroke patients who receive congruent or incongruent 359 

visual and kinaesthetic feedback.  360 

 361 

Technology Evaluation 362 

EEG Acquisition 363 

The EEG acquisition systems involved in the studies ranged from low-cost devices having few 364 

electrode channels (2-15 gel or saline-soaked silver/silver chloride [Ag/AgCl] electrodes) to 365 

standard EEG caps that had higher spatial resolution (16-256 gel or saline-soaked Ag/AgCl 366 

electrodes). The placement of EEG channels was accounted for by studies involving MI 367 

(N=21). This allowed us to determine the usage frequency among electrodes and is presented 368 

in Figure 2 as a heat map generated in R Studio (using the packages: “akima”, “ggplot2” and 369 

“reshape2”) against the 10-20 international electrode placement system. 370 

 371 
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 372 

Figure 2. EEG Channel Usage across Motor Imagery Studies (N=21) 373 

 374 

It can be seen that the EEG channels used for MI studies are concentrated towards electrodes 375 

along the central sulcus (C) region and the frontal lobe (F) region of the placement system 376 

where the motor cortex strip lies. Among these, C3 (N=17) and F3 (N=14) were mostly used, 377 

presumably because a majority of the participants were right-handed. The next most frequent 378 

were C4 (N=13) and the electrodes F4, Cz and CP3 (N=10). 379 

 380 

Signal Processing: Feature Extraction and Classification 381 

In the EEG-based BCI studies examined, it was found that the feature extraction and 382 

classification techniques were variable between systems. Table 3 provides a summary of pre-383 

processing, feature extraction and classification techniques across the studies. There was a 384 

wide variation in the implemented signal processing strategies, but a unifying theme across 385 
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studies was the attempt to: (i) discriminate mental states recorded in EEG across different 386 

manual tasks; (ii) classify the different states to produce a viable signal. 387 

 388 

Table 3. BCI Feature Extraction and Classification 389 

Study Pre-Processing Feature Extraction Classification Hand Task 

Ang et al. [75] Band-pass 

(0.05-40 Hz) 

Filter Bank Common 

Spatial Pattern 

(FBCSP) algorithm 

[105] 

Calibration model 

(unspecified) 

MI vs rest 

Barsotti et al. [76] Band-pass (8-24 

Hz) 

ERD (β and µ-

decrease), CSP 

SVM with linear kernel MI vs rest 

Bauer et al. [97] Band-pass (6-16 

Hz using zero-

phase lag FIR 

ERD (β-decrease) Linear autoregressive model 

based on Burg Algorithm 

MI vs rest 

Bundy et al. [77] Unspecified ERD (β and µ-

decrease) 

Linear autoregressive model MI (affected, 

unaffected) vs 

rest 

Chowdhury et al. 

[78] 

Band-pass (0.1 

Hz-100 Hz), 

Notch (50 Hz) 

CSP Covariance-

based, ERD/ERS (β 

and µ-change) 

SVM with linear kernel, 

Covariate Shift Detection 

(CSD)-based Adaptive 

Classifier 

left vs right MI 

Coffey et al. [92] Band-pass (0.5 

Hz-30 Hz), 

Notch (50 Hz) 

CSP Covariance-

based 

Linear Discriminant 

Analysis (LDA) classifier 

MI vs rest 

Diab et al. [103] Unspecified Time epochs 

(unspecified) 

Artificial Neural Network 

(ANN)-based Feed Forward 

Back Propagation 

Non-MI open vs 

closed  

Frolov al. [80] Band-pass (5-30 

Hz), FIR (order 

101), IIR notch 

Chebyshev type 

I filter (50 Hz) 

Time epochs  

(10 s) 

Bayesian-based EEG 

covariance classifier [106] 

MI (affected, 

unaffected) vs 

rest 

Ono et al. [81] Band-pass (0.5-

30 Hz), notch 

(50 or 60 Hz) 

Time epochs (700 

ms), ERD (µ-

decrease) 

Linear Discriminant 

Analysis (LDA) classifier 

MI vs rest 
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Ramos-Murguialday 

et al. [95] 

Unspecified Time epochs (5 s), 

Spatial filter, 

ERD/ERS (β and µ-

change) 

Linear autoregressive model MI vs rest 

Vukelic and 

Gharabaghi [99] 

High-pass 

(unspecified) 

ERD (β-decrease) Linear autoregressive model 

based on Burg Algorithm 

MI vs rest 

Witkowski et al. 

[101] 

Band-pass (0.4-

70 Hz), 

Laplacian filter 

ERD/ERS (β and µ-

change) 

Linear autoregressive model 

based on Yule-Walker 

algorithm 

MI vs rest 

 390 

SVM = Support Vector Machines, FIR = Finite Impulse Response, IIR = Infinite Impulse Response 391 

 392 

While classification accuracy is contingent on the number of mental state classes the system is 393 

trying to discriminate, classification accuracies do provide a comparable metric among BCI 394 

systems. In our review, we found high variation in the reported mean classification accuracies 395 

among the BCI systems in this study (i.e., 2-class left-hand and right-hand classification)- 396 

ranging from 40% (below chance-level) [80–82] up to 95% [88,93,103,104]. For reference, 397 

two recent reviews on the state-of-the-art in classification accuracies for motor imagery BCI 398 

find ranges between 63-97% [107] and 68-90% [108].  399 

 400 

Robot-Assisted Rehabilitation 401 

Robotic hand rehabilitation systems provide kinaesthetic feedback to the user during BCI trials. 402 

Most of these devices are powered by either DC motors, servomotors or pneumatic actuators 403 

that transmit energy via rigid links or Bowden cables in a tendon-like fashion. The studies in 404 

this review included single-finger [84–86], multi-finger [82] (including EMOHEX [78,79,87]), 405 

full hand gloves [88,89] (including mano: Hand Exoskeleton [90] and Gloreha [91]) and full 406 

arm exoskeletons with isolated finger actuation (BRAVO-Hand [76]). Nine of the studies 407 

[77,87,88,90,92–96] presented their novel design of a hand rehabilitation device within the 408 

article while some reported on devices reported elsewhere (i.e., in a previous study of the group 409 
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or a research collaborator). Two commercially-available devices were also used: AMADEO 410 

(Tyromotion, Austria) is an end-effector device used in 3 studies [97–99], and Gloreha 411 

(Idrogenet, Italy) is a full robotic hand glove used by Tacchino et al. [91]. AMADEO and 412 

Gloreha are both rehabilitation devices that have passed regulatory standards in their respective 413 

regions. AMADEO remains the gold standard for hand rehabilitation devices as it has passed 414 

safety and risk assessments and provided favourable rehabilitation outcomes. The International 415 

Classification of Functioning, Disability and Health (ICF) provides three specific domains that 416 

can be used to assess an intervention of this kind: improving impairments, supporting 417 

performance of activities and promoting participation [109,110]. In this case, a gold standard 418 

device not only prioritises user safety (established early in the development process) but also 419 

delivers favourable outcomes in scales against these domains. Figure 3 shows the main types 420 

of robotic hand rehabilitation devices. 421 

 422 

 423 

Figure 3. Robotic hand rehabilitation devices: a) An end-effector device (Haptic Knob) 424 

used in one of the extracted studies [75,111], b) a wearable hand exoskeleton/orthosis 425 
 426 

Technology Readiness Assessment 427 

A Technology Readiness Assessment (TRA) [56] was performed for each study and the 428 

Technology Readiness Levels (TRL) are presented in Table 4. While some of the system 429 

components (especially among robotic devices) were commercially available (having TRL 430 
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9+), we performed a TRA on the whole system (the interaction between BCI and robotics) to 431 

provide an evaluation of its maturity and state-of-the-art development with regard to 432 

rehabilitation medicine. We further assessed the TRL of each system at the time of the 433 

publication and its subsequent development. 434 

 435 

Table 4. Technology Readiness Assessment of the BCI-Hand Robot Systems 436 

Levels Description Studies 

TRL 1 

 

• Lowest level of technological readiness  

• Literature reviews and initial market surveys  

• Scientific application to defined problems 

 

 

TRL 2 • Generation of hypotheses 

• Development of research plans and/or protocols 

 

 

TRL 3 • Testing of hypotheses – basic research, data 

collection and analysis 

• Testing of design/prototype – verification and 

critical component specifications 

• Initial proof-of-concept in limited amount of 

laboratory/animal models 

 

Most studies from the 

prototype group (N=18) 

[86–100,102–104] 

TRL 4 • Proof-of-concept of device/system in defined 

laboratory/animal models 

• Safety testing – problems, adverse events and 

potential side effects 

 

Witkowski et al., 2014 

[101] 

TRL 5 • Comparison of device/system to other existing 

modalities or equivalent devices/systems 

• Further development – testing through 

simulation (tissue or organ models), animal 

testing 

• Drafting of Product Development Plan 

 

Barsotti et al., 2015 [76],  

Ono et al., 2016 [81], 

Chowdhury et al., 2018-b 

[78], Tsuchimoto et al., 

2019 [84] 
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TRL 6 • Small scale clinical trials (Phase 1) – under 

carefully controlled and intensely monitored 

clinical conditions 

 

Carino-Escobar et al., 2019 

[85], Chowdhury et al., 

2018-c [79], Norman et al., 

2018 [82], Wang et al., 2018 

[83] 

TRL 7 • Clinical trials (Phase 2) – safety and 

effectiveness integration in operational 

environment 

 

Ang et al., 2014 [75],  

Frolov et al., 2017 [80] 

TRL 8 • Clinical trials (Phase 3) – evaluation of overall 

risk-benefit of device/system use 

• Confirmation of QSR compliance 

• Awarding of PMA for device/system by CDRH 

or equivalent agency   

 

 

TRL 9 • The device/system may be distributed/marketed  

 437 

QSR = Quality System Requirements, PMA = Premarket Approval, CDRH = Center for Devices and Radiological Health 438 

 439 

Clinical Use 440 

Clinical Outcomes Measures 441 

Most of the studies adopted FMA-UE, ARAT and GS measurements to assess clinical 442 

outcomes. Six studies [75,77,79,80,83,85] reported patient improvement in these measures 443 

when subjected to BCI-hand robot interventions; in contrast with their respective controls or 444 

as recorded through time in the programme. For Ang et al. [75], FMA-UE Distal scores were 445 

reported in weeks 3, 6, 12 and 24 and the BCI-device group (N=6) yielded the highest 446 

improvement in scores across all time points as compared to the device only (N=8) and SAT 447 

(N=7) groups. Bundy et al. [77] reported an average of 6.20±3.81 improvement in the ARAT 448 

scores of its participants (N=10) in the span of 12 weeks while Chowdhury et al. [79] reported 449 

a group mean difference of +6.38 kg (p=0.06) and +5.66 (p<0.05) in GS and ARAT scores, 450 

respectively (N=4). Frolov et al.’s [80] multi-centre RCT reported a higher improvement in 451 
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the FMA-UE Distal, ARAT Grasp and ARAT Pinch scores of the BCI-device group (N=55) 452 

when compared to the control/SHAM group (N=19), but not in the ARAT Grip scores where 453 

the values are both equal to 1.0 with p<0.01 for the BCI-device group and p=0.045 for the 454 

control. 455 

 456 

Physiotherapy Evidence Database (PEDro) Scale for Methodological Quality 457 

For the studies that had a clinical testing component, a methodological quality assessment by 458 

the PEDro Scale was performed. Two studies which appeared on the PEDro search [75,80] 459 

had predetermined scores in the scale and were extracted for this part while the rest were 460 

manually evaluated by the authors. Table 5 shows the results of the methodological quality 461 

assessment against the scale. Note that in the PEDro Scale, the presence of an eligibility 462 

criteria is not included in the final score. 463 

 464 

Table 5. Methodological Quality of Clinical Studies based on PEDro Scale 465 

 Criteria 

A
n

g
 e

t 
a

l.
 

B
a

rs
o

tt
i 

e
t 

a
l.

 

B
u

n
d

y
 e

t 
a

l.
 

C
a

ri
n

o
-E

sc
o

b
a

r 
et

 a
l.

 

C
h

o
w

d
h

u
ry

-b
 

C
h

o
w

d
h

u
ry

-c
 

F
ro

lo
v

 e
t 

a
l.

 

N
o

rm
a

n
 e

t 
a

l.
 

O
n

o
 e

t 
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T
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a
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W
a

n
g

 e
t 

a
l.

 

1 Eligibility criteria* 1 1 1 1 1 1 1 1 0 1 1 

2 Random allocation 1 0 0 0 0 0 1 0 0 1 1 

3 Concealed allocation 0 0 0 0 0 0 0 0 0 1 1 

4 Baseline comparability 1 0 1 0 1 1 1 0 0 0 0 

5 Blind subjects 0 0 0 0 0 0 0 0 0 1 1 

6 Blind therapists 0 0 0 0 0 0 0 0 0 1 0 

7 Blind assessors 1 0 0 0 0 0 1 0 0 0 1 

8 Adequate follow-up 1 1 1 1 1 1 0 1 1 1 1 

9 Intention-to-treat analysis 0 0 1 1 1 1 0 1 0 0 0 

10 Between-group comparisons 1 0 0 0 1 0 1 0 1 1 1 

11 Point estimates and variability 1 1 1 1 1 0 1 1 1 1 1 
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Total  6 2 4 4 5 3 5 4 3 7 7 

 466 

*Not included in the final score467 
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Discussion 468 

To the best of our knowledge, this is the first systematic examination of BCI-driven robotic 469 

systems specific for hand rehabilitation. Through undertaking this review we found several 470 

limitations present from the studies identified and we examine these in more detail here and 471 

provide recommendations for future work in this area.  472 

 473 

To provide clarity on the state of the current development of BCI-hand robot systems, we 474 

looked into the maturity of technology used in each study as determined by its readiness level 475 

(TRL). All but one in the prototype group was rated as having TRL 3 while the clinical group 476 

was more varied in their TRL (ranging from 5-7). The system used by Witkowski et al. [101], 477 

a prototype study, was rated TRL 4 due to the study being performed on the basis of 478 

improving and assessing its safety features. It is also worth noting that while a formal safety 479 

assessment was not performed for the TRL 3 prototypes of Stan et al. [94], Randazzo et al. 480 

[90] and Tacchino et al. [91], safety considerations and/or implementations were made; a 481 

criterion to be satisfied before proceeding to TRL 4. The system used by Chowdhury et al. is 482 

a good example of improving a TRL from 5 to 6 with a pilot clinical study published within 483 

the same year [78,79]. The two systems used in the RCT studies by Ang et al. [75] and Frolov 484 

et al. [80] achieved the highest score (TRL 7) among all of the studies which also meant that 485 

no BCI-hand robot system for stroke rehabilitation has ever been registered and 486 

commercially-released to date. This suggests that such systems lack the strong evidence that 487 

would propel commercialisation and technology adoption. 488 

 489 

Heterogeneity in the study designs was apparent in both the clinical and prototype groups. 490 

The lack of control groups and random allocation in clinical studies (e.g., only 2 out of 7 491 

studies are in the huge sample size RCT stage) made us unable to perform a meta-analysis of 492 
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effects and continue the study by Cervera et al [51] with a focus on BCI-hand robot 493 

interventions. Results from the methodological quality assessment showed that only two 494 

studies [83,84] had a score of 7 in the PEDro scale. Although non-conclusive, these results 495 

support the notion that most of the studies are not aligned with the criteria of high-quality 496 

evidence-based interventions.  497 

 498 

Almost all the clinical studies (except for Carino-Escobar et al. [85] and Frolov et al. [80]) 499 

limited their recruitment to chronic stroke patients. The reason may be due to the highly 500 

variable rates of recovery in patients at different stages in their disease [112]. Baseline 501 

treatments were also not reported among the clinical studies. Instead, the BCI-robot 502 

interventions were compared to control groups using standard arm therapy; an example of 503 

this was done by Ang et al. [75]. The heterogeneity of experimental designs reported in this 504 

review raises the need to develop clearly defined protocols when conducting BCI-hand robot 505 

studies on stroke patients. Until new systems have been assessed on this standard, it will be 506 

difficult to generate strong evidence supporting the effectiveness of BCI-robotic devices for 507 

hand rehabilitation.  508 

 509 

In the development of any BCI-robotic device there are several design and feature 510 

considerations that need to be made to ensure that the systems are both fit for purpose and 511 

acceptable to the end-user. These design considerations must go beyond the scope of 512 

understanding the anatomy of the hand and the physiology of motor recovery in response to 513 

therapy. Feedback from stroke patients should also be an essential part of this design process. 514 

Among the extracted studies, we surveyed the extent of end-user involvement in the initial 515 

stages of development (i.e., through consultations, interviews and therapy observations) and 516 

we found that there were no explicit statements about these in the reports. We recommend, as 517 
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good practice, for future work in this area to report the type and degree of patient and/or 518 

physician involvement in device development to allow reviewers and readers to more readily 519 

gauge the potential usability of the system. 520 

 521 

We were able to profile the BCI-hand robot systems regarding their technical specifications 522 

and design features. In hardware terms, a BCI-hand robot system involves three major 523 

components: (1) An EEG data acquisition system with several electrodes connected to a 524 

signal amplifier; (2) A computer where raw EEG data is received then processed by filters 525 

and classifiers and where most of the cues and feedback during training is presented via a 526 

visual display; (3) a robotic hand rehabilitation system for providing the physical therapy 527 

back to the user. 528 

 529 

The majority of the studies (N=19) used a BCI solely based on EEG while the rest were 530 

combined with other sensors: EEG with EMG [75,78,87,91,95–98], EEG with force sensors 531 

[79] and an EEG-EMG-EOG hybrid system [89,101]. The purpose of this integration is mainly 532 

to improve signal quality by accounting for artifact or to provide added modalities. Action 533 

potentials such as those caused by ocular, muscular and facial movements interfere with 534 

nearby electrodes and the presence of an added electrophysiological sensor accounting for 535 

these would enable the technician to perform noise cancellation techniques as a first step in 536 

signal processing.  537 

 538 

The choice of EEG system as well as the type of electrodes provides a technical trade-off and 539 

affects the session both in terms of subjective experiences (i.e., ease-of-use, preparation time, 540 

cleaning, comfortability) and data performance. Due to the presence of a conducting 541 

gel/solution, standard “wet” electrodes provide a degree of confidence in preventing signal 542 
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disruption within a short duration usually enough for a standard stroke therapy session. 543 

However, this also makes the setup, use and cleaning in the experiment more challenging, non-544 

ambulatory and reliant on a specialised laboratory setup [10]. Conversely, dry electrodes offer 545 

an accessible, user-friendly and portable alternative by using dry metal pins or coatings that 546 

comb through hair and come in contact directly with the scalp. The signal fidelity of dry 547 

electrodes is still a matter of debate in the BCI community. A systematic comparison between 548 

dry passively-amplified and wet actively-amplified electrodes reported similar performance in 549 

the detection of event-related potentials (ERP) [113]. However, for a study involving dry active 550 

electrodes [114], high inter-electrode impedance resulted in increased single-trial and average 551 

noise levels as compared to both active and passive wet electrodes. In classifying MI, 552 

movement-related artifacts adversely affect active dry electrodes, but these can be addressed 553 

through a hybrid system of other physiological sensors to separate sources [115].   554 

 555 

Almost all of the studies included used a standard EEG system with “wet” electrodes (e.g., 556 

g.USBamp by g.tec and BrainAmp by Brain Products) while three used Emotiv EPOC+, a 557 

semi-dry EEG system that uses sponge conductors infused with saline solution. While the use 558 

of dry electrodes has been observed in pilot and prototype studies of BCI-hand robot systems 559 

[67,64,93,102] and other motor imagery experiments [116–119], no dry EEG system was used 560 

in the final 30 studies that tested healthy or stroke participants. It is expected that as dry EEG 561 

systems continue to improve, their use in clinical studies of BCI will also become increasingly 562 

prominent.  563 

 564 

The degree of BCI-robotic control for the majority of the studies (N=26) was limited to 565 

triggering the device to perform grasping (opening and closing of hand) and pinching (a 566 

thumb-index finger pinch or a 3-point thumb-index-middle finger pinch) movements using 567 
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MI and other techniques. A triggered assistance strategy provides the minimum amount of 568 

active participation from the patient in a BCI-robot setup [37]. The main advantages of this is 569 

that it is easy to implement; requiring less computational complexity in signal processing. 570 

However, a higher spatial or temporal volitional control over the therapeutic device increases 571 

its functionality and can be used to develop more engaging tasks for the stroke therapy. 572 

Among the studies, no robotic control setup was able to perform digit-specific MI which 573 

corresponds to the spatial aspects of volitional control. This is a limitation caused by the non-574 

invasive setup of EEG and is due to the low spatial resolution brought by the distances 575 

between electrodes [120]. The homunculus model, a representation of the human body in the 576 

motor strip, maps the areas of the brain where activations have been reported to occur for 577 

motor processes. The challenge of decoding each finger digit MI in one hand is that they only 578 

tend to occupy a small area in this strip. Hence even the highest resolution electrode 579 

placement system (i.e., the five percent or 10-5 system – up to 345 electrodes) would have 580 

difficulties accounting for digit-specific MI for BCI. In contrast to EEG, electrocorticography 581 

(ECoG) have been used to detect digit-specific MI. The electrodes of ECoG come in contact 582 

directly with the motor cortex and is an invasive procedure; making it non-ideal for use in 583 

BCI therapy [121].  584 

 585 

It is worth noting however that some studies were successful in implementing continuous 586 

control based on ERD/ERS patterns. A continuous control strategy increases the temporal 587 

volitional control over the robot as opposed to triggered assistance where a threshold is 588 

applied, and the robot finishes the movement for the participant. Bundy et al. [77] and 589 

Norman et al. [82] were both able to apply continuous control of a 3-DOF pinch-grip 590 

exoskeleton based on spectral power while Bauer et al. [97] provided ERD-dependent control 591 

of finger extension for an end-effector robot. These continuous control strategies have been 592 
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shown to be very useful in BCI-hand robots for assistive applications (i.e., partial or full 593 

device dependence for performing ADL tasks [122]). Whether this type of control can 594 

significantly improve stroke recovery is still in question as the strategy of robots for stroke 595 

rehabilitation can be more classified as a therapeutic “exercise” device. 596 

 597 

Signal processing and machine learning play a vital role in the development of any EEG-598 

based BCI. The pre-processing techniques (e.g., filtering, artifact removal), types of features 599 

computed from EEG, and the classifier used in machine learning can significantly affect the 600 

performance of the robotic system in classifying the user’s intent via MI [123]. False 601 

classification, especially during feedback, could be detrimental to the therapy regime as it 602 

relates to the reward and punishment mechanisms that are important in motor relearning 603 

[124]. For example, false negatives hinder the reward strategy that is essential to motivate the 604 

patient while false positives would also reward the action with the wrong intent. In this 605 

review, a critical appraisal of the signal processing techniques was done on each system to 606 

recognise the best practices involved. The current list of studies has revealed that approaches 607 

to develop MI-based EEG signal processing are highly diverse in nature, which makes it 608 

difficult to compare across the systems and hinders the development of new BCI systems 609 

informed by the strengths and weaknesses of existing state-of-the-art systems. The diversity 610 

in the design process can be beneficial to develop complex MI EEG-based BCI systems to 611 

achieve high efficiency and efficacy. However, such newly developed systems should be 612 

open sourced and easily reproducible by the research community to provide valid 613 

performance comparisons and drive forward the domain of robotic-assisted rehabilitation.  614 

 615 

In addition to MI, other strategies for robotic control were reported. Diab et al. [103] and 616 

King et al. [104] both facilitated the movements of their respective orthoses by physical 617 
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practice while Stan et al. [94] utilised a P-300 evoked potential speller BCI, where the user 618 

visually focused on a single alphanumerical character situated in a grid. The chosen character 619 

then corresponded to a command for the hand orthosis thereby producing the desired stimulus 620 

for the patient. While the latter study reported 100% accuracy rate in terms of intention and 621 

execution, the EEG channels were situated in the visual cortex rather than the motor strip 622 

which deviates from the goal of activating the desired brain region for plasticity. This 623 

highlights a broader issue on the intent behind a BCI-robotic system. Given that any potential 624 

signal that can be reliably modulated by a patient can be used to trigger a robot,  and that such 625 

an approach would be antithetical to the goal of many MI-based systems, engineers may 626 

consider how they can tailor their systems to ensure that the appropriate control strategy (and 627 

corresponding neural networks) are implemented by a user (e.g. by taking a hybrid approach 628 

that includes EMG and force sensors).  629 

 630 

In order to facilitate hand MI and account for significant time-points in the EEG data, all the 631 

studies employed a cue-feedback strategy during their trials. 19 of the studies presented a 632 

form of visual cue while the rest, except for two unspecified [84,102], involved cues in 633 

auditory (“bleep”) [91,95–98], textual [93,94,104] or verbal [103] forms. As for the provision 634 

of a matching sensory feedback, 16 studies presented a combination of kinaesthetic and 635 

visual feedback with some also providing auditory feedback during successful movement 636 

attempts. All the studies provided kinaesthetic feedback through their robotic devices. Some 637 

systems with visual feedback, such as Wang et al. [83], Li et al. [88], Chowdhury et al. in both 638 

of their clinical studies [78,79] and Ono et al. in their clinical [81] and pilot testing 639 

experiments [100], used a video of an actual hand performing the desired action. Ang et al. 640 

[75] and Stan et al. [94], in a different strategy, provided visual feedback through photo 641 

manipulation and textual display, respectively. While these two studies reported promising 642 
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results, it should also be considered that such cue and feedback types (including Graz 643 

visualisations and auditory forms) are non-representative of hand movement and may not 644 

provide the same stimuli as an anthropomorphic representation of a hand moving its desired 645 

course. This may be essential when we base principles of stroke recovery in alignment with 646 

how MI correlates with AO – an underlying theme of the motor simulation theory proposed 647 

by Jeannerod [36]. Figure 4 shows how different kinds of visual cue and feedback can be 648 

presented to participants to help facilitate MI. 649 

 650 

 651 

Figure 4. Visual cue and feedback during MI trials in different conditions. (a) Graz MI 652 

visualisations, (b) video recordings of hand movement and (c) virtual hand 653 
representation through VR/AR  654 
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Future Directions 655 

There is clearly great potential for the use of BCI-hand robots in the rehabilitation of an 656 

affected hand following stroke. Nevertheless, it is important to emphasise that there is 657 

currently insufficient evidence to support the use of such systems within clinical settings. 658 

Moreover, the purported benefits of these systems rest on conjectures that require empirical 659 

evidence. In other words, there are grounds for supposing that MI could be useful within 660 

these rehabilitation settings but no supporting evidence. This systematic review has also 661 

revealed that there are a number of technological limitations to existing BCI-hand robotic 662 

systems. We stress an urgent need to address these limitations to ensure that the systems meet 663 

the minimum required levels of product specification (in measuring brain activity, processing 664 

signals, delivering forces to the hand and providing rich feedback and motivating settings). 665 

We question the ethics or usefulness of conducting clinical trials with such systems until they 666 

can demonstrate minimum levels of technological capability. We consider below what 667 

standards these systems should obtain before subjecting them to a clinical trial and discuss 668 

might constitute an acceptable standard for a clinical trial.  669 

 670 

Ideal Setup for a BCI-hand Robot 671 

We summarise the information revealed via the systematic review about what constitutes an 672 

acceptable setup for a BCI-hand robot for stroke rehabilitation. We focus on improving 673 

individual components in data acquisition, data processing, the hand rehabilitation robot, and 674 

the visual cue and feedback environment. Table 6 presents the features and specifications of a 675 

fully integrated acceptable system.676 
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Table 6. Exemplary Features and Specifications of Future BCI-Hand Robot Systems 677 

 678 

Component Features and Specifications 

Data Acquisition 

System and Software 

 

• Dry EEG system with 8-16 channels, comfortable and easy to use 

• Inclusion of other bio-signal sensors such as EMG, EOG, force, 

accelerometers to remove artifacts and improve classification 

• Robust and reliable signal processing software: machine learning-

based algorithms that discriminate brain states such as MI or 

evoked potentials with high classification accuracies (≥95%) and 

lower calibration times 

 

Hand Robot • Safe, comfortable and aligned with the hand’s range of motion 

• Effective in providing kinaesthetic feedback 

• Use of back-drivable or soft actuators that effectively assist 

movement without additional injury 

• Multiple levels of safety and emergency features (mechanical, 

electronic, software), clear and obvious operation 

 

Visual Cue and 

Feedback 

• Provide rich visual cue and feedback to intended tasks, geometric 

representation of the hand (video or simulated environment), can 

be in multiple platforms such as display monitors or VR/AR on a 

head-mounted device 

• Gamification of therapy exercises to provide an engaging regime to 

stroke patients 

 679 

 680 

The implementation of these features in an ideal BCI-robot setup needs to be weighed against 681 

socioeconomic factors in healthcare delivery for it to be considered market ready. An ideal 682 

BCI system should primarily provide above chance-level classification after the first session 683 

on the first day of therapy. Ideally, the classification algorithm should also translate and adapt 684 

to following sessions or days; reducing the number of training sessions and focusing on the 685 

main therapy tasks. An alternative approach is to focus on making the setup an engaging 686 

experience. In other words, the delivery of intervention can be started immediately when the 687 

patient wears the EEG cap and runs the BCI system. For the hand robot system, more 688 
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straightforward criteria can be followed with the existence of the numerous design protocols, 689 

regulation standards and assessment matrices mentioned in this review. Nevertheless, end-690 

user involvement in the design with the prioritisation of safety while allowing the most 691 

natural hand movement and ROM as possible is the recommended goal. 692 

 693 

Ideal Setup for Clinical Trials 694 

We also propose a set of specialised criteria for BCI-hand robot systems in addition to the 695 

standard motor improvement scores (e.g. ARAT, FMA-UE) evaluated during clinical trials. 696 

Firstly, classification accuracies between intended and interpreted actions from the data 697 

acquisition and software component should always be accounted to track the effectiveness of 698 

BCI in executing the clinical task. In addition to this, system calibration and training 699 

procedures, especially its duration, should be detailed in the protocol to document the 700 

reliability of the classification algorithm. There is not much to consider in the use of robotic 701 

devices as they are most likely to be mature (if not yet commercially available) before being 702 

used as the hardware component in the study. However, the devices’ functionality (i.e., task 703 

to be performed, degree of control and motion, actuation and power transmission etc.) should 704 

always be stated as they contribute to the evaluation of interactions between other 705 

components in the system. Lastly, controls for the clinical study must always be included, 706 

even with small-scale patient studies. As discussed in this article, these controls may be in the 707 

form of sham, standard arm therapy (SAT), standard robotic therapy, congruency feedback 708 

and quality of stimuli among others. Having regarded and implemented these criteria would 709 

help homogenise the clinical data for future meta-analyses, strengthen evidence-based results 710 

and provide a reliable way of documentation for individual and/or interacting components.711 
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Proposed roadmap 712 

We suggest that the immediate focus for BCI-controlled robotic device research should be 713 

around the engineering challenges. It is only when these challenges have been met that it is 714 

useful and ethical to subject the systems to clinical trials. We recommend that the challenges 715 

be broken down into the following elements: (1) data acquisition; (2) signal processing and 716 

classification; (3) robotic device; (4) priming and feedback environment; (5) integration of 717 

these four elements. The nature of these challenges means that a multidisciplinary approach is 718 

required (e.g. the inclusion of psychologists, cognitive neuroscientists and physiologists to 719 

drive the adoption of reliable neural data acquisition). It seems probable that progress will be 720 

made by different laboratories tackling some or all of these elements and coordinating 721 

information sharing and technology improvements. Once the challenges have been met (i.e. 722 

there is a system that is able to take neural signals and use these to help drive a robotic 723 

system capable of providing appropriate forces to the hand within a motivating environment) 724 

then robust clinical trials can be conducted to ensure that the promise of this approach does 725 

translate into solid empirical evidence supporting the use of these systems within clinical 726 

settings. 727 
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Table 2. Summary of Studies 1075 
 1076 

Authors Participants Study Design Task Design BCI-Hand Robot Main Outcomes 

Studies involving stroke patients    

Ang et al., 2014 [75] 
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Moderate to severe 

impairment of UE 
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Mean age: 54.2y   

Mean stroke duration: 
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3-armed RCT of motor 

function with MI-BCI-

device as intervention 
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only (Haptic Knob), 
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Photo manipulation: 

hand opening and 

closing, pronation and 
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classify ERD/ERS and 

coupled with EMG to 

confirm MI 
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grasping and knob 

manipulation 

Actuation: DC brushed 

motors with linear belt 

drive 

Control: trigger 

Clinical outcome measure:            

FMMA Distal, improvement in weeks 3, 

6, 12, 24 

BCI-device group = 2.5±2.4, 3.3±2.3, 

3.2±2.7, 4.2±3.1 

Device only group = 1.6±2.5, 2.9±3.0, 

2.5±2.6, 2.5±3.0 

SAT group = 0.4±1.1, 1.9±1.9, 1.0±1.3, 

0.3±2.1 

Barsotti et al., 2015 

[76] 

 

 

 

 

 

 

N=3 (1F:2M)     

Chronic stroke 

survivors with right 

arm hemiparesis   

Mean age: 62±12y 

Probing MI 

classification by BCI 

training, time-frequency 

analysis and robot 

trajectories 

Uncontrolled 

Reaching-grasping-

releasing 

Cue: visual 

Feedback: kinaesthetic 

Minimum time required 

to perform MI = 2s 

EEG: 13 channels to 

classify ERD 

Device: BRAVO 2-

DOF hand orthosis 

attached to full UE 

exoskeleton 

Actuation: DC motors 

with rigid links 

Control: trigger 

Mean classification accuracy during BCI 

training = 82.51±2.04% 

Average delay from visual cue to robot 

initiation = 3.45±1.6s 

Average delay due to patient’s ability to 

start MI = 1.45s 

Bundy et al., 2017 

[77] 

 

 

 

N=10                 

Chronic hemiparetic 

stroke with moderate to 

severe UE hemiparesis 

Mean age: 58.6±10.3y 

 

Motor function 

evaluation before and 

after intervention by 

MI-BCI from 

unaffected hemisphere 

Opening of affected hand 

Cue: visual 

Feedback: visual and 

kinaesthetic 

EEG: 8 channels to 

classify ERD 

Device: 3-pinch grip, 

1-DOF hand 

exoskeleton 

Clinical outcome measure:                      

ARAT Score, improvement from 

baseline to completion (12 weeks) 

Mean ± SD = 6.20±3.81 
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Bundy et al. (cont’d) 

 

Uncontrolled Control: continuous 

depending on spectral 

power 

Note: 5.7 ARAT Score is the minimal 

clinically important difference in chronic 

stroke survivors 

Carino-Escobar et al. 

2019 [85] 
N=9 (4F:5M)                 

Subacute ischaemic 

stroke                     

Mean age: 59.9±2.8y 

Mean stroke duration: 

158(±74)-185(±73) 

days 

Determine longitudinal 

ERD/ERS patters and 

functional recovery with 

BCI-robot 

Uncontrolled 

Extension-flexion of 

hand fingers 

Cue: visual (Graz MI) 

Feedback: visual and 

kinaesthetic 

EEG: 11 channels to 

classify ERD/ERS 

Device: hand finger 

orthosis 

Actuation: DC motor 

with screw system for 

linear displacement, 

flexible links 

Control: trigger 

FMA-UE: N=3 reported equal or higher 

than 3 score gains, N=3 no score gains,  

Mean longitudinal ERD/ERS: beta bands 

have higher association with time since 

stroke onset than alpha, and strong 

association with UL motor recovery 

Chowdhury et al., 

2018-b [78] 

 

 

 

 

 

 

N=20                          

10 healthy and 10 

hemiplegic stroke 

patients                 

Mean age (healthy, 

stroke): 41±9.21y, 

47.5±14.23y 

Probe non-adaptive 

classifier (NAC) vs. 

Covariate Shift adaptive 

classifier (CSAC) of MI 

in EEG 

Control group: healthy 

participants 

Extension-flexion of 

hand fingers 

Cue: visual 

Feedback: visual and 

kinaesthetic 

EEG: 12 channels with 

EMG to classify 

ERD/ERS 

Device: EMOHEX 3-

finger, 3-DOF each, 

exoskeleton (thumb, 

index, middle) 

Actuation: servomotors 

with rigid links 

Control: trigger 

Mean classification accuracies during 

BCI training: 

Healthy group: calibration = 

78.50±9.01%, NAC = 75.25±5.46%, 

CSAC = 81.50±4.89% 

Patient group: calibration = 

79.63±13.11%, NAC = 70.25±3.43%, 

CSAC = 75.75±3.92% 

Chowdhury et al., 

2018-c [79] 

 

 

 

 

 

 

N=4 (2F:2M)    

Chronic hemiplegic 

stroke patients, right-

handed, left hand 

impaired Mean age: 

44.75±15.69y       

Mean stroke duration: 

7 ±1.15mo 

Motor function 

evaluation by using 

active physical practice 

followed by MI-BCI-

controlled device 

intervention 

Uncontrolled 

Extension-flexion of 

hand fingers 

Cue: visual 

Feedback: visual and 

kinaesthetic 

EEG: 12 channels with 

force sensors to 

classify ERD/ERS 

Device: EMOHEX 3-

finger, 3-DOF each, 

exoskeleton (thumb, 

index, middle) 

Actuation: servomotors 

with rigid links 

Control: trigger 

Classification accuracies of 4 

participants: P01 = 81.45±8.12%, P02 = 

70.21±4.43%, P03 = 76.88±4.49%, P04 

= 74.55±4.35% 

Clinical outcome measures:                      

GS and ARAT Scores, improvement 

from baseline to completion (6 weeks) 

GS scores: group mean difference = 

+6.38 kg, p=0.06 
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Chowdhury et al., 

2018-c (cont’d) 

ARAT scores: group mean difference = 

+5.66, p<0.05 

Frolov et al., 2017 

[80] 

 

 

N=74 (26F:48M)    

BCI 55: Control 19 

Subacute or chronic 

stroke with mild to 

hemiplegic hand 

paresis, right-handed 

Multi-centre RCT of 

MI-BCI-controlled hand 

exoskeleton 

Control group: SHAM 

3 Tasks: (1) motor 

relaxation, (2) imagery 

of left-hand opening, (3) 

imagery of right-hand 

opening 

Cue: visual 

Feedback: visual and 

kinaesthetic 

EEG: 30 channels to 

classify the three 

mental tasks by 

Bayesian classifier 

based on covariance 

matrices 

Device: hand 

exoskeleton by 

Neurobotics, Russia 

Actuation: pneumatic 

motors with spring 

flexors 

Control: trigger 

Mean classification accuracy during BCI 

training = 40.6% 

Clinical outcome measures: 

FMMA Distal and ARAT Scores, 

improvement in 10 days of training 

FMMA Distal = 2.0, p<0.01 (BCI) and 

1.0, p=0.046 (control) 

ARAT Grasp = 3.0, p<0.01 (BCI) and 

1.0, p=0.0394 (control) 

ARAT Grip = 1.0, p<0.01 (BCI) and 1.0, 

p=0.045 (control) 

ARAT Pinch = 1.0, p<0.01 (BCI) and 

0.0, p=0.675 (control) 

Norman et al., 2018 

[82] 
N=8 (All male) 

Chronic cortical and 

subcortical single 

haemorrhagic or 

ischaemic stroke (at 

least 6 months)     

Mean age: 59.5±11.8y 

Implementation of 

sensorimotor rhythm 

(SMR) control on robot-

assistive movement 

Uncontrolled 

Extension of hand finger 

Cue: visual 

Feedback: visual and 

kinaesthetic 

EEG: 16 channels 

mapping SMR changes 

Device: FINGER robot 

Actuation: Linear 

servo-tube actuator 

with rigid links 

Control: Visual - 

continuous (colour 

change respective to 

SMR), Robot - trigger 

Mean classification accuracies: 

8 participants: 83.1%, 76.3%, 73.3%, 

68.2%, 74.5%, 86.5%, 47.9%, 40.0% 

Box and blocks test (BBT):  

At screening: mean score = 14.3±10.0, 

mean change after therapy = 4.3±4.5 

(range 0-12). Higher score changes in 

participants who demonstrated SMR 

control but not significant (p=0.199) 

 

Ono et al., 2016-a 

[81] 

 

 

 

N=21 (9F:12M) 

Chronic stroke patients 

with hemiplegic hands 

Mean age: 57.9±2.4y 

Probe congruent vs. 

incongruent MI 

feedback strategies 

Control groups: 

congruent (synchronous 

proprioceptive and 

visual feedback) and 

Grasping of a tennis ball 

with a hand 

Cue: visual (video of 

hand performing action) 

Feedback: visual and 

kinaesthetic 

EEG: 9 channels to 

classify ERD 

Device: Power Assist 

Hand - Team ATOM, 

Atsugi, Japan 

Mean classification accuracies: 

Congruent feedback = 56.8±5.2%, 

chance level=36.4±4.5% 

Incongruent feedback = 40.0±3.5%, 

chance level 35.4±4.5% 
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Ono et al., 2016-a 

(cont’d) 

incongruent 

(proprioceptive 

feedback given 1s after 

visual) 

Actuation: pneumatic 

motors with rigid links 

Control: trigger 

Tsuchimoto et al., 

2019 [84] 
N=18 (3F:14M)   

Chronic haemorrhagic 

or ischaemic stroke 

(from 2mo onwards) 

Mean age: 58±10y 

Implementation of MI-

controlled robotic 

orthosis as 

neurofeedback 

Control: SHAM 

Extension of hand finger 

Cue: unspecified 

Feedback: kinaesthetic 

and electrical stimulation 

EEG: 5 channels to 

classify MI 

Device: robotic finger 

orthosis 

Actuation: servo 

motors with rigid links 

Control: trigger 

Significant time-intervention interaction 

in the ipsilesional sensorimotor cortex. 

Higher coactivation of sensory and motor 

cortices for neurofeedback group in the 

ipsilesional sensorimotor cortices as 

compared to SHAM 

Wang et al., 2018 

[83] 
N=24 (4F:20M) 

Chronic stroke patients 

with paralysed hands 

Mean age: 54±9y 

Implementation of 

action observation and 

motor imagery 

(AO+MI) with 

kinaesthetic feedback 

Control: SHAM 

Hand grasping 

Cue: visual (video of 

hand action / textual cues 

in SHAM group) 

Feedback: visual and 

kinaesthetic 

EEG: 16 channels to 

classify ERD 

Device: robot hand 

Control: Trigger 

AO+MI with kinaesthetic feedback 

group showed significant improvements 

in FMA-UE across longitudinal 

evaluation [χ2(2) = 7.659, p = 0.022], no 

significant difference in SHAM group 

[χ2(2) = 4.537, p = 0.103] 

Authors Participants Study Design Task Design BCI-Hand Robot Main Outcomes 

Studies involving healthy participants    

Bauer et al., 2015 

[97] 

 

 

 

 

 

N=20 (11F:9M)    

Right-handed        

Mean age: 28.5±10.5y 

Study on MI as 

compared to motor 

execution (ME) using 

BCI-device 

Opening of left hand 

Cue: auditory 

Feedback: kinaesthetic 

EEG: 31 channels to 

detect ERD, with EMG 

to classify MI from 

execution and account 

for tonic contraction 

Device: Amadeo, 

Tyromotion, Austria 

Control: 

discontinuation of ERD 

stops finger extension 

Principal component analyses (between 

MI and execution) generated coefficients 

for the visual (VIS) and kinaesthetic 

(KIS) imagery scale, BCI-robot 

performance (BRI), tonic contraction 

task (MOC) and visuomotor integration 

task (VMI). VIS and KIS yielded high 

coefficients on MI while MOC and VMI 

yield high coefficients on ME. BRI show 

high coefficient yields on both MI and 

ME. 
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Cantillo-Negrete et 

al., 2015 [86] 

 

N=1 Design and 

implementation of a MI-

controlled hand orthosis  

Extension-flexion of 

right-hand finger 

Cue: visual (modified 

Graz) 

Feedback: kinaesthetic 

EEG: 11 channels to 

detect MI 

Device: 1-DOF hand 

finger orthosis 

Actuation: DC motor 

with screw system for 

linear displacement, 

flexible links 

Control: trigger 

Classification accuracy = 78% 

Chowdhury et al., 

2015-a [87] 

 

 

 

N=6                         

Age range: 20-30y 

Study of cortico-

muscular coupling in 

robotic finger 

exoskeleton control  

Extension-flexion of 

hand fingers 

Cue: visual 

Feedback: kinaesthetic 

EEG: 10 channels with 

EMG to classify MI 

Device: 3-finger, 3-

DOF each, exoskeleton 

(thumb, index, middle) 

Actuation: servomotors 

with rigid links 

Control: trigger 

Mean classification accuracies: passive 

execution = 69.17%, hand execution = 

71.25%, MI = 67.92% 

Coffey et al., 2014 

[92] 

 

 

 

N=3 (All male)     

Right-handed 

Age range: 24-28y 

Design and 

implementation of a MI-

controlled hand orthosis 

Hand digit and wrist 

contraction and 

extension 

Cue: visual (Graz MI) 

Feedback: kinaesthetic  

EEG: 27 channels to 

classify MI 

Device: hand glove 

controlled by Arduino  

Actuation: pneumatic 

Control: trigger 

Glove inflation-deflation cycle = 22s 

Classification accuracies of 3 

participants: A = 92.5%, B = 90.0%, C = 

80.0% 

Diab et al., 2016 

[103] 

 

 

 

 

N=5 Design and 

implementation of 

EEG-triggered wrist 

orthosis with accuracy 

improvement 

Hand opening and 

closing 

Cue: verbal instruction 

Feedback: kinaesthetic 

EEG: 14 channels to 

detect hand movement-

related EEG 

Device: actuated Talon 

wrist orthosis 

Actuation: linear 

Control: trigger 

Mean classification accuracies: 

simulation studies = 95%, online BCI 

training = 86% 
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Fok et al., 2011 

[102] 
N=4 Design and 

implementation of a MI-

controlled hand orthosis 

Hand opening and 

closing 

Cue: unspecified 

Feedback: visual (cursor 

movement) and 

kinaesthetic 

EEG: 14 channels to 

detect MI-related ERD 

Device: actuated Talon 

wrist orthosis 

Actuation: linear 

actuator 

Control: trigger 

EEG signals from imagined hand 

movement was correlated with the 

contralesional hemisphere and utilised to 

trigger the actuation of orthosis 

ERD was detected from 12 Hz bin power 

of EEG during move condition 

Li et al., 2019 [88] N=14 (4F:10M)      

Mean age: 23.8±0.89y 

Design and 

implementation of an 

attention-controlled 

hand exoskeleton with 

rigid-soft mechanism 

Hand grasping 

Cue: visual (video of 

hand action) 

Feedback: kinaesthetic 

EEG: 3 channels to 

map signals relative to 

attention 

Device: hand 

exoskeleton 

Actuation: linear 

actuator with rigid-soft 

mechanism 

Control: Trigger 

Mean classification accuracy: 

95.54% actuation success rate against the 

attention threshold 

Holmes et al., 2012 

[93] 

 

 

 

 

 

 

N=6 (All male, young 

adults) 

Design and 

implementation of a MI-

controlled hand orthosis 

Hand opening and 

closing 

Cue: textual 

Feedback: kinaesthetic 

EEG: 14 channels to 

detect hand movement-

related EEG 

Device: ExoFlex Hand 

Exoskeleton controlled 

by Arduino 

Actuation: linear 

actuator connected to 

chained links that flex 

Control: trigger 

Classification accuracies of 6 

participants: T001 = 95%, T002 = 98%, 

D001 = 91%, U001 = 93%, E001 = 87%, 

E002 = 86% 

King et al., 2011 

[104] 

 

N=1 (Female) 24y Contralateral control of 

hand orthosis using 

EEG-based BCI 

Right hand idling and 

grasping 

Cue: textual 

EEG: 63 channels to 

control contralateral 

hand movement 

Device: hand orthosis 

Offline classification accuracy = 

95.3±0.6%, p < 3.0866×10−25 
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King et al. (cont’d) Feedback: visual and 

kinaesthetic 

Actuation: servomotors 

attached to Bowden 

cables as tendons 

Control: trigger 

Average lag from voluntary contractions 

to BCI-robot control = 2.24 ± 0.19s (after 

5 sessions) 

 

Naros et al., 2016 

[98] 

 

N=32 (16F:16M)   

Mean age: 25.9±0.5y 

2x2 factorial design 

with parameters: 

adaptive classifier 

threshold and non-

adaptive classifier 

threshold, contingent 

feedback and non-

contingent feedback 

Opening of right hand 

Cue: auditory 

Feedback: kinaesthetic 

EEG: 32 channels to 

detect ERD, with EMG 

to classify MI (FC3, 

C3, CP3 used) 

Device: Amadeo, 

Tyromotion, Austria 

Control: trigger 

Significant enhancement in group 1 

(adaptive classifier + contingent 

feedback), p=0.0078 

Significant reduction in group 4 (non-

adaptive classifier + non-contingent 

feedback), p=0.0391 

Motor performance improvement over 

baseline from first and last tasks, 

significant results: 

Group 1 (adaptive classifier + contingent 

feedback), p=0.0313 

Group 4 = (non-adaptive classifier + 

non-contingent feedback), p=0.0411 

Ono et al., 2018-b 

[100] 
N=28                    

Right-handed except 1 

Implementation of an 

action observation 

strategy with visual and 

proprioceptive, or 

auditory feedback to MI 

Control group: SHAM 

Grasping of a tennis ball 

with a hand 

Cue: visual (video of 

hand performing action) 

Feedback: visual, 

kinaesthetic and auditory 

EEG: 9 channels to 

classify ERD 

Device: Power Assist 

Hand - Team ATOM, 

Atsugi, Japan 

Actuation: pneumatic 

motors with rigid links 

Control: trigger 

AO+MI + proprioceptive and visual 

feedback:  

Mean MI-ERD powers of correct 

feedback vs SHAM provide significant 

interaction, F1,17=6.618, p=0.020 (6 days) 

Statistically significant increase in MI-

ERD power in correct feedback group 

over baseline, p=0.012 (6 days) 

Stan et al., 2015 [94] 

 

 

 

 

N=9 Trigger a hand orthosis 

using a P300 speller 

BCI 

Spell E (enable), A (hand 

opening) and B (hand 

closing) in P300 speller 

BCI to perform hang 

grasping, moving and 

releasing objects 

Cue: textual (spelling) 

EEG: 8 channels 

focusing on visual 

cortex 

Device: hand orthosis 

Actuation: 2 

servomotors and 

Mean classification accuracies: 100% 

(on 6th letter flash during calibration) 
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Stan et al. (cont’d) Feedback: visual 

(textual) and kinaesthetic 

current feedback 

circuitry 

Control: trigger 

Ramos-Murguialday 

et al., 2012 [95] 
N=23                     

Mean age (contingent 

positive, contingent 

negative, SHAM): 

26.6±4y, 26.5±5y, 

26.2±2y 

Probing MI with 

proprioceptive feedback 

Experimental groups: 

contingent positive, 

contingent negative 

feedback 

Control group: SHAM 

5 tasks: MI without 

direct control, MI with 

direct control, passive, 

active, rest 

Cue: auditory 

Feedback: visual and 

kinaesthetic 

EEG: 61 channels with 

EMG to classify 

ERD/ERS 

Device: hand orthosis 

Actuation: DC motor 

M-28 with a worm 

gearhead and Bowden 

cables for each finger 

Control: trigger 

Contingent positive feedback provided 

higher BCI performance during MI 

without feedback than contingent 

negative and SHAM; and higher during 

MI with or without feedback as 

compared to rest 

Ramos-Murguialday 

and Birbaumer, 2015 

[96] 

N=9                      

Right-handed        

Mean age: 26.6±4y 

Detect oscillatory 

signatures of motor 

tasks during EEG 

5 tasks: MI without 

direct control, MI with 

direct control, passive, 

active, rest 

Cue: auditory 

Feedback: visual and 

kinaesthetic 

EEG: 61 channels with 

EMG to classify 

ERD/ERS 

Device: hand orthosis 

Actuation: DC motor 

M-28 with a worm 

gearhead and Bowden 

cables for each finger 

Control: trigger 

Significant change in power in all 

frequency ranges during MI with direct 

control before trial initiation  

Kinaesthetic feedback increased 

significant changes in alpha and beta 

power; therefore, increasing BCI 

performance 

 

Randazzo et al., 2018 

[90] 

 

 

 

 

 

 

 

N=9 (2F:7M)        

Mean age: 23±5y 

Design and 

implementation of a 

hand orthosis with 

testing of kinaesthetic 

effects in EEG 

4 tasks: rest (REST), 

exoskeleton-induced 

hand motions (EXO), MI 

of right hand (MI), 

exoskeleton-induced 

hand motions plus MI 

(MIEXO) 

Cue: visual 

Feedback: kinaesthetic 

EEG: 16 channels to 

detect MI 

Device: mano hand 

exoskeleton 

Actuation: linear 

servomotors attached 

to Bowden cables as 

tendons 

Control: passive 

(exoskeleton not 

dependent on MI to 

Mean classification accuracies among 

groups: 

(vs REST) MI = 63.02±5.91%, EXO = 

69.64±5.74%, MIEXO = 72.19±6.57% 

MIEXO vs EXO = 69.91±9.86% 

Chance level at 95% confidence = 58% 

(N=50 trials) 
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Randazzo et al. 

(cont’d) 

move during MIEXO 

task) 

Tacchino et al., 2017 

[91] 
N=8 (7F:1M)          

Right-handed          

Mean age: 26.3±1.9y 

2x2 factorial design 

with parameters: glove, 

no glove, active 

movement, passive 

movement 

Opening and closing of 

hand, 4 tasks: (A) glove 

with active movement, 

(B) glove with passive 

movement, (C) no glove 

with active movement, 

(D) no glove and no 

movement 

Cue: auditory 

Feedback: kinaesthetic 

EEG: 19 channels with 

EMG to detect 

ERD/ERS (C3, F3, Cz 

used)  

Device: Gloreha hand 

rehabilitation glove 

Actuation: electric 

actuators with Bowden 

cables on each finger 

Control: passive (glove 

not dependent on brain-

state during tasks) 

Statistically significant ERD changes in 

beta and mu bands were observed to 

initiate earlier in tasks A and C (involves 

active movement) 

Stronger and longer ERD was observed 

in tasks A and B (involves robotic 

assistance) suggesting reinforced afferent 

kinaesthetic feedback 

Vukelic and 

Gharabaghi, 2015 

[99] 

N=11 (4F:7M)       

Right-handed          

Mean age: 25.83±3.1y 

Assessment 

sensorimotor activity 

during MI with either 

visual or kinaesthetic 

feedback 

Right hand opening 

Cue: visual (coloured 

cursor ball) 

Feedback: visual and 

kinaesthetic (separated 

by experimental groups) 

EEG: 128 channels to 

detect ERD/ERS 

during MI (F3, CP3, 

C3 used) 

Device: Amadeo, 

Tyromotion, Austria 

Control: trigger 

MI + kinaesthetic feedback group 

resulted in higher beta ERS (p=0.02) 

during rest and higher beta ERD 

(p=0.04) during MI 

Kinaesthetic feedback provides higher 

stability and sustained beta ERD activity 

than visual feedback  

Witkowski et al., 

2014 [101] 
N=12 (4F:8M)      

Right-handed           

Mean age: 28.1±3.63y 

Assessment 

performance and safety 

of EEG-EOG hybrid 

BCI 

Right hand grasping 

Cue: visual (coloured 

squares and arrows) 

Feedback: kinaesthetic 

EEG: 5 channels with 

EOG and EMG to 

detect ERD during MI 

Device: HX hand 

exoskeleton 

Actuation: DC motors 

with Bowden cables for 

thumb and index 

fingers 

Control: trigger 

Mean classification accuracies: 

EEG only = 63.59±10.81% 

EEG/EOG hybrid = 60.77±9.42% 

Mean safety criterion violations during 

rest: 

EEG only = 45.91±26.8% 

EEG/EOG hybrid = 10.14±0.3% 
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Zhang et al., 2019 

[89] 
N=6 (2F:4M)       

Right-handed          

Age range: 23-26y 

Implementation of a 

multimodal system 

using EEG, EMG and 

EOG to control a soft-

robotic hand 

Graz visualisation and 

auditory instructions, eye 

movements and physical 

practice (hand gestures) 

Cue: visual (Graz MI), 

auditory 

Feedback: visual and 

kinaesthetic 

EEG with EMG and 

EOG: 40 channels to 

analyse ERD/ERS 

patterns 

Device: Soft pneumatic 

finger 

Actuation: pneumatic 

actuator with soft 

structures 

Control: trigger 

Mean classification accuracies: 

EOG = 94.23% 

EEG = 31.46% 

EMG = 36.38% 

Multimodal = 93.83±0.02% 

 1077 

UE = Upper Extremity, MI = Motor Imagery, BCI = Brain-Computer Interface, RCT = Randomised Clinical Trial, SAT = Standard Arm Therapy,  1078 

EMG = Electromyography, EOG = Electrooculography, ERD/ERS = Event-Related Desynchronisation/Synchronisation, FMMA = Fugl-Meyer Motor Assessment,  1079 

ARAT = Action Research Arm Test, GS = Grip Strength, DOF = Degrees-of-Freedom 1080 

 1081 

 1082 
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List of Abbreviations 1083 

ADL  Activities of Daily Living 1084 

ANN  Artificial Neural Network 1085 

AO  Action Observation 1086 

AR  Augmented Reality 1087 

ARAT  Action Research Arm Test 1088 

BCI  Brain-Computer Interface 1089 

BMI  Brain-Machine Interface 1090 

CDRH  Center for Devices and Radiological Health 1091 

CNN  Convolutional Neural Network 1092 

CSD  Covariate Shift Detection 1093 

CSP  Common Spatial Pattern 1094 

DC  Direct Current 1095 

ECoG  Electrocorticography 1096 

EEG  Electroencephalography 1097 

EMG  Electromyography 1098 

EOG  Electrooculography 1099 

ERD  Event-Related Desynchronisation 1100 

ERP  Event-Related Potential 1101 

ERS  Event-Related Synchronisation 1102 

ERSP  Event-Related Spectral Perturbation 1103 

FBCSP Filter Bank Common Spatial Pattern 1104 

FIR  Finite Impulse Response 1105 

FMA-UE Fugl-Meyer Motor Assessment – Upper Extremity 1106 

GS  Grip Strength 1107 
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IIR  Infinite Impulse Response 1108 

LDA  Linear Discriminant Analysis 1109 

ME  Motor Execution 1110 

MI  Motor Imagery 1111 

PEDro  Physiotherapy Evidence Database 1112 

PMA  Premarket Approval 1113 

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analysis 1114 

PROSPERO International Prospective Register of Systematic Reviews 1115 

PS  Pinch Strength 1116 

QSR  Quality System Requirement 1117 

RCT  Randomised Clinical Trial 1118 

RNN  Recurrent Neural Network 1119 

SAT  Standard Arm Therapy 1120 

SVM  Support Vector Machine 1121 

TRA  Technology Readiness Assessment 1122 

TRL  Technology Readiness Levels 1123 

UK-MRC United Kingdom Medical Research Council 1124 

VR  Virtual Reality 1125 
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