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Abstract 11 

Background: Electroencephalography-based brain-computer interfaces (BCI) that allow the 12 

control of robotic devices to support stroke patients during upper limb rehabilitation are 13 

increasingly popular. Hand rehabilitation is focused on improving dexterity and fine motor 14 

control and is a core approach for helping stroke survivors regain activities of daily living. 15 

This systematic review examines recent developments in BCI-robotic systems for hand 16 

rehabilitation and identifies evidence-based clinical studies on stroke patients.  17 

Methods: A search for January 2010-October 2019 articles using Ovid MEDLINE, Embase, 18 

PEDro, PsycINFO, IEEE Xplore and Cochrane Library databases was performed. The 19 

selection criteria included BCI-hand robotic systems for rehabilitation in various 20 

development stages involving tests on healthy human subjects or stroke survivors. Data fields 21 

include those related to study design, participant characteristics, technical specifications of 22 

the system, and clinical outcome measures.  23 

Results: 30 studies were identified as eligible for qualitative review and among these, 11 24 

studies involved testing a BCI-hand robot on chronic and subacute stroke patients. 25 

Statistically significant improvements in motor assessment scores relative to controls were 26 

observed for two BCI-hand robot interventions. The degree of robot control for the majority 27 

of studies was limited to triggering the device to perform grasping or pinching movements 28 

using motor imagery. Most employed a combination of kinaesthetic and visual response via 29 

the robotic device and display screen, respectively, to match feedback to motor imagery. 30 

Conclusion: Most studies on BCI-robotic systems for hand rehabilitation report systems at 31 

prototype or pre-clinical stages of development. Some studies report statistically significant 32 

improvements in functional recovery after stroke, but there is a need to develop a standard 33 

protocol for assessing technical and clinical outcomes so that the necessary evidence base on 34 

efficiency and efficacy can be developed. 35 
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 39 

Background 40 

There is growing interest in the use of robotics within the field of rehabilitation. This interest 41 

is driven by the increasing number of people requiring rehabilitation following problems such 42 

as stroke (with an ageing population), and the global phenomenon of insufficient numbers of 43 

therapists able to deliver rehabilitation exercises to patients [1,2]. Robotic systems allow a 44 

therapist to prescribe exercises that can then be guided by the robot rather than the therapist. 45 

An important principle within the use of such systems is that the robots assist the patient to 46 

actively undertake a prescribed movement rather than the patient’s limb being moved 47 

passively. This means that it is necessary for the system to sense when the patient is trying to 48 

generate the required movement (given that, by definition, the patient normally struggles with 49 

the action). One potential solution to this issue is to use force sensors that can detect when the 50 

patient is starting to generate the movement (at which point the robot’s motors can provide 51 

assistive forces). It is also possible to use measures of muscle activation (EMGs) to detect the 52 

intent to move [3]. There is, however, growing interest in the potential of using measures of 53 

brain activity to identify when a patient is trying to generate a movement- referred to as Brain 54 

Computer Interfaces, or BCIs. This interest in BCIs is motivated by idea that the 55 

rehabilitation process can be enhanced by particular types of brain activity related to 56 

imagining the movement [4]. There is a long history of using robotic devices for stroke 57 

rehabilitation [5,6] and in the last decade, there has been a concerted effort by groups of 58 

clinicians, neuroscientists and engineers to integrate these systems with incoming brain 59 

signals to enhance the efficacy and effectiveness of stroke rehabilitation. The purpose of this 60 
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manuscript is to review the current state-of-the-art of existing brain-computer ‘closed loop’ 61 

interfaces in terms of the technological readiness of existing systems, and the evidence for 62 

their clinical effectiveness. 63 

 64 

BCIs allow brain state-dependent control of robotic devices to aid stroke patients during 65 

upper limb therapy and have been gaining research attention since their first implementation 66 

more than a decade ago [7,8]. Graimann et al. [4] defined a BCI as an artificial system that 67 

provides direct communication between the brain and a device based on the user’s intent; 68 

bypassing the normal efferent pathways of the body’s peripheral nervous system. A BCI 69 

recognises user intent by measuring brain activity and translating it into executable 70 

commands usually performed by a computer, hence the term “brain-computer interface”. 71 

 72 

Most robotic devices used in upper limb rehabilitation exist in the form of exoskeletons or 73 

end-effectors. Robotic exoskeletons (i.e., powered orthoses, braces) are wearable devices 74 

where the actuators are biomechanically aligned with the wearer’s joints and linkages; 75 

allowing the additional torque to provide assistance, augmentation and even resistance during 76 

training [9]. In comparison, end-effector systems generate movement through applying forces 77 

to the most distal segment of the extremity via handles and attachments [9]. Rehabilitation 78 

robots are classified as Class II-B medical devices (i.e., a therapeutic device that administers 79 

the exchange of energy, mechanically, to a patient) and safety considerations are important 80 

during development [10,11]. Most commercial robots are focused on arms and legs, each 81 

offering a unique therapy methodology. There is also a category of device that target the hand 82 

and finger. Hand and finger rehabilitation are core component in regaining activities of daily 83 

living (ADL) as many ADLs require dexterous and fine motor movements (e.g. grasping and 84 
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pinching). Thus, the current review is focused on devices that have been designed specifically 85 

for wrist, hand and finger rehabilitation. 86 

 87 

The potential of BCIs has gained considerable attraction because the neural activity involved 88 

in the control of the robotic device may be a key component in the rehabilitation itself. For 89 

example, mental rehearsal of movement is thought to activate some of the neural networks 90 

involved in movement execution (ME) [12–15]. The resulting rationale is that encouraging 91 

the use of motor imagery (MI) (i.e., the imagination of movement without execution) could 92 

increase the capacity of the motor cortex to control major muscle movements and decrease 93 

the necessity to use neural circuits damaged post-stroke. The scientific justification for this 94 

approach was first provided by Jeannerod [15] who suggested that the neural substrates of MI 95 

are part of a shared network that is also activated during the simulation of action by the 96 

observation of action (AO) [15]. These ‘mirror neuron’ systems are thought to be an 97 

important component of motor control and learning [15] - hence the belief that stimulating 98 

these systems could aid rehabilitation. 99 

 100 

A recent meta-analysis of the neural correlates of action (MI, AO and ME) quantified 101 

‘conjunct’ and ‘contrast’ networks in the cortical and subcortical regions [12]. This analysis, 102 

which took advantage of open-source historical data from fMRI studies, reported consistent 103 

activation in the premotor, parietal and somatosensory areas for MI, AO and ME. Predicated 104 

on such data, researchers have reasoned that stimulating MI should cause activation of the 105 

neural substrates that are also involved in controlling movement and there have been a 106 

number of research projects that have used AO in combination with MI in neurorehabilitation 107 

[16–18] and motor learning studies [19,20] over the last decade.  108 

 109 
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The strategy of BCI-robot systems in rehabilitation is to recognise the patient's intention to 110 

move or perform a task via an electroencephalography acquisition system [21], and then use 111 

the robotic device to provide assistive forces in a manner that mimics the actions of a 112 

therapist during standard therapy sessions [22]. The resulting feedback is patient-driven and 113 

is designed to aid in closing the neural loop from intention to execution. This process is said 114 

to promote use-dependent neuroplasticity within intact brain regions and relies on the 115 

repeated experience of initiating and achieving a specified target [23,24]; making the active 116 

participation of the patient in performing the therapy exercises an integral part of the motor 117 

re-learning process [25,26]. It is important to note that whilst the rationale underpinning the 118 

conjecture that BCI-robot systems could be useful in hand rehabilitation is reasonable, it is 119 

just a conjecture that requires empirical support. 120 

 121 

Electroencephalography (EEG) is currently the instrument of choice for data acquisition in 122 

BCI systems because it is non-invasive, easy to use and can detect relevant brain activity with 123 

high temporal resolution [27,28]. In principle, the recognition of MI activity via EEG can 124 

allow the control of a device independent of muscle activity [4]. It has been shown that MI-125 

based BCI can discriminate motor intent by detecting event-related spectral perturbations 126 

(ERSP) [21,29] and/or event-related desynchronisation/synchronisation (ERD/ERS) patterns 127 

in the µ (9-11 Hz) and β (14-30 Hz) sensorimotor rhythm of EEG signals [29]. However, 128 

EEG also brings with it some challenges- these neural markers are often concealed by various 129 

artefacts and may be difficult to recognise through the raw EEG signal alone. Thus, signal 130 

processing (via feature extraction and classification) is a vital part of obtaining a good MI 131 

signal for robotic control. 132 

 133 
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One implication of using MI and AO to justify the use of BCI approaches is that great care 134 

must be taken with regard to the quality of the environment in which the rehabilitation takes 135 

place. An important feature of MI is that, by definition, the patient must be able to imagine 136 

the movement. Likewise, AO requires the patients to clearly see the action. This suggests that 137 

the richness and vividness of the visual cues provided is an essential part of an effective BCI 138 

system. It is also reasonable to assume that feedback is important within these processes and 139 

thus the quality of feedback should be considered as essential. Finally, motivation is known 140 

to play an important role in promoting active participation during therapy [26,30]. Thus, a 141 

good BCI system should incorporate an approach (such as gaming and positive reward) that 142 

increases motivation. Recent advances in technology make it far easier to create a 143 

rehabilitation environment that provides rich vivid cues, gives salient feedback and is 144 

motivating. For example, the rise of immersive technologies, including virtual reality (VR) 145 

and augmented reality (AR) platforms [31,30,32], allows for the creation of engaging visual 146 

experiences that have the potential to improve a patient’s self-efficacy [33] and thereby 147 

encourage the patient to maintain the rehabilitation regime. One specific example of this is 148 

visually amplifying the movement made by a patient when the movement is of limited extent 149 

so that the patient can see their efforts are producing results [34]. 150 

 151 

In this article, we review the development of BCI-robotic systems for hand rehabilitation and 152 

capture clinical studies involving stroke patients. Our goal was to address three critical 153 

questions for understanding the current value and potential of BCI-based robotic therapy:  154 

 155 

(1) Identify how BCI technologies are being utilised in controlling robotic devices for 156 

hand rehabilitation. Our focus was on the study design and the tasks that are 157 

employed in setting up a BCI-hand robot therapy protocol. 158 
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(2) Document the state-of-art of BCI systems. Because BCI for rehabilitation is still an 159 

emerging field of research, we expected that most studies would be in their proof-of-160 

concept or clinical testing stages of development. Our purpose was to determine the 161 

limits of this technology in terms of: (a) resolution of hand MI detection and (b) the 162 

degree of which we can have robotic control.  163 

(3) Evaluate the clinical significance of BCI-hand robot systems by looking at the 164 

outcome measures in motor recovery and determine if a standard protocol exists for 165 

these interventions. 166 

 167 

It is important to note that there have been several recent reviews exploring BCI for stroke 168 

rehabilitation. For example, Monge-Pereira et al. [35] compiled EEG-based BCI studies for 169 

upper limb stroke rehabilitation. Their systematic review (involving 13 clinical studies on 170 

stroke and hemiplegic patients) reported on research methodological quality and 171 

improvements in the motor abilities of stroke patients. Cervera et al. [36] performed a meta-172 

analysis on the clinical effectiveness of BCI-based stroke therapy among 9 randomised 173 

clinical trials (RCT). McConnell et al. [37] reviewed and provided insights from a total of 174 

110 robotic devices with brain-machine interfaces for hand rehabilitation post-stroke. These 175 

reviews, in general, have reported that such systems provide improvements in both functional 176 

and clinical outcomes in pilot studies or trials involving small sample sizes. Thus, the 177 

literature indicates that EEG-based BCI are a promising general approach for rehabilitation 178 

post-stroke. 179 

 180 

The current work complements these previous reports by focusing on a systematic review of 181 

the rehabilitation of the fine motor skills associated with hand movement, and profiling BCI-182 

robot systems for the hands with their corresponding technical and clinical implementations.183 
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Methods 184 

Protocol Registration 185 

Details of the protocol for this systematic review were registered on the International 186 

Prospective Register of Systematic Reviews (PROSPERO) and can be accessed at 187 

www.crd.york.ac.uk/PROSPERO (ID: CRD42018112107). 188 

 189 

Search Strategy and Eligibility 190 

An in-depth search of articles from January 2010 to October 2019 was performed on Ovid 191 

MEDLINE, Embase, PEDro, PsycINFO, IEEE Xplore and Cochrane Library. Only full-text 192 

articles published in English were selected for this review. Table 1 shows the combination of 193 

keywords used in the literature searching. 194 

 195 

Table 1. Keyword Combinations 196 

Set 1 (OR)  Set 2 (OR)  Set 3 (OR) 

Brain-computer interface/BCI  

Electroencephalography/EEG 

Brain-machine interface/BMI 

Neural control interface 

Mind-machine interface 

 

 

 

AND 

Stroke (rehabilitation/ 

therapy/treatment/recovery) 

Motor (rehabilitation, 

therapy/treatment/recovery) 

Neurorehabilitation 

Neurotherapy 

Hand (rehabilitation/therapy/ 

recovery/exercises/movement) 

 

 

 

AND 

Robotic (exoskeleton/ 

orthosis) 

Powered (exoskeleton/ 

orthosis) 

Robot 

Device 

 197 

The inclusion criteria for the articles were: (1) publications that reported the development of 198 

an EEG-based BCI; (2) studies targeted towards the rehabilitation of the hand after stroke; (3) 199 

studies that involved the use of BCI and a robotic device (e.g., exoskeleton, end-effector type, 200 

platform-types, etc.); (4) studies that performed a pilot test on healthy human subjects or a 201 

clinical trial with stroke patients. The articles were also screened for the following exclusion 202 
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criteria: (1) studies that targeted neurological diseases other than stroke; (2) studies that used 203 

other intention sensing mechanisms (electromyography/EMG, electrooculography/EOG, non-204 

paretic hand, other body parts, etc.). 205 

 206 

Two authors performed independent screenings of titles and abstracts based on the inclusion 207 

and exclusion criteria. The use of a third reviewer was planned a priori in cases where a lack 208 

of consensus existed around eligibility. However, consensus was achieved from the first two 209 

authors during this stage. Full-text articles were then obtained, and a second screening was 210 

performed until a final list of studies was agreed to be included for data extraction. 211 

 212 

Data Extraction 213 

The general characteristics of the study and their corresponding results were extracted from 214 

the full-text articles by the reviewers following the Preferred Reporting Items for Systematic 215 

Reviews and Meta-Analysis (PRISMA) checklist. Data fields included those related to study 216 

design, participant characteristics, technical specifications of the system, and technical and 217 

experimental results. For studies involving stroke patients, clinical outcomes were obtained 218 

based on muscle improvement measures such as Fugl-Meyer Motor Assessment (FMMA) 219 

scores [38], Action Research Arm Test (ARAT) scores [39], United Kingdom Medical 220 

Research Council (UK-MRC) muscle grade [40], Grip Strength (GS) Test and Pinch Strength 221 

(PS) Test scores (i.e., kilogram force collected using an electronic hand dynamometer) 222 

among others. 223 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 15, 2019. ; https://doi.org/10.1101/2019.12.11.19014571doi: medRxiv preprint 

https://doi.org/10.1101/2019.12.11.19014571
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Page 11 of 56 
 

Quality Assessment 224 

Technological Readiness 225 

We first assessed the development stages of the systems used in the studies extracted. By 226 

performing a Technological Readiness Assessment (TRA), we were able to determine the 227 

maturity of the systems via a Technology Readiness Level (TRL) scale of 1-9 and quantify its 228 

implementation in a research or clinical setting. Since a BCI-robot for rehabilitation can be 229 

categorised as a Class II-B medical device we have adapted a customised TRL scale to 230 

account for these requirements [41]. 231 

 232 

Clinical Use  233 

A methodological quality assessment was also performed for clinical studies based on the 234 

Physiotherapy Evidence Database (PEDro) Scale [42]. This scale evaluates studies with a 235 

checklist of 11 items based on experts’ consensus criteria in physiotherapy practice. The 236 

complete details of the criteria can be found online [43]. A higher score in the PEDro scale (6 237 

and above) implied better methodological quality but are not used as a measure of validity in 238 

terms of clinical outcomes. Pre-defined scores from this scale were already present in studies 239 

appearing in the PEDro search. However, studies without PEDro scores or are not present in 240 

the PEDro database at all had to be manually evaluated by the authors against the 11-item 241 

checklist (five of seven studies).242 
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Results 243 

Search Results 244 

Figure 1 shows the study selection process and the number of articles obtained at each stage. 245 

 246 

 247 

Figure 1. Study Selection Flowchart 248 

 249 

A total of 590 studies were initially identified. After deduplication, 330 studies underwent 250 

title and abstract screening. Forty six studies passed this stage and among these, 16 were 251 

removed after full-text screening due to the following reasons: insufficient EEG and robotic 252 

data [44–50], the study was out of scope [51–53], the study design was not for hand/finger 253 

movement [54–57], no robot or mechatronic device was involved in the study [58,59]. A final 254 

list with 30 studies was identified as eligible for qualitative review. Among the 30 studies, 11 255 

[60–70] were involved in testing the BCI-hand robot system on chronic and subacute stroke 256 
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patients ([60,65] are RCTs) while the rest involved testing on healthy participants [71–89]. 257 

Table 2 shows a summary of the relevant data fields extracted from these studies. 258 

 259 

[Table 2 Around Here] 260 

 261 

Technology Evaluation 262 

EEG Acquisition 263 

The choice of EEG system as well as the type of electrodes provides a technical trade-off and 264 

affects the session both in terms of subjective experiences (i.e., ease-of-use, preparation time, 265 

cleaning, comfortability) and data performance. Due to the presence of a conducting 266 

gel/solution, standard “wet” electrodes provide a degree of confidence in preventing signal 267 

disruption within a short duration usually enough for a standard stroke therapy session. 268 

However, this also makes the setup, use and cleaning in the experiment more challenging, non-269 

ambulatory and reliant on a specialised laboratory setup [4]. Conversely, dry electrodes offer 270 

an accessible, user-friendly and portable alternative by using dry metal pins or coatings that 271 

comb through hair and come in contact directly with the scalp. The signal fidelity of dry 272 

electrodes is still a matter of debate in the BCI community. A systematic comparison between 273 

dry passively-amplified and wet actively-amplified electrodes reported similar performance in 274 

the detection of event-related potentials (ERP) [90]. However, for a study involving dry active 275 

electrodes [91], high inter-electrode impedance resulted in increased single-trial and average 276 

noise levels as compared to both active and passive wet electrodes. In classifying MI, 277 

movement-related artefacts adversely affect active dry electrodes, but these can be addressed 278 

through a hybrid system of other physiological sensors to separate sources [92]. 279 

 280 
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The EEG acquisition systems involved in the studies ranged from low-cost devices having few 281 

electrode channels (2-15 gel or saline-soaked silver/silver chloride [Ag/AgCl] electrodes) to 282 

standard EEG caps that had higher spatial resolution (16-256 gel or saline-soaked Ag/AgCl 283 

electrodes). The placement of EEG channels was accounted for by studies involving MI 284 

(N=21). This allowed us to determine the usage frequency among electrodes and is presented 285 

in Figure 2 as a heat map generated in R Studio (using the packages: “akima”, “ggplot2” and 286 

“reshape2”) against the 10-20 international electrode placement system. 287 

 288 

 289 

Figure 2. EEG Channel Usage across Motor Imagery Studies (N=21) 290 

 291 
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It can be seen that the EEG channels used for MI studies are concentrated towards electrodes 292 

along the central sulcus (C) region and the frontal lobe (F) region of the placement system 293 

where the motor cortex strip lies. Among these, C3 (N=17) and F3 (N=14) were mostly used, 294 

presumably because a majority of the participants were right-handed. The next most frequent 295 

were C4 (N=13) and the electrodes F4, Cz and CP3 (N=10). 296 

 297 

Signal Processing: Feature Extraction and Classification 298 

It is necessary to process EEG data if they are to be used as a control signal. First, the data 299 

need to undergo a series of pre-processing routines (e.g., filtering and artefact removal) 300 

before feature extraction and classification for use as a control signal for the robotic hand. 301 

Feature extraction involves recognising useful information (e.g., spectral power, time epochs, 302 

spatial filtering) for better discriminability among mental states. For example, the common 303 

spatial patterns (CSP) algorithm is a type of spatial filter that learns and maximises the 304 

variance of band pass-filtered EEG from one class to discriminate it to the other [93]. 305 

 306 

In the EEG-based BCI studies examined, it was found that the feature extraction and 307 

classification techniques were variable between systems. Table 3 provides a summary of pre-308 

processing, feature extraction and classification techniques across the studies. There was a 309 

wide variation in the implemented signal processing strategies, but a unifying theme across 310 

studies was the attempt to: (i) discriminate mental states recorded in EEG across different 311 

manual tasks; (ii) classify the different states to produce a viable signal. 312 

 313 

Table 3. BCI Feature Extraction and Classification 314 

Study Pre-Processing Feature Extraction Classification Hand Task 

Ang et al. [60] Band-pass 

(0.05-40 Hz) 

Filter Bank Common 

Spatial Pattern 

Calibration model 

(unspecified) 

MI vs rest 
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(FBCSP) algorithm 

[94] 

Barsotti et al. [61] Band-pass (8-24 

Hz) 

ERD (β and µ-

decrease), CSP 

SVM with linear kernel MI vs rest 

Bauer et al. [82] Band-pass (6-16 

Hz using zero-

phase lag FIR 

ERD (β-decrease) Linear autoregressive model 

based on Burg Algorithm 

MI vs rest 

Bundy et al. [62] Unspecified ERD (β and µ-

decrease) 

Linear autoregressive model MI (affected, 

unaffected) vs 

rest 

Chowdhury et al. [63] Band-pass (0.1 

Hz-100 Hz), 

Notch (50 Hz) 

CSP Covariance-

based, ERD/ERS (β 

and µ-change) 

SVM with linear kernel, 

Covariate Shift Detection 

(CSD)-based Adaptive 

Classifier 

left vs right MI 

Coffey et al. [77] Band-pass (0.5 

Hz-30 Hz), 

Notch (50 Hz) 

CSP Covariance-

based 

Linear Discriminant 

Analysis (LDA) classifier 

MI vs rest 

Diab et al. [88] Unspecified Time epochs 

(unspecified) 

Artificial Neural Network 

(ANN)-based Feed Forward 

Back Propagation 

Non-MI open vs 

closed  

Frolov al. [65] Band-pass (5-30 

Hz), FIR (order 

101), IIR notch 

Chebyshev type 

I filter (50 Hz) 

Time epochs  

(10 s) 

Bayesian-based EEG 

covariance classifier [95] 

MI (affected, 

unaffected) vs 

rest 

Ono et al. [66] Band-pass (0.5-

30 Hz), notch 

(50 or 60 Hz) 

Time epochs (700 

ms), ERD (µ-

decrease) 

Linear Discriminant 

Analysis (LDA) classifier 

MI vs rest 

Ramos-Murguialday 

et al. [80] 

Unspecified Time epochs (5 s), 

Spatial filter, 

ERD/ERS (β and µ-

change) 

Linear autoregressive model MI vs rest 

Vukelic and 

Gharabaghi [84] 

High-pass 

(unspecified) 

ERD (β-decrease) Linear autoregressive model 

based on Burg Algorithm 

MI vs rest 

Witkowski et al. [86] Band-pass (0.4-

70 Hz), 

Laplacian filter 

ERD/ERS (β and µ-

change) 

Linear autoregressive model 

based on Yule-Walker 

algorithm 

MI vs rest 

 315 

SVM = Support Vector Machines, FIR = Finite Impulse Response, IIR = Infinite Impulse Response 316 
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 317 

Robot-Assisted Rehabilitation 318 

Robotic hand rehabilitation systems provide kinaesthetic feedback to the user during BCI trials. 319 

Most of these devices are powered by either DC motors, servomotors or pneumatic actuators 320 

that transmit energy via rigid links or Bowden cables in a tendon-like fashion. The studies in 321 

this review included single-finger [69–71], multi-finger [67] (including EMOHEX [63,64,72]), 322 

full hand gloves [73,74] (including mano: Hand Exoskeleton [75] and Gloreha [76]) and full 323 

arm exoskeletons with isolated finger actuation (BRAVO-Hand [61]). Nine of the studies 324 

[62,72,73,75,77–81] presented their novel design of a hand rehabilitation device within the 325 

article while some reported on devices reported elsewhere (i.e., in a previous study of the group 326 

or a research collaborator). Two commercially-available devices were also used: AMADEO 327 

(Tyromotion, Austria) is an end-effector device used in 3 studies [82–84], and Gloreha 328 

(Idrogenet, Italy) is a full robotic hand glove used by Tacchino et al. [76]. AMADEO and 329 

Gloreha are both rehabilitation devices that have passed regulatory standards in their respective 330 

regions. AMADEO remains the gold standard for hand rehabilitation devices as it has passed 331 

safety and risk assessments and provided favourable rehabilitation outcomes. The International 332 

Classification of Functioning, Disability and Health (ICF) provides three specific domains that 333 

can be used to assess an intervention of this kind: improving impairments, supporting 334 

performance of activities and promoting participation [96,97]. In this case, a gold standard 335 

device not only prioritises user safety (established early in the development process) but also 336 

delivers favourable outcomes in scales against these domains. Figure 3 shows the main types 337 

of robotic hand rehabilitation devices. 338 

 339 
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 340 

Figure 3. Robotic hand rehabilitation devices: a) An end-effector device (Haptic Knob) 341 
used in one of the extracted studies [60,98], b) a wearable hand exoskeleton/orthosis 342 

 343 

Quality Assessment 344 

A Technology Readiness Assessment (TRA) was performed for each study and the 345 

Technology Readiness Levels (TRL) are presented in Table 4. While some of the system 346 

components (especially among robotic devices) were commercially available (having TRL 347 

9+), we performed a TRA on the whole system (the interaction between BCI and robotics) to 348 

provide an evaluation of its maturity and state-of-the-art development with regard to 349 

rehabilitation medicine. We further assessed the TRL of each system at the time of the 350 

publication and its subsequent development. 351 

 352 

Table 4. Technology Readiness Assessment of the BCI-Hand Robot Systems 353 

Levels Description Studies 

TRL 1 

 

• Lowest level of technological readiness  

• Literature reviews and initial market surveys  

• Scientific application to defined problems 

 

 

TRL 2 • Generation of hypotheses 

• Development of research plans and/or protocols 
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TRL 3 • Testing of hypotheses – basic research, data 

collection and analysis 

• Testing of design/prototype – verification and 

critical component specifications 

• Initial proof-of-concept in limited amount of 

laboratory/animal models 

 

Most studies from the 

prototype group (N=18) 

[71–87,89] 

TRL 4 • Proof-of-concept of device/system in defined 

laboratory/animal models 

• Safety testing – problems, adverse events and 

potential side effects 

 

Witkowski et al., 2014 [88] 

TRL 5 • Comparison of device/system to other existing 

modalities or equivalent devices/systems 

• Further development – testing through 

simulation (tissue or organ models), animal 

testing 

• Drafting of Product Development Plan 

 

Barsotti et al., 2015 [61],  

Ono et al., 2016 [66], 

Chowdhury et al., 2018-b 

[63], Tsuchimoto et al., 2019 

[69] 

TRL 6 • Small scale clinical trials (Phase 1) – under 

carefully controlled and intensely monitored 

clinical conditions 

 

Carino-Escobar et al., 2019 

[70], Chowdhury et al., 

2018-c [64], Norman et al., 

2018 [67], Wang et al., 2018 

[68] 

TRL 7 • Clinical trials (Phase 2) – safety and 

effectiveness integration in operational 

environment 

 

Ang et al., 2014 [60],  

Frolov et al., 2017 [65] 

TRL 8 • Clinical trials (Phase 3) – evaluation of overall 

risk-benefit of device/system use 

• Confirmation of QSR compliance 

• Awarding of PMA for device/system by CDRH 

or equivalent agency   

 

 

TRL 9 • The device/system may be distributed/marketed  

 354 

QSR = Quality System Requirements, PMA = Premarket Approval, CDRH = Center for Devices and Radiological Health 355 

 356 
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Clinical Evaluation 357 

Studies with Stroke Patients (Clinical Group) 358 

A total of 208 stroke patients (with sample size varying 3-74) were involved in the 11 clinical 359 

studies. One study [60] reported a 3-armed RCT with control groups as device-only and SAT 360 

while another study [65] was a multi-centre RCT with sham as the control group. Five studies 361 

were uncontrolled – where the aims were either to study classification accuracies during 362 

sessions [61], to monitor clinical outcomes improvement from Day 0 until the end of the 363 

programme [62,70] or both [64,67].  Two studies [68,69] compared effects of the intervention 364 

against SHAM feedback. Another study [63] compared the classification accuracies of 365 

healthy and hemiplegic stroke patients against two BCI classifiers while the remaining study 366 

[66] compared classification accuracies from stroke patients who receive congruent or 367 

incongruent visual and kinaesthetic feedback.  368 

 369 

Most of the studies adopted FMMA, ARAT and GS measurements to assess clinical 370 

outcomes. Six studies [60,62,64,65,68,70] reported patient improvement in these measures 371 

when subjected to BCI-hand robot interventions; in contrast with their respective controls or 372 

as recorded through time in the programme. For Ang et al. [60], FMMA Distal scores were 373 

reported in weeks 3, 6, 12 and 24 and the BCI-device group (N=6) yielded the highest 374 

improvement in scores across all time points as compared to the device only (N=8) and SAT 375 

(N=7) groups. Bundy et al. [62] reported an average of 6.20±3.81 improvement in the ARAT 376 

scores of its participants (N=10) in the span of 12 weeks while Chowdhury et al. [64] 377 

reported a group mean difference of +6.38 kg (p=0.06) and +5.66 (p<0.05) in GS and ARAT 378 

scores, respectively (N=4). Frolov et al.’s [65] multi-centre RCT reported a higher 379 

improvement in the FMMA Distal, ARAT Grasp and ARAT Pinch scores of the BCI-device 380 

group (N=55) when compared to the control/SHAM group (N=19), but not in the ARAT Grip 381 
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scores where the values are both equal to 1.0 with p<0.01 for the BCI-device group and 382 

p=0.045 for the control. 383 

 384 

Studies with Healthy Participants (Prototype Group) 385 

The studies which involved pilot testing on healthy human participants had a combined total 386 

of individuals (sample size ranging from 1-32) who had no history of stroke or other 387 

neurological diseases. Right-handed individuals made up 44.24% of the combined population 388 

while the other 55.76% were unreported. These studies aimed to report the successful 389 

implementation of a BCI-robot system for hand rehabilitation and were more heterogeneous 390 

in terms of study and task designs than those studies that involved clinical testing. The most 391 

common approach was to design and implement a hand orthosis controlled by MI which 392 

accounted for 9 out of the 19 studies and were measured based on classification accuracy 393 

during the calibration/training period and online testing. Li et al. [73] and Stan et al. [79] also 394 

aimed to trigger a hand orthosis but instead of MI, the triggers used by Li et al. is based on an 395 

attention threshold while Stan et al. used a vision-based P300 speller BCI. Bauer et al. [82] 396 

compared MI against ME using a BCI-device while Ono et al. [85] studied the 397 

implementation of an action observation strategy with a combined visual and kinaesthetic 398 

feedback or auditory feedback. Five more studies [76,80,81,83,84] focused on varying the 399 

feedback while two more [74,86] assessed the performance and safety of a hybrid BCI with 400 

EMG, EOG or both. 401 

 402 

For the studies that had a clinical testing component, a methodological quality assessment by 403 

the PEDro Scale was performed. Two studies which appeared on the PEDro search [60,65] 404 

had predetermined scores in the scale and were extracted for this part while the rest were 405 

manually evaluated by the authors. Table 5 shows the results of the methodological quality 406 
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assessment against the scale. Note that in the PEDro Scale, the presence of an eligibility 407 

criteria is not included in the final score. 408 

 409 

Table 5. Methodological Quality of Clinical Studies based on PEDro Scale 410 

 Criteria 
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W
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 e
t 

a
l.

 

1 Eligibility criteria* 1 1 1 1 1 1 1 1 0 1 1 

2 Random allocation 1 0 0 0 0 0 1 0 0 1 1 

3 Concealed allocation 0 0 0 0 0 0 0 0 0 1 1 

4 Baseline comparability 1 0 1 0 1 1 1 0 0 0 0 

5 Blind subjects 0 0 0 0 0 0 0 0 0 1 1 

6 Blind therapists 0 0 0 0 0 0 0 0 0 1 0 

7 Blind assessors 1 0 0 0 0 0 1 0 0 0 1 

8 Adequate follow-up 1 1 1 1 1 1 0 1 1 1 1 

9 Intention-to-treat analysis 0 0 1 1 1 1 0 1 0 0 0 

10 Between-group comparisons 1 0 0 0 1 0 1 0 1 1 1 

11 Point estimates and variability 1 1 1 1 1 0 1 1 1 1 1 

Total  6 2 4 4 5 3 5 4 3 7 7 

 411 

*not included in the final score412 
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Discussion 413 

To the best of our knowledge, this article was the first to compile BCI-driven robotic systems 414 

specific for hand rehabilitation. During this review, we found several limitations present 415 

among the studies collected and we examine these in more detail here and provide 416 

recommendations for future work in this area.  417 

 418 

To provide clarity on the state-of-the-art and development of BCI-hand robot systems, we 419 

looked into the maturity of technology used in each study and determined by its readiness 420 

level (TRL). All but one in the prototype group was rated as having TRL 3 while the clinical 421 

group was more varied in their TRL (ranging from 5-7). The system used by Witkowski et al. 422 

[86], a prototype study, was rated TRL 4 due to the study being performed on the basis of 423 

improving and assessing its safety features. It is also worth noting that while a formal safety 424 

assessment was not performed for the TRL 3 prototypes of Stan et al. [79], Randazzo et al. 425 

[75] and Tacchino et al. [76], safety considerations and/or implementations were made; a 426 

criterion to be satisfied before proceeding to TRL 4. The system used by Chowdhury et al. is 427 

a good example of improving a TRL from 5 to 6 with a pilot clinical study published within 428 

the same year [63,64]. The two systems used in the RCT studies by Ang et al. [60] and 429 

Frolov et al. [65] achieved the highest score (TRL 7) among all of the studies which also 430 

meant that no BCI-hand robot system for stroke rehabilitation has ever been registered and 431 

commercially-released to date. This suggests that such systems lack the strong evidence that 432 

would propel commercialisation and technology adoption. 433 

 434 

Heterogeneity in the study designs was apparent in both the clinical and prototype groups. 435 

The lack of control groups and random allocation in clinical studies (e.g., only 2 out of 7 436 

studies are in the huge sample size RCT stage) made us unable to perform a meta-analysis of 437 
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effects and continue the study by Cervera et al [36] with a focus on BCI-hand robot 438 

interventions. Results from the methodological quality assessment showed that only two 439 

studies [68,69] had a score of 7 in the PEDro scale. Although non-conclusive, these results 440 

support the notion that most of the studies are not aligned with the criteria of high-quality 441 

evidence-based interventions. These factors also raise the need to develop clearly defined 442 

protocols when conducting BCI-hand robot studies on stroke patients. Until new systems 443 

have been assessed on this standard, it will be difficult to generate strong evidence supporting 444 

the effectiveness of BCI-robotic devices for hand rehabilitation.  445 

 446 

In the development of any BCI-robotic device there are several design and feature 447 

considerations that need to be made to ensure that the systems are both fit for purpose and 448 

acceptable to the end-user. These design considerations must go beyond the scope of 449 

understanding the anatomy of the hand and the physiology of motor recovery in response to 450 

therapy. Feedback from stroke patients should be an essential part of this design process. the 451 

extracted studies, we surveyed the extent of end-user involvement in the initial stages of 452 

development (i.e., through consultations, interviews and therapy observations) and we found 453 

that there were no explicit statements about these in the reports. We recommend, as good 454 

practice, for future work in this area to report the type and degree of patient and/or physician 455 

involvement in device development to allow reviewers and readers to more readily gauge the 456 

potential usability of the system. 457 

 458 

We were able to profile the BCI-hand robot systems regarding their technical specifications 459 

and design features. In hardware terms, a BCI-hand robot system involves three major 460 

components: (1) An EEG data acquisition system with several electrodes connected to a 461 

signal amplifier; (2) A computer where raw EEG data is received then processed by filters 462 
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and classifiers and where most of the cues and feedback during training is presented via a 463 

visual display; (3) a robotic hand rehabilitation system for providing the physical therapy 464 

back to the user. 465 

 466 

The majority of the studies (N=19) used a BCI solely based on EEG while the rest were 467 

combined with other sensors: EEG with EMG [60,63,72,76,80–83], EEG with force sensors 468 

[64] and an EEG-EMG-EOG hybrid system [74,86]. The purpose of this integration is mainly 469 

to improve signal quality by accounting for artefacts or to provide added modalities. Action 470 

potentials such as those caused by ocular and facial movements interfere with nearby 471 

electrodes and the presence of an added electrophysiological sensor accounting for these 472 

would enable the technician to perform noise cancellation techniques as a first step in signal 473 

processing. Almost all of the studies included used a standard EEG system with “wet” 474 

electrodes (e.g., g.USBamp by g.tec and BrainAmp by Brain Products) while three used 475 

Emotiv EPOC+, a semi-dry EEG system that uses sponge conductors infused with saline 476 

solution. While the use of dry electrodes has been observed in pilot and prototype studies of 477 

BCI-hand robot systems [52,49,78,87] and other motor imagery experiments [99–102], no 478 

dry EEG system was used in the final 30 studies that tested healthy or stroke participants. It is 479 

expected that as dry EEG systems continue to improve, their use in clinical studies of BCI 480 

will also become increasingly prominent.  481 

 482 

The degree of BCI-robotic control for the majority of the studies (N=26) was limited to 483 

triggering the device to perform grasping (opening and closing of hand) and pinching (a 484 

thumb-index finger pinch or a 3-point thumb-index-middle finger pinch) movements using 485 

MI and other techniques. This means that no robotic control setup among the screened studies 486 

were able to perform digit-specific MI. This is a limitation caused by the non-invasive setup 487 
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of EEG and is due to the low spatial resolution brought by the distances between electrodes 488 

[103]. The homunculus model, a representation of the human body in the motor strip, maps 489 

the areas of the brain where activations have been reported to occur for motor processes. The 490 

challenge of decoding each finger digit MI in one hand is that they only tend to occupy a 491 

small area in this strip. Hence even the highest resolution electrode placement system (i.e., 492 

the five percent or 10-5 system – up to 345 electrodes) would have difficulties accounting for 493 

digit-specific MI for BCI. In contrast to EEG, electrocorticography (ECoG) have been used 494 

to detect digit-specific MI. The electrodes of ECoG come in contact directly with the motor 495 

cortex and is an invasive procedure; making it non-ideal for use in BCI therapy [104]. It is 496 

worth noting however that some studies were successful in implementing continuous control 497 

based on ERD/ERS patterns: Bundy et al. [62] and Norman et al. [67] were able to apply 498 

continuous control of a 3-DOF pinch-grip exoskeleton based on spectral power while Bauer 499 

et al. [82] provided ERD-dependent control of finger extension for an end-effector robot. 500 

These continuous control strategies have been shown to be very useful in BCI-hand robots for 501 

assistive applications (i.e., partial or full device dependence for performing ADL tasks [105]). 502 

Whether this type of control can significantly improve stroke recovery is still in question as 503 

the strategy of robots for stroke rehabilitation can be more classified as a therapeutic 504 

“exercise” device. 505 

 506 

Signal processing and machine learning play a vital role in the development of any EEG-507 

based BCI. The pre-processing techniques (e.g., filtering, artefact removal), types of features 508 

computed from EEG, and the classifier used in machine learning can significantly affect the 509 

performance of the robotic system in classifying the user’s intent via MI [106]. This 510 

systematic review has revealed that approaches to develop MI EEG-based BCI are highly 511 

diverse in nature, which makes it difficult to compare across the systems and hinders the 512 
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development of new BCI systems informed by the strengths and weaknesses of existing state-513 

of-the-art systems. The diversity in the design process can be beneficial to develop complex 514 

MI EEG-based BCI systems to achieve high efficiency and efficacy. However, such newly 515 

developed systems should be open sourced and easily reproducible by the research 516 

community to provide valid performance comparisons and drive forward the domain of 517 

robotic-assisted rehabilitation.  518 

 519 

In addition to MI, other strategies for robotic control were reported. Diab et al. [88] and King 520 

et al. [89] both facilitated the movements of their respective orthoses by physical practice 521 

while Stan et al. [79] utilised a P-300 evoked potential speller BCI, where the user visually 522 

focused on a single alphanumerical character situated in a grid. The chosen character then 523 

corresponded to a command for the hand orthosis thereby producing the desired stimulus for 524 

the patient. While the latter study reported 100% accuracy rate in terms of intention and 525 

execution, the EEG channels were situated in the visual cortex rather than the motor strip 526 

which deviates from the goal of stimulating the desired brain region for plasticity. 527 

 528 

In order to facilitate hand MI and account for significant time-points in the EEG data, all the 529 

studies employed a cue-feedback strategy during their trials. 19 of the studies presented a 530 

form of visual cue while the rest, except for two unspecified [69,87], involved cues in 531 

auditory (“bleep”) [76,80–83], textual [78,79,89] or verbal [88] forms. As for the provision of 532 

a matching sensory feedback, 16 studies presented a combination of kinaesthetic and visual 533 

feedback with some also providing auditory feedback during successful movement attempts. 534 

All the studies provided kinaesthetic feedback through their robotic devices. Some systems 535 

with visual feedback, such as Wang et al. [68], Li et al. [73], Chowdhury et al. in both of their 536 

clinical studies [63,64] and Ono et al. in their clinical [66] and pilot testing experiments [85], 537 
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used a video of an actual hand performing the desired action. Ang et al. [60] and Stan et al. 538 

[79], in a different strategy, provided visual feedback through photo manipulation and textual 539 

display, respectively. While the latter two studies reported promising results (with Ang et al. 540 

in RCT stage and Stan et al. having 100% classification accuracy), it should also be 541 

considered that such cue and feedback types (including Graz visualisations and auditory 542 

forms) are non-representative of hand movement and may not provide the same stimulation 543 

as a geometrical representation of a hand moving its desired course. This may be essential 544 

when we base principles of stroke recovery in alignment with how MI correlates with AO – 545 

an underlying theme of the motor simulation theory proposed by Jeannerod [15]. Figure 4 546 

shows how different kinds of visual cue and feedback can be presented to participants to help 547 

facilitate MI. 548 

 549 

 550 

Figure 4. Visual cue and feedback during MI trials in different conditions. (a) Graz MI 551 
visualisations, (b) video recordings of hand movement and (c) virtual hand 552 

representation through VR/AR  553 
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Future Directions 554 

There is clearly great potential for the use of BCI-hand robots in the rehabilitation of an 555 

affected hand following stroke. Nevertheless, it is important to emphasise that there is 556 

currently no solid evidence to support the use of such systems within clinical settings. 557 

Moreover, the purported benefits of these systems rest on conjectures that require empirical 558 

evidence. In other words, there are grounds for supposing that MI could be useful within 559 

these rehabilitation settings but no supporting evidence. This systematic review has also 560 

revealed that there are a number of technological limitations to existing BCI-hand robotic 561 

systems. We stress an urgent need to address these limitations to ensure that the systems meet 562 

the minimum required levels of product specification (in measuring brain activity, processing 563 

signals, delivering forces to the hand and providing rich feedback and motivating settings). 564 

We question the ethics or usefulness of conducting clinical trials with such systems until they 565 

can demonstrate minimum levels of technological capability. We consider below what 566 

standards these systems should obtain before subjecting them to a clinical trial and discuss 567 

might constitute an acceptable standard for a clinical trial.  568 

 569 

Ideal Setup for a BCI-hand Robot 570 

We summarise the information revealed via the systematic review about what constitutes an 571 

acceptable setup for a BCI-hand robot for stroke rehabilitation. We focus on improving 572 

individual components in data acquisition, data processing, the hand rehabilitation robot, and 573 

the visual cue and feedback environment. Table 6 presents the features and specifications of a 574 

fully integrated acceptable system.575 
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Table 6. Exemplary Features and Specifications of Future BCI-Hand Robot Systems 576 

 577 

Component Features and Specifications 

Data Acquisition 

System and Software 

 

• Dry EEG system with 8-16 channels, comfortable and easy to use 

• Inclusion of other bio-signal sensors such as EMG, EOG, force, 

accelerometers to remove artefacts and improve classification 

• Robust and reliable signal processing software: machine learning-

based algorithms that discriminate brain states such as MI or 

evoked potentials and have lower calibration times 

 

Hand Robot • Safe, comfortable and aligned with the hand’s range of motion 

• Effective in providing kinaesthetic feedback 

• Use of back-drivable or soft actuators that effectively assist 

movement without additional injury 

• Multiple levels of safety and emergency features (mechanical, 

electronic, software), clear and obvious operation 

 

Visual Cue and 

Feedback 

• Provide rich visual cue and feedback to intended tasks, geometric 

representation of the hand (video or simulated environment), can 

be in multiple platforms such as display monitors or VR/AR 

headsets 

• Gamification of therapy exercises to provide an engaging regime to 

stroke patients 

 578 

 579 

The implementation of these features in an ideal BCI-robot setup needs to be weighed against 580 

socioeconomic factors in healthcare delivery for it to be considered market ready. An ideal 581 

BCI system should provide above chance-level classification (>60%) after the first session on 582 

the first day of therapy. Ideally, the classification algorithm should also translate to following 583 

sessions or days; reducing the number of training sessions and focusing on the main therapy 584 

tasks. An alternative approach is to focus on making the setup an engaging experience. In 585 

other words, the delivery of intervention can be started immediately the patient wears the 586 

EEG cap and runs the BCI system. For the hand robot system, more straightforward criteria 587 
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can be followed with the existence of the numerous design protocols, regulation standards 588 

and assessment matrices mentioned in this review. Nevertheless, end-user involvement in the 589 

design with the prioritisation of safety while allowing the most natural hand movement and 590 

ROM as possible is the recommended goal. 591 

 592 

Ideal Setup for Clinical Trials 593 

We also propose a set of specialised criteria for BCI-hand robot systems in addition to the 594 

standard motor improvement scores (e.g. ARAT, FMMA) evaluated during clinical trials. 595 

Firstly, classification accuracies between intended and interpreted actions from the data 596 

acquisition and software component should always be accounted to track the effectiveness of 597 

BCI in executing the clinical task. In addition to this, system calibration and training 598 

procedures, especially its duration, should be detailed in the protocol to document the 599 

reliability of the classification algorithm. There is not much to consider in the use of robotic 600 

devices as they are most likely to be mature (if not yet commercially available) before being 601 

used as the hardware component in the study. However, the devices’ functionality (i.e., task 602 

to be performed, degree of control and motion, actuation and power transmission etc.) should 603 

always be stated as they contribute to the evaluation of interactions between other 604 

components in the system. Lastly, controls for the clinical study must always be included, 605 

even with small-scale patient studies. As discussed in this article, these controls may be in the 606 

form of sham, standard arm therapy (SAT), standard robotic therapy, congruency feedback 607 

and quality of stimuli among others. Having regarded and implemented these criteria would 608 

help homogenise the clinical data for future meta-analyses, strengthen evidence-based results 609 

and provide a reliable way of documentation for individual and/or interacting components.610 
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Proposed roadmap 611 

We suggest that the immediate focus for BCI-controlled robotic device research should be 612 

around the engineering challenges. It is only when these challenges have been met that it is 613 

useful and ethical to subject the systems to clinical trials. We recommend that the challenges 614 

be broken down into the following elements: (1) data acquisition; (2) signal processing and 615 

classification; (3) robotic device; (4) priming and feedback environment; (5) integration of 616 

these four elements. The nature of these challenges means that a multidisciplinary approach is 617 

required (e.g. the inclusion of psychologists, cognitive neuroscientists and physiologists to 618 

drive the adoption of reliable neural data acquisition). It seems probable that progress will be 619 

made by different laboratories tackling some or all of these elements and coordinating 620 

information sharing and technology improvements. Once the challenges have been met (i.e. 621 

there is a system that is able to take neural signals and use these to help drive a robotic 622 

system capable of providing appropriate forces to the hand within a motivating environment) 623 

then robust clinical trials can be conducted to ensure that the promise of this approach does 624 

translate into solid empirical evidence supporting the use of these systems within clinical 625 

settings. 626 
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Conclusions 627 

Research on BCI-controlled robotic devices for hand rehabilitation after stroke is a rapidly 628 

growing field and is gaining traction in the academic and medical research communities. The 629 

three main objectives of this systematic review were: (1) to survey how BCI technologies are 630 

utilised in controlling robotic devices for hand rehabilitation, (2) to determine the state-of-631 

the-art developments in BCI systems in terms of hand MI resolution and degree of robotic 632 

control, and (3) to assess the clinical significance of BCI-hand robot systems by accounting 633 

clinical studies with outcome measures relating to motor recovery. Here, we were able to 634 

address these three and provide insight on the future of BCI-controlled robotics for stroke 635 

therapy.  636 

 637 

We surveyed 30 EEG-based BCI-hand robot systems designed for stroke with majority of the 638 

studies (N=19) in their prototype development and pilot testing stages having TRL scores of 639 

3-4. The rest of the studies (N=11) involved a clinical component into it, having tested on 640 

stroke patients. The systems used in the clinical group were rated with the highest 641 

technological readiness: TRL 7 for two studies undergoing RCT. Profiling the EEG 642 

acquisition systems confirmed the still dominance of standard EEG systems that uses “wet” 643 

electrodes over the recent dry electrode systems. However, as the latter’s technology 644 

continues to improve in the next years, we may see a positive shift towards these techniques 645 

in terms of usage and preference. The common goal among these studies is to successfully 646 

discriminate and with high accuracy a user’s intent via motor imagery. While most have 647 

reported reliable, above chance-level accuracy rates, we observe the limitations evident in 648 

hand motor imagery resolution (e.g., intention to grasp or pinch as opposed to rest, 649 

discriminating from left and right movement, signal processing techniques) and the degree of 650 

robotic control (i.e., triggering and continuous control). The task designs, cues and matching 651 
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sensory feedback modes play an important role in motor imagery ability. We give attention to 652 

the inferior visual stimuli presented in most of the trials and suggest the use of a rich and 653 

engaging one through the different immersive platforms such as Virtual Reality and 654 

Augmented Reality. We also report that the clinical adoption of BCI-hand robots is still in its 655 

infancy due to few studies reporting significant improvements in the functional recovery of 656 

stroke patients. We suggest the development of a standard protocol in assessing clinical 657 

outcomes as an effort to strengthen the argument that these systems are not only 658 

economically feasible but also viable and robust for the therapy of motor impairment post-659 

stroke. 660 

 661 

Finally, we recommend that future developers focus on end-user involvement in the early 662 

design stages, achieving the successful integration of the individual components and making 663 

the system as safe and cost-effective as possible without compromising on reliability and 664 

robustness. These steps should allow this promising technology to advance, be adopted by the 665 

stakeholders and improve the quality of life for stroke survivors.666 
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ERD  Event-Related Desynchronisation 683 

ERP  Event-Related Potential 684 

ERS  Event-Related Synchronisation 685 

ERSP  Event-Related Spectral Perturbation 686 
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PS  Pinch Strength 699 

QSR  Quality System Requirement 700 

RCT  Randomised Clinical Trial 701 
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TRL  Technology Readiness Levels 705 
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Table 2. Summary of Studies 1035 

Authors Participants Study Design Task Design BCI-Hand Robot Main Outcomes 

Studies involving stroke patients    

Ang et al., 2014 [60] 

 

 

 

 

 

 

 

 

 

N=27 (7F:14M) 

Moderate to severe 

impairment of UE 

function                

Mean age: 54.2y   

Mean stroke duration: 

385.1 days 

3-armed RCT of motor 

function with MI-BCI-

device as intervention 

Control groups: device 

only (Haptic Knob), 

SAT 

Photo manipulation: 

hand opening and 

closing, pronation and 

supination 

Cue: visual (photo) 

Feedback: visual (photo) 

and kinaesthetic 

EEG: 27 channels to 

classify ERD/ERS and 

coupled with EMG to 

confirm MI 

Device: Haptic Knob, 

2-DOF for hand 

grasping and knob 

manipulation 

Actuation: DC brushed 

motors with linear belt 

drive 

Control: trigger 

Clinical outcome measure:            

FMMA Distal, improvement in weeks 3, 

6, 12, 24 

BCI-device group = 2.5±2.4, 3.3±2.3, 

3.2±2.7, 4.2±3.1 

Device only group = 1.6±2.5, 2.9±3.0, 

2.5±2.6, 2.5±3.0 

SAT group = 0.4±1.1, 1.9±1.9, 1.0±1.3, 

0.3±2.1 

Barsotti et al., 2015 

[61] 

 

 

 

 

 

 

N=3 (1F:2M)     

Chronic stroke 

survivors with right 

arm hemiparesis   

Mean age: 62±12y 

Probing MI 

classification by BCI 

training, time-frequency 

analysis and robot 

trajectories 

Uncontrolled 

Reaching-grasping-

releasing 

Cue: visual 

Feedback: kinaesthetic 

Minimum time required 

to perform MI = 2s 

EEG: 13 channels to 

classify ERD 

Device: BRAVO 2-

DOF hand orthosis 

attached to full UE 

exoskeleton 

Actuation: DC motors 

with rigid links 

Control: trigger 

Mean classification accuracy during BCI 

training = 82.51±2.04% 

Average delay from visual cue to robot 

initiation = 3.45±1.6s 

Average delay due to patient’s ability to 

start MI = 1.45s 

Bundy et al., 2017 

[62] 

 

 

 

N=10                 

Chronic hemiparetic 

stroke with moderate to 

severe UE hemiparesis 

Mean age: 58.6±10.3y 

 

Motor function 

evaluation before and 

after intervention by 

MI-BCI from 

unaffected hemisphere 

Uncontrolled 

Opening of affected hand 

Cue: visual 

Feedback: visual and 

kinaesthetic 

EEG: 8 channels to 

classify ERD 

Device: 3-pinch grip, 

1-DOF hand 

exoskeleton 

Clinical outcome measure:                      

ARAT Score, improvement from 

baseline to completion (12 weeks) 

Mean ± SD = 6.20±3.81 
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Bundy et al. (cont’d) 

 

Control: continuous 

depending on spectral 

power 

Note: 5.7 ARAT Score is the minimal 

clinically important difference in chronic 

stroke survivors 

Carino-Escobar et al. 

2019 [70] 

N=9 (4F:5M)                 

Subacute ischaemic 

stroke                     

Mean age: 59.9±2.8y 

Mean stroke duration: 

158(±74)-185(±73) 

days 

Determine longitudinal 

ERD/ERS patters and 

functional recovery with 

BCI-robot 

Uncontrolled 

Extension-flexion of 

hand fingers 

Cue: visual (Graz MI) 

Feedback: visual and 

kinaesthetic 

EEG: 11 channels to 

classify ERD/ERS 

Device: hand finger 

orthosis 

Actuation: DC motor 

with screw system for 

linear displacement, 

flexible links 

Control: trigger 

FMA-UE: N=3 reported equal or higher 

than 3 score gains, N=3 no score gains,  

Mean longitudinal ERD/ERS: beta bands 

have higher association with time since 

stroke onset than alpha, and strong 

association with UL motor recovery 

Chowdhury et al., 

2018-b [63] 

 

 

 

 

 

 

N=20                          

10 healthy and 10 

hemiplegic stroke 

patients                 

Mean age (healthy, 

stroke): 41±9.21y, 

47.5±14.23y 

Probe non-adaptive 

classifier (NAC) vs. 

Covariate Shift adaptive 

classifier (CSAC) of MI 

in EEG 

Control group: healthy 

participants 

Extension-flexion of 

hand fingers 

Cue: visual 

Feedback: visual and 

kinaesthetic 

EEG: 12 channels with 

EMG to classify 

ERD/ERS 

Device: EMOHEX 3-

finger, 3-DOF each, 

exoskeleton (thumb, 

index, middle) 

Actuation: servomotors 

with rigid links 

Control: trigger 

Mean classification accuracies during 

BCI training: 

Healthy group: calibration = 

78.50±9.01%, NAC = 75.25±5.46%, 

CSAC = 81.50±4.89% 

Patient group: calibration = 

79.63±13.11%, NAC = 70.25±3.43%, 

CSAC = 75.75±3.92% 

Chowdhury et al., 

2018-c [64] 

 

 

 

 

 

 

N=4 (2F:2M)   

Hemiplegic stroke 

patients, right-handed, 

left hand impaired 

Mean age: 

44.75±15.69y       

Mean stroke duration: 

7 ±1.15mo 

Motor function 

evaluation by using 

active physical practice 

followed by MI-BCI-

controlled device 

intervention 

Uncontrolled 

Extension-flexion of 

hand fingers 

Cue: visual 

Feedback: visual and 

kinaesthetic 

EEG: 12 channels with 

force sensors to 

classify ERD/ERS 

Device: EMOHEX 3-

finger, 3-DOF each, 

exoskeleton (thumb, 

index, middle) 

Actuation: servomotors 

with rigid links 

Control: trigger 

Classification accuracies of 4 

participants: P01 = 81.45±8.12%, P02 = 

70.21±4.43%, P03 = 76.88±4.49%, P04 

= 74.55±4.35% 

Clinical outcome measures:                      

GS and ARAT Scores, improvement 

from baseline to completion (6 weeks) 

GS scores: group mean difference = 

+6.38 kg, p=0.06 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 15, 2019. ; https://doi.org/10.1101/2019.12.11.19014571doi: medRxiv preprint 

https://doi.org/10.1101/2019.12.11.19014571
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Page 49 of 56 
 

Chowdhury et al., 

2018-c (cont’d) 

ARAT scores: group mean difference = 

+5.66, p<0.05 

Frolov et al., 2017 

[65] 

 

 

N=74 (26F:48M)    

BCI 55: Control 19 

Subacute or chronic 

stroke with mild to 

hemiplegic hand 

paresis, right-handed 

Multi-centre RCT of 

MI-BCI-controlled hand 

exoskeleton 

Control group: SHAM 

3 Tasks: (1) motor 

relaxation, (2) imagery 

of left-hand opening, (3) 

imagery of right-hand 

opening 

Cue: visual 

Feedback: visual and 

kinaesthetic 

EEG: 30 channels to 

classify the three 

mental tasks by 

Bayesian classifier 

based on covariance 

matrices 

Device: hand 

exoskeleton by 

Neurobotics, Russia 

Actuation: pneumatic 

motors with spring 

flexors 

Control: trigger 

Mean classification accuracy during BCI 

training = 40.6% 

Clinical outcome measures: 

FMMA Distal and ARAT Scores, 

improvement in 10 days of training 

FMMA Distal = 2.0, p<0.01 (BCI) and 

1.0, p=0.046 (control) 

ARAT Grasp = 3.0, p<0.01 (BCI) and 

1.0, p=0.0394 (control) 

ARAT Grip = 1.0, p<0.01 (BCI) and 1.0, 

p=0.045 (control) 

ARAT Pinch = 1.0, p<0.01 (BCI) and 

0.0, p=0.675 (control) 

Norman et al., 2018 

[67] 

N=8 (All male) 

Cortical and 

subcortical single 

haemorrhagic or 

ischaemic stroke (at 

least 6 months)     

Mean age: 59.5±11.8y 

Implementation of 

sensorimotor rhythm 

(SMR) control on robot-

assistive movement 

Uncontrolled 

Extension of hand finger 

Cue: visual 

Feedback: visual and 

kinaesthetic 

EEG: 16 channels 

mapping SMR changes 

Device: FINGER robot 

Actuation: Linear 

servo-tube actuator 

with rigid links 

Control: Visual - 

continuous (colour 

change respective to 

SMR), Robot - trigger 

Mean classification accuracies: 

8 participants: 83.1%, 76.3%, 73.3%, 

68.2%, 74.5%, 86.5%, 47.9%, 40.0% 

Box and blocks test (BBT):  

At screening: mean score = 14.3±10.0, 

mean change after therapy = 4.3±4.5 

(range 0-12). Higher score changes in 

participants who demonstrated SMR 

control but not significant (p=0.199) 

 

Ono et al., 2016-a 

[66] 

 

 

 

N=21 (9F:12M) 

Chronic stroke patients 

with hemiplegic hands 

Mean age: 57.9±2.4y 

Probe congruent vs. 

incongruent MI 

feedback strategies 

Control groups: 

congruent (synchronous 

proprioceptive and 

visual feedback) and 

Grasping of a tennis ball 

with a hand 

Cue: visual (video of 

hand performing action) 

Feedback: visual and 

kinaesthetic 

EEG: 9 channels to 

classify ERD 

Device: Power Assist 

Hand - Team ATOM, 

Atsugi, Japan 

Mean classification accuracies: 

Congruent feedback = 56.8±5.2%, 

chance level=36.4±4.5% 

Incongruent feedback = 40.0±3.5%, 

chance level 35.4±4.5% 
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Ono et al., 2016-a 

(cont’d) 

incongruent 

(proprioceptive 

feedback given 1s after 

visual) 

Actuation: pneumatic 

motors with rigid links 

Control: trigger 

Tsuchimoto et al., 

2019 [69] 

N=18 (3F:14M)   

Chronic haemorrhagic 

or ischaemic stroke 

(from 2mo onwards) 

Mean age: 58±10y 

Implementation of MI-

controlled robotic 

orthosis as 

neurofeedback 

Control: SHAM 

Extension of hand finger 

Cue: unspecified 

Feedback: kinaesthetic 

and electrical stimulation 

EEG: 5 channels to 

classify MI 

Device: robotic finger 

orthosis 

Actuation: servo 

motors with rigid links 

Control: trigger 

Significant time-intervention interaction 

in the ipsilesional sensorimotor cortex. 

Higher coactivation of sensory and motor 

cortices for neurofeedback group in the 

ipsilesional sensorimotor cortices as 

compared to SHAM 

Wang et al., 2018 

[68] 

N=24 (4F:20M) 

Chronic stroke patients 

with paralysed hands 

Mean age: 54±9y 

Implementation of 

action observation and 

motor imagery 

(AO+MI) with 

kinaesthetic feedback 

Control: SHAM 

Hand grasping 

Cue: visual (video of 

hand action / textual cues 

in SHAM group) 

Feedback: visual and 

kinaesthetic 

EEG: 16 channels to 

classify ERD 

Device: robot hand 

Control: Trigger 

AO+MI with kinaesthetic feedback 

group showed significant improvements 

in FMA-UE across longitudinal 

evaluation [χ2(2) = 7.659, p = 0.022], no 

significant difference in SHAM group 

[χ2(2) = 4.537, p = 0.103] 

Authors Participants Study Design Task Design BCI-Hand Robot Main Outcomes 

Studies involving healthy participants    

Bauer et al., 2015 

[71] 

 

 

 

 

 

N=20 (11F:9M)    

Right-handed        

Mean age: 28.5±10.5y 

Study on MI as 

compared to motor 

execution (ME) using 

BCI-device 

Opening of left hand 

Cue: auditory 

Feedback: kinaesthetic 

EEG: 31 channels to 

detect ERD, with EMG 

to classify MI from 

execution and account 

for tonic contraction 

Device: Amadeo, 

Tyromotion, Austria 

Control: 

discontinuation of ERD 

stops finger extension 

Principal component analyses (between 

MI and execution) generated coefficients 

for the visual (VIS) and kinaesthetic 

(KIS) imagery scale, BCI-robot 

performance (BRI), tonic contraction 

task (MOC) and visuomotor integration 

task (VMI). VIS and KIS yielded high 

coefficients on MI while MOC and VMI 

yield high coefficients on ME. BRI show 

high coefficient yields on both MI and 

ME. 
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Cantillo-Negrete et 

al., 2015 [72] 

 

N=1 Design and 

implementation of a MI-

controlled hand orthosis  

Extension-flexion of 

right-hand finger 

Cue: visual (modified 

Graz) 

Feedback: kinaesthetic 

EEG: 11 channels to 

detect MI 

Device: 1-DOF hand 

finger orthosis 

Actuation: DC motor 

with screw system for 

linear displacement, 

flexible links 

Control: trigger 

Correctly classified trials = 78% 

Chowdhury et al., 

2015-a [73] 

 

 

 

N=6                         

Age range: 20-30y 

Study of cortico-

muscular coupling in 

robotic finger 

exoskeleton control  

Extension-flexion of 

hand fingers 

Cue: visual 

Feedback: kinaesthetic 

EEG: 10 channels with 

EMG to classify MI 

Device: 3-finger, 3-

DOF each, exoskeleton 

(thumb, index, middle) 

Actuation: servomotors 

with rigid links 

Control: trigger 

Mean classification accuracies: passive 

execution = 69.17%, hand execution = 

71.25%, MI = 67.92% 

Coffey et al., 2014 

[74] 

 

 

 

N=3 (All male)     

Right-handed 

Age range: 24-28y 

Design and 

implementation of a MI-

controlled hand orthosis 

Hand digit and wrist 

contraction and 

extension 

Cue: visual (Graz MI) 

Feedback: kinaesthetic  

EEG: 27 channels to 

classify MI 

Device: hand glove 

controlled by Arduino  

Actuation: pneumatic 

Control: trigger 

Glove inflation-deflation cycle = 22s 

Classification accuracies of 3 

participants: A = 92.5%, B = 90.0%, C = 

80.0% 

Diab et al., 2016 [75] 

 

 

 

 

 

N=5 Design and 

implementation of 

EEG-triggered wrist 

orthosis with accuracy 

improvement 

Hand opening and 

closing 

Cue: verbal instruction 

Feedback: kinaesthetic 

EEG: 14 channels to 

detect hand movement-

related EEG 

Device: actuated Talon 

wrist orthosis 

Actuation: linear 

Control: trigger 

Mean classification accuracies: 

simulation studies = 95%, online BCI 

training = 86% 
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Fok et al., 2011 [76] N=4 Design and 

implementation of a MI-

controlled hand orthosis 

Hand opening and 

closing 

Cue: unspecified 

Feedback: visual (cursor 

movement) and 

kinaesthetic 

EEG: 14 channels to 

detect MI-related ERD 

Device: actuated Talon 

wrist orthosis 

Actuation: linear 

actuator 

Control: trigger 

EEG signals from imagined hand 

movement was correlated with the 

contralesional hemisphere and utilised to 

trigger the actuation of orthosis 

ERD was detected from 12 Hz bin power 

of EEG during move condition 

Li et al., 2019 [77] N=14 (4F:10M)      

Mean age: 23.8±0.89y 

Design and 

implementation of an 

attention-controlled 

hand exoskeleton with 

rigid-soft mechanism 

Hand grasping 

Cue: visual (video of 

hand action) 

Feedback: kinaesthetic 

EEG: 3 channels to 

map signals relative to 

attention 

Device: hand 

exoskeleton 

Actuation: linear 

actuator with rigid-soft 

mechanism 

Control: Trigger 

Mean classification accuracy: 

95.54% actuation success rate against the 

attention threshold 

Holmes et al., 2012 

[78] 

 

 

 

 

 

 

N=6 (All male, young 

adults) 

Design and 

implementation of a MI-

controlled hand orthosis 

Hand opening and 

closing 

Cue: textual 

Feedback: kinaesthetic 

EEG: 14 channels to 

detect hand movement-

related EEG 

Device: ExoFlex Hand 

Exoskeleton controlled 

by Arduino 

Actuation: linear 

actuator connected to 

chained links that flex 

Control: trigger 

Classification accuracies of 6 

participants: T001 = 95%, T002 = 98%, 

D001 = 91%, U001 = 93%, E001 = 87%, 

E002 = 86% 

King et al., 2011 [79] 

 

 

 

N=1 (Female) 24y Contralateral control of 

hand orthosis using 

EEG-based BCI 

Right hand idling and 

grasping 

Cue: textual 

Feedback: visual and 

kinaesthetic 

EEG: 63 channels to 

control contralateral 

hand movement 

Device: hand orthosis 

Offline classification accuracy = 

95.3±0.6%, p < 3.0866×10−25 

Average lag from voluntary contractions 

to BCI-robot control = 2.24 ± 0.19s (after 

5 sessions) 
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King et al. (cont’d) Actuation: servomotors 

attached to Bowden 

cables as tendons 

Control: trigger 

 

Naros et al., 2016 

[80] 

 

N=32 (16F:16M)   

Mean age: 25.9±0.5y 

2x2 factorial design 

with parameters: 

adaptive classifier 

threshold and non-

adaptive classifier 

threshold, contingent 

feedback and non-

contingent feedback 

Opening of right hand 

Cue: auditory 

Feedback: kinaesthetic 

EEG: 32 channels to 

detect ERD, with EMG 

to classify MI (FC3, 

C3, CP3 used) 

Device: Amadeo, 

Tyromotion, Austria 

Control: trigger 

Significant enhancement in group 1 

(adaptive classifier + contingent 

feedback), p=0.0078 

Significant reduction in group 4 (non-

adaptive classifier + non-contingent 

feedback), p=0.0391 

Motor performance improvement over 

baseline from first and last tasks, 

significant results: 

Group 1 (adaptive classifier + contingent 

feedback), p=0.0313 

Group 4 = (non-adaptive classifier + 

non-contingent feedback), p=0.0411 

Ono et al., 2018-b 

[81] 

N=28                    

Right-handed except 1 

Implementation of an 

action observation 

strategy with visual and 

proprioceptive, or 

auditory feedback to MI 

Control group: SHAM 

Grasping of a tennis ball 

with a hand 

Cue: visual (video of 

hand performing action) 

Feedback: visual, 

kinaesthetic and auditory 

EEG: 9 channels to 

classify ERD 

Device: Power Assist 

Hand - Team ATOM, 

Atsugi, Japan 

Actuation: pneumatic 

motors with rigid links 

Control: trigger 

AO+MI + proprioceptive and visual 

feedback:  

Mean MI-ERD powers of correct 

feedback vs SHAM provide significant 

interaction, F1,17=6.618, p=0.020 (6 days) 

Statistically significant increase in MI-

ERD power in correct feedback group 

over baseline, p=0.012 (6 days) 

Stan et al., 2015 [82] 

 

 

 

 

N=9 Trigger a hand orthosis 

using a P300 speller 

BCI 

Spell E (enable), A (hand 

opening) and B (hand 

closing) in P300 speller 

BCI to perform hang 

grasping, moving and 

releasing objects 

Cue: textual (spelling) 

EEG: 8 channels 

focusing on visual 

cortex 

Device: hand orthosis 

Actuation: 2 

servomotors and 

Mean classification accuracies: 100% 

(on 6th letter flash during calibration) 
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Stan et al. (cont’d) Feedback: visual 

(textual) and kinaesthetic 

current feedback 

circuitry 

Control: trigger 

Ramos-Murguialday 

et al., 2012 [83] 

N=23                     

Mean age (contingent 

positive, contingent 

negative, SHAM): 

26.6±4y, 26.5±5y, 

26.2±2y 

Probing MI with 

proprioceptive feedback 

Experimental groups: 

contingent positive, 

contingent negative 

feedback 

Control group: SHAM 

5 tasks: MI without 

direct control, MI with 

direct control, passive, 

active, rest 

Cue: auditory 

Feedback: visual and 

kinaesthetic 

EEG: 61 channels with 

EMG to classify 

ERD/ERS 

Device: hand orthosis 

Actuation: DC motor 

M-28 with a worm 

gearhead and Bowden 

cables for each finger 

Control: trigger 

Contingent positive feedback provided 

higher BCI performance during MI 

without feedback than contingent 

negative and SHAM; and higher during 

MI with or without feedback as 

compared to rest 

Ramos-Murguialday 

and Birbaumer, 2015 

[84] 

N=9                      

Right-handed        

Mean age: 26.6±4y 

Detect oscillatory 

signatures of motor 

tasks during EEG 

5 tasks: MI without 

direct control, MI with 

direct control, passive, 

active, rest 

Cue: auditory 

Feedback: visual and 

kinaesthetic 

EEG: 61 channels with 

EMG to classify 

ERD/ERS 

Device: hand orthosis 

Actuation: DC motor 

M-28 with a worm 

gearhead and Bowden 

cables for each finger 

Control: trigger 

Significant change in power in all 

frequency ranges during MI with direct 

control before trial initiation  

Kinaesthetic feedback increased 

significant changes in alpha and beta 

power; therefore, increasing BCI 

performance 

 

Randazzo et al., 2018 

[85] 

 

 

 

 

 

 

 

N=9 (2F:7M)        

Mean age: 23±5y 

Design and 

implementation of a 

hand orthosis with 

testing of kinaesthetic 

effects in EEG 

4 tasks: rest (REST), 

exoskeleton-induced 

hand motions (EXO), MI 

of right hand (MI), 

exoskeleton-induced 

hand motions plus MI 

(MIEXO) 

Cue: visual 

Feedback: kinaesthetic 

EEG: 16 channels to 

detect MI 

Device: mano hand 

exoskeleton 

Actuation: linear 

servomotors attached 

to Bowden cables as 

tendons 

Control: passive 

(exoskeleton not 

dependent on MI to 

Mean classification accuracies among 

groups: 

(vs REST) MI = 63.02±5.91%, EXO = 

69.64±5.74%, MIEXO = 72.19±6.57% 

MIEXO vs EXO = 69.91±9.86% 

Chance level at 95% confidence = 58% 

(N=50 trials) 
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Randazzo et al. 

(cont’d) 

move during MIEXO 

task) 

Tacchino et al., 2017 

[86] 

N=8 (7F:1M)          

Right-handed          

Mean age: 26.3±1.9y 

2x2 factorial design 

with parameters: glove, 

no glove, active 

movement, passive 

movement 

Opening and closing of 

hand, 4 tasks: (A) glove 

with active movement, 

(B) glove with passive 

movement, (C) no glove 

with active movement, 

(D) no glove and no 

movement 

Cue: auditory 

Feedback: kinaesthetic 

EEG: 19 channels with 

EMG to detect 

ERD/ERS (C3, F3, Cz 

used)  

Device: Gloreha hand 

rehabilitation glove 

Actuation: electric 

actuators with Bowden 

cables on each finger 

Control: passive (glove 

not dependent on brain-

state during tasks) 

Statistically significant ERD changes in 

beta and mu bands were observed to 

initiate earlier in tasks A and C (involves 

active movement) 

Stronger and longer ERD was observed 

in tasks A and B (involves robotic 

assistance) suggesting reinforced afferent 

kinaesthetic feedback 

Vukelic and 

Gharabaghi, 2015 

[87] 

N=11 (4F:7M)       

Right-handed          

Mean age: 25.83±3.1y 

Assessment 

sensorimotor activity 

during MI with either 

visual or kinaesthetic 

feedback 

Right hand opening 

Cue: visual (coloured 

cursor ball) 

Feedback: visual and 

kinaesthetic (separated 

by experimental groups) 

EEG: 128 channels to 

detect ERD/ERS 

during MI (F3, CP3, 

C3 used) 

Device: Amadeo, 

Tyromotion, Austria 

Control: trigger 

MI + kinaesthetic feedback group 

resulted in higher beta ERS (p=0.02) 

during rest and higher beta ERD 

(p=0.04) during MI 

Kinaesthetic feedback provides higher 

stability and sustained beta ERD activity 

than visual feedback  

Witkowski et al., 

2014 [88] 

N=12 (4F:8M)      

Right-handed           

Mean age: 28.1±3.63y 

Assessment 

performance and safety 

of EEG-EOG hybrid 

BCI 

Right hand grasping 

Cue: visual (coloured 

squares and arrows) 

Feedback: kinaesthetic 

EEG: 5 channels with 

EOG and EMG to 

detect ERD during MI 

Device: HX hand 

exoskeleton 

Actuation: DC motors 

with Bowden cables for 

thumb and index 

fingers 

Control: trigger 

Mean classification accuracies: 

EEG only = 63.59±10.81% 

EEG/EOG hybrid = 60.77±9.42% 

Mean safety criterion violations during 

rest: 

EEG only = 45.91±26.8% 

EEG/EOG hybrid = 10.14±0.3% 
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Zhang et al., 2019 

[89] 

N=6 (2F:4M)       

Right-handed          

Age range: 23-26y 

Implementation of a 

multimodal system 

using EEG, EMG and 

EOG to control a soft-

robotic hand 

Graz visualisation and 

auditory instructions, eye 

movements and physical 

practice (hand gestures) 

Cue: visual (Graz MI), 

auditory 

Feedback: visual and 

kinaesthetic 

EEG with EMG and 

EOG: 40 channels to 

analyse ERD/ERS 

patterns 

Device: Soft pneumatic 

finger 

Actuation: pneumatic 

actuator with soft 

structures 

Control: trigger 

Mean classification accuracies: 

EOG = 94.23% 

EEG = 31.46% 

EMG = 36.38% 

Multimodal = 93.83±0.02% 

 1036 

UE = Upper Extremity, MI = Motor Imagery, BCI = Brain-Computer Interface, RCT = Randomised Clinical Trial, SAT = Standard Arm Therapy,  1037 

EMG = Electromyography, EOG = Electrooculography, ERD/ERS = Event-Related Desynchronisation/Synchronisation, FMMA = Fugl-Meyer Motor Assessment,  1038 

ARAT = Action Research Arm Test, GS = Grip Strength, DOF = Degrees-of-Freedom 1039 
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