
 

1 

 

Genetic Polymorphisms, Adherence to Mediterranean Diet 
and Microbiota-Associated Urolithin Metabotypes: A 
Complex Cocktail to Predict the Obesity in 
Childhood-Adolescence 

Adrián Cortés-Martín
1
, Gonzalo Colmenarejo

2
, María Victoria Selma

1
 & Juan Carlos Espín

1
* 

1
 Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Dept. Food Science 

and Technology, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain. 
2
 Biostatistics and Bioinformatics Unit, IMDEA Food Institute, Crta. de Cantoblanco nº 8, 28049 Madrid, Spain. 

* Correspondence: jcespin@cebas.csic.es 

Environmental and genetic factors are associated with pandemic obesity since childhood. 
However, the association of overweight-obesity with these factors, acting as a consortium, has 
been scarcely studied in children. We aimed here to assess the probabilities of being 
overweighed-obese in a randomly recruited cohort of Spanish children and adolescents (n=415, 

517 years-old) by estimating the odds ratios for different predictor variables, and their relative 
importance in the prediction. The predictor variables were ethnicity, age, sex, adherence to the 
Mediterranean diet (KIDMED), physical activity, urolithin metabotypes (UM-A, UM-B and UM-0) 
as biomarkers of the gut microbiota, and 53 single-nucleotide polymorphisms (SNPs) from 43 
genes mainly related to obesity and cardiometabolic diseases. A proportional-odds logistic 
ordinal regression, validated through bootstrap, was used to model the data. While every 
variable was not independently associated with overweight-obesity, however, the ordinal 
logistic model revealed that overweight-obesity prevalence was related to being a young boy 
with either UM-B or UM-0, low KIDMED score and high contribution of a consortium of 24 SNPs, 
being rs1801253-ADRB1, rs4343-ACE, rs8061518-FTO, rs1130864-CRP, rs659366-UCP2, 
rs6131-SELP, rs12535708-LEP, rs1501299-ADIPOQ, rs708272-CETP and rs2241766-ADIPOQ the 
top-ten contributing SNPs. Additional research should confirm and complete this model by 
including dietary interventions and the individuals’ gut microbiota composition. 

 

Introduction 

Obesity is an aetiological condition associated with some types of cancer and cardiometabolic 
diseases such as type-2 diabetes, metabolic syndrome, non-alcoholic steatohepatitis, and 
hypertension1. Nowadays, it is widely accepted that the combination of high-energy diets, genetic 
make-up, sedentary lifestyles and gut dysbiosis (impaired composition and functionality of the gut 
microbiota) are involved in the obesity pandemic2,3,4. The prevalence of these significant health 
threats has risen to shocking proportions worldwide, including countries like Spain with ancestral 
adherence to the Mediterranean diet5. The increase in the rate of obesity has been mainly 
attributed to the ‘Westernization’ of the diet, the decrease of physical activity from childhood, 
currently aggravated by the abuse of playing videogames, and the increasingly early access to 
digital devices such as smartphones6. However, other potential variables could be participating in 
this pandemic.  

Many studies have associated obesity in children and adults with single nucleotide 
polymorphisms (SNPs). For example, in genome-wide association studies (GWAS), the rs9939609 
SNP in the fat-mass-and-obesity-associated (FTO) gene has been reported to account for a modest, 
but a statistically significant, increase of 0.4 kg/m2 body mass index (BMI) units for each risk allele 
(A)7. Although it is not fully understood yet, this association is partially mediated via controlling 
feeding behaviour8. However, not all the studies report this association, including those conducted 
in the child population9,10. Indeed, more than one million SNPs have been detected in the human 
genome11, and thus, instead of only one or few specific SNPs, it is more conceivable to expect the 
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complex action of a consortium of SNPs potentially interacting with many other variables and 
associated with different conditions, including obesity.  

The gut microbiota is also involved in the pathophysiology of obesity, although the associated 
mechanisms are not fully known yet3. Nevertheless, a number of pathways have been identified 
such as the translocation of lipopolysaccharides (LPS) from the gut to the bloodstream12, the 
regulation of gut hormones, energy harvest, inflammatory responses, lipogenesis and immune 
interactions13 as well as the regulation of white adipose tissue inflammation via microRNAs14. 
Recently, a potential nexus between the dissimilar metabolism of some dietary constituents by the 
microbiota and obesity has been proposed. This has been suggested for the metabolism of the 
polyphenols isoflavones15 and ellagitannins16,17,18 that yield specific metabolites, that is, equol 
and(or) O-desmethylangolensin (ODMA) in the case of isoflavones19, and different urolithin 
combinations in the case of ellagitannins17. These particular metabolisms give rise to specific 
metabolizing phenotypes (so-called ‘metabotypes’16) such as equol and(or) ODMA ‘producers’ vs 
‘non-producers’ in the case of isoflavones19, and also the urolithin metabotypes associated with 
the metabolism of ellagitannins, i.e., metabotype A (UM-A; individuals that produce only urolithin 
A), B (UM-B; production of isourolithin A, urolithin B and also urolithin A) and 0 (UM-0; urolithin 
non-producers)17. The occurrence of specific gut microbiota metabotypes is behind the 
inter-individual variability upon polyphenol consumption20,21 and could be indirect markers of gut 
dysbiosis reflecting the individuals’ gut microbiota composition, richness, diversity, and 
functionality22,23,24. Although the gut microbiota associated with UM-B and UM-0 individuals show 
a dysbiotic-prone pattern24, however, the unequivocal association between these metabotypes 
with obesity has not been confirmed so far due to its multifactorial aetiology24,25.  

In the present study, we aimed to assess the probabilities of being overweighed or obese in a 
cohort of children and adolescents from the Southeast of Spain by estimating the odds ratios (ORs) 
for different predictor variables and their relative importance in the prediction of the response. In 
this proof-of-concept, we considered as predictor variables the urolithin metabotypes as 
biomarkers of the gut microbiota, ethnicity, age, sex, the adherence to the Mediterranean diet, 
physical activity, and a consortium of 53 SNPs from 43 genes mainly related to obesity and 
cardiometabolic diseases. 

Methods 

Study Population.  This research (‘The PolyMicroBio study’) was included in the Spanish 
National Project AGL2015-64124-R and complied with the ethical guidelines outlined in the 
Declaration of Helsinki and ethical principles for medical research involving human subjects (Seoul, 
Korea, 2008). The study was conceived to stratify the participants according to their urolithin 
metabotypes after three days of walnuts or pomegranate juice consumption25 and was not 
intended to modify any variable in the children. The trial was registered at clinicaltrials.gov 
(NCT03318042), and the Spanish National Research Council’s Bioethics Committee (Madrid, Spain) 
approved the protocol. Inclusion criteria were ages from 5 to 17 years old and good health status. 
Exclusion criteria were diagnosed pathology, previous gastrointestinal surgery, chronic medication 
and antibiotic intake one month before participating. A total of 415 children and adolescents were 
randomly recruited. Children within the 5 to 12 years old group (n = 202) were recruited from the 
public primary school ‘CEIP Jara Carrillo’ (Alcantarilla, Murcia, Spain) and adolescents aged from 13 
to 17 (n = 213) from the public high school ‘IES Alcántara’ (Alcantarilla, Murcia, Spain). Parents 
were fully informed and gave their written informed consent before the participation of all 
students.  

Urolithin metabotypes. Children and adolescents consumed 25 g peeled raw walnuts daily or 
250 mL of pomegranate juice daily (in the case of individuals allergic to nuts) for three days. Packs 
of peeled walnuts were kindly provided by Borges International Group, S.L. (Reus, Tarragona, 
Spain) and pomegranate juice by the AMC Group (Espinardo, Murcia, Spain). In the morning of the 
fourth day, a sample of urine was provided for its analysis by high-performance liquid 
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chromatography with diode array detection coupled to electrospray ionisation and ion-trap 
tandem mass spectrometry (HPLC-DAD-ESI-IT-MS/MS), and ultra-high performance liquid 
chromatography coupled with electrospray ionization-quadrupole-time-of-flight-mass 
spectrometry (UPLC-ESI-QTOF-MS) as described elsewhere26. This allowed the stratification of the 
participants according to their different capacity to metabolise ellagic acid derivatives into 
urolithins, i.e., urolithin metabotypes UM-A, UM-B or UM-0 as previously described25. 

Anthropometric measurements and validated questionnaires. The determinations of height, 
weight, and waist and hip circumference were performed always by the same research staff, using 
the same equipment in all cases, and in the presence of teachers from the educational centres. 
The child growth standards from the World Health Organization (WHO) were used to define the 
BMI (kg/m2) cut-offs for underweight, normoweight, overweight and obese individuals as a 
function of sex and age5. The students were asked to record possible incidences (medication, 
protocol compliance, etc.), and also their physical activity level27, which took into account the two 
hours of physical activity a week in their schools (low activity) and the practice of additional 
extracurricular sports at least three days a week (high activity). Besides, a validated questionnaire 
to assess the adherence to the Mediterranean diet in children (KIDMED) was used28. The score in 
this questionnaire (ranging from 1 to 13, from very poor to optimum adhesion, respectively) was 
grouped as ‘Low’ (score from 1 to 4), ‘Medium’ (from 5 to 8), and ‘Good’ (from 9 to 13). 

Selection of SNPs and genotyping.  Candidate genes and polymorphisms were identified after 
browsing the Single Nucleotide Polymorphism Database (dbSNP) and examining the published 
literature regarding each known gene and variant (favourable and unfavourable) 
associations29,30,31. On the same day of the anthropometric evaluation, saliva samples were 
obtained by gently rubbing the inside part of the cheek with a sterile swab, free of human RNA and 
DNA (Deltalab, Barcelona, Spain). Children were asked to clean their mouths and avoid eating or 
drinking 60 min before collection of samples to prevent contaminations. Two samples were 
obtained per student. The swabs were immediately stored in refrigeration and further frozen at 
-80 ºC until their processing. Genomic DNA extraction and genotyping were carried out at the 
GENYAL Platform (IMDEA-Food, Madrid, Spain) using the OpenArray™ AccuFill™ System (Life 
Technologies Inc. Carlsbad, CA, USA) as described elsewhere32. Data analysis was made by TaqMan 
Genotyper Software v1.3 (autocaller confidence level > 90%).  

Statistical analysis.  A proportional-odds logistic ordinal regression was used to model the data 
with the software R version 3.5.1 (www.r-project.org). Nine subjects with > 40% missing SNPs 
were removed, resulting in a final sample size of 406 students. The missing data was singly 
imputed using the missForest R package. Redundant predictors (rs9928094-FTO, rs9935401-FTO) 
were identified and removed using the Hmisc R package. SNPs with either favourable or 
unfavourable genotype frequencies below 5% were also removed (rs4994-ADRB3, 
rs7913948-ALOX5, rs7412-APOE, rs328-LPL, rs16139-NPY, rs6008259-PPARγ, rs2066826-PTGS2) 
(Supplementary Table 1). Using the ‘n/15 rule’33, only 21 predictors could be used to get reliable 
estimates. Consequently, data reduction was applied to the SNPs by applying Multiple 
Correspondence Analysis (MCA) and using only the first 15 MCA dimensions. Ethnic groups 
representing less than 1% each were merged into the ‘Other’ category.  

Wald tests for all the predictors in the model were generated, and they were further ranked 
by importance based on the χ2-degrees of freedom (-df) score. A simplified model was obtained by 
applying a ‘fast-backwards’ variable elimination approach34 based on the Akaike’s Information 
Criterion (AIC)35. The approximate βs and ORs (and their 95% confidence intervals, CI) of the 
remaining variables were reported. The full model was validated through bootstrap to provide 
estimates of the performance of the model in new data in comparison with the training data, in 
the form of Sommers Dxy, R

2, intercept, slope, Emax, and Briers B score. The significant contributions 
(coefficients of determination R2 with p values < 0.05) of SNPs to the essential MCA dimension 
were plotted to deconvolute it. 
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We used the proportional odds assumption in the model. ‘Physical activity’, ‘KIDMED’ and 
‘Urolithin metabotype’ showed some deviation from this assumption. However, alternative 
extended continuation ratio models with this assumption relaxed for these variables did not result 
in better models according to the AIC, i.e., the higher complexity of the model was not 
compensated by the increase in the fit. The inclusion of transformations of some predictors, 
including a restricted cubic spline for both ‘Age’ and ‘KIDMED’, resulted in improved models, as 
judged by the AIC. Finally, a genetic score (computed as the sum of risk alleles) was also tested as a 
possible surrogate for the SNPs variables, but this did not result in a better replacement for the 
MCA dimensions. All tests were bilateral, with a significance level of 0.05. 

Other statistical analyses were carried out using the SPSS software, v23.0 (SPSS Inc., Chicago, 
IL, USA). When more than two groups were compared, analyses of variance (ANOVA), followed by 
Bonferroni-corrected t-test (for post-hoc analysis) or the Kruskal–Wallis followed by Dunn’s test 
were used for normally and non-normally distributed data, respectively (KIDMED score vs FTO 
genotype TT, AT or AA, etc.). Comparison of non-normally distributed quantitative variables 
between two clusters was approached using the Mann-Whitney U-test (FTO TT genotype vs BMI or 
waist, etc.). Comparison of categorical variables was assessed using the Pearson's χ 2 test. 
Spearman’s rank or Pearson correlations were applied to explore possible associations between 
variables (BMI vs hip/height, etc.). Plots of data were performed using Sigma Plot 13.0 (Systat 
Software, San Jose, CA, USA).  

Results 

Characteristics of the Cohort and Associations with Overweight-Obesity. Table 1 shows 
characteristics of the cohort as a function of age and sex, including anthropometric values (hip, 
waist, weight and BMI), the distribution of urolithin metabotypes (A, B and 0), the KIDMED scores 
(grouped as low, medium and good adherence), physical activity and the percentage of 
normoweight, overweight and obesity. The participants were mainly Caucasian-Europeans 
(93.5%), with a small proportion of Arabs (2.9%) and Amerindians (2.2%), and a marginal presence 
of Black-Africans (0.96%), Asian-Chinese (0.22%), and Indo-Aryans (0.22%). 

The hip-to-height ratio was the best anthropometric index associated with BMI (r = 0.78, p = 
1.3x10-86) vs the waist-to-hip ratio (r = 0.13, p = 0.007) and the waist-to-height ratio (r = 0.32, p = 
0.001) (Supplementary Fig. 1). As expected in growing children, BMI values increased on average 
from 5 to 17 years (Fig. 1A). The percentage of overweight-obesity decreased from 5 to 17 years 
(from 50% to 25%, respectively) with the exemption of boys from 9 to 12 years old (n = 64) that 

reached the highest prevalence of overweight-obesity (70%) (Fig. 1B).  
Regarding the SNPs analysed, after correcting for multiple tests, three SNPs did not satisfy the 

Hardy-Weinberg equilibrium (HWE) (rs1801253, rs5082, rs11868035) (Supplementary Table 1). 
The rest of the SNPs were in equilibrium and were close to European frequencies. In the case of 
these three SNPs, we can speculate that the reason could be the association established by the 
presence of certain consanguinity (several sibling groups in the cohort). Nevertheless, this did not 
affect our results, since we aimed to compare variables from different domains and not only in 
estimating the particular effect of a single SNP. Overall, it is not absolutely necessary to have HWE 
in our approach, i.e., to estimate odds ratios of an MCA dimension and rank the predictors. 

The distribution of urolithin metabotypes in this cohort (Fig. 1C) revealed that both a lower 
prevalence of UM-A and a higher occurrence of UM-0 were associated with an increased 
percentage of overweight-obesity after bivariate analysis (p = 0.015) (Fig. 1D).  

No significant association between physical activity and overweight-obesity distribution was 
found (results not shown). On the contrary, there were many overweight-obese children with high 
physical activity, which should be explained as a consequence of their overweight-obesity status 
(results not shown). Regarding the diet, the KIDMED scores showed mean values of 6.9 ± 2.1 for 
the entire cohort (Supplementary Table 2) and ranged from the lowest value of 5.7 ± 1.4 in 
15-year-old girls to the highest value of 8.8 ± 2.2 in 6-year-old boys (Fig. 2A). However, no 
significant differences were found between boys and girls as well as through the range of age (Fig. 
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2A). Besides, no significant association was found between overweight-obesity and KIDMED in this 
group (results not shown). 

We next explored the potential association of both adherence to the Mediterranean diet and 
percentage of overweight-obesity with the well-known obesity risk allele A of the rs9939609 SNP 
in the FTO gene. Figure 2B shows the KIDMED scores and the percentage of normoweight and 
overweight-obesity in children depending on their genotype TT, AT or AA. Remarkably, the 
adherence to the Mediterranean diet was significantly lower in children with the risk-associated 
genotypes AT and AA vs the TT genotype (Fig. 2B). Although the proportion of overweight-obesity 
was the highest for the AA genotype (45.5%), however, the difference vs that of the TT genotype 
(38.7%) did not reach statistical significance (Fig. 2B). Once again, many exemptions prevented the 
usefulness of the combination of KIDMED scores and rs9939609 genotypes as unique predictors of 
overweight-obesity in this cohort.  

Therefore, although both the urolithin metabotypes and rs9939609 SNP-FTO could partially 
contribute to the overweight-obesity distribution as independent predictor variables in this cohort 
of children and adolescents; however, all the possible SNP-SNP interactions together with the rest 
of variables had not been taken into account. Therefore, we next developed an ordinal logistic 
model to identify the consortium of variables that could estimate the odds ratios of the 
overweight-obesity distribution in this cohort. 

An Ordinal Logistic Model to Identify the Consortium of Variables Associated with 
Overweight-Obesity. In this model, we used as the ordinal response the normoweight, 
overweight and obesity classification for children, based on sex and age to estimate the odds 
ratios (and the corresponding 95% confidence intervals) for different predictor variables, as well as 
their relative importance in the prediction of the response. In this holistic approach, we used as 
predictors the ‘Ethnicity’, ‘Urolithin metabotypes’, ‘KIDMED score’, ‘Physical activity’, and genetic 
polymorphisms (44 SNPs were finally included and compressed into 15 MCA dimensions, hereafter 
termed ‘SNP.Dim.’), together with sex and age. Although the distribution of normoweight, 
overweight and obesity WHO-based categories was apparently adjusted by sex and age, we still 
observed a trend for decreasing average age when moving from normoweight, overweight and 
obese children, as well as enrichment in boys in the same order. Therefore, we also included these 
variables in the model. 

Figure 3 displays the predictors used in the ordinal logistic model ranked by their apparent 
importance, as measured by their χ2-df score. The model was highly significant (p < 0.0001), 
yielding the components ‘Age’, and ‘SNP.Dim.14’ as the two most important predictors. Therefore, 
in the prediction of overweight-obesity in this population, apart from ‘Age’ and ‘Sex’, the most 
critical contributing variables were SNPs (through the variable SNP.Dim.14), followed by 
‘Ethnicity’, ‘Urolithin metabotype’ and ‘KIDMED’. The ‘Physical activity’ seemed to be irrelevant in 
this sample.  

We next applied a fast-backwards approach based on AIC to obtain a reduced model and 
estimate the corresponding βs and ORs (as well as their 95% CI). The variables kept were ‘Sex’, 
‘Age’, ‘Urolithin metabotype’, ‘KIDMED’, and the genetic components ‘SNP.Dim.3’, ‘SNP.Dim.11’, 
and ‘SNP.Dim.14’ (Table 2). The variable ‘Ethnicity’ was not retained in the simplified model, 
probably due to its high complexity (4 levels). Our results reveal that being a boy either with UM-B 
or UM-0 and having a higher SNP.Dimension.14, all increased the chances of overweight-obesity in 
this study population. On the contrary, ageing, better adherence to the Mediterranean diet (higher 
KIDMED score), and being UM-A was associated with lower probabilities of being 
overweighed-obese. Remarkably, all these variables operated additively to build the final 
probability of overweight-obesity for each subject. 

Figure 4 shows the R2 values of the 24 SNPs that significantly contributed to SNP.Dim.14 (p < 
0.05). The most contributing SNP to this consortium was rs1801253-ADRB1, as well as other 
obesity risk-associated SNPs (UCP2, ADIPOQ, LEP, MC4R, etc.). However, there were other SNPs 
with less known involvement in obesity. Table 3 shows all the SNPs contributing to SNP.Dim.14 
with their definitions and main processes in which they are involved.  
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Model Validation.  We used bootstrap to validate the model (Table 4). The model showed 
some degree of overfitting, reflected in a decrease of the indexes after correction for optimism. 
The discriminative capacity of the model was modest, although not negligible according to the 
Dxy, R2 indexes (it must be taken into account that the typical values of R2 in ordinal models are 
much lower than those observed in linear regression models), and the Brier score of 0.23. The 
calibration showed some degree of shrinkage, as seen from the deviation of the intercept and 
slope from 0 and 1, respectively. Emax, the maximum calibration error in predicting p (Y > normal), 
was 0.11, showing some degree of miscalibration. Overall, we obtained a significant model that 
still showed predictive power in external data. 

Discussion 

The present study shows that the probabilities of childhood overweight-obesity cannot be 
explained by specific isolated variables (that is, one or a few SNPs, or just physical activity, or diet, 
etc.), but by complex, multifactorial associations of environmental and genetic components. 
Besides, a genetic score, widely used in the literature36, and understood as the theoretical 
equal-additive contribution of every single SNP could not explain the distribution of 
overweight-obesity in our cohort. In this regard, our analysis adds significance to previous studies 
that have associated the genetic background of adult individuals with the adherence to the 
Mediterranean diet and some markers related to obesity and metabolic syndrome36,37,38. However, 
to the best of our knowledge, there are no previous studies that explore the occurrence of 
overweight-obesity in children and adolescents by estimating the odds ratios for the predictor 
variables ‘urolithin metabotypes’ as gut microbiota biomarkers, ‘age’, ‘sex’, ‘adherence to the 
Mediterranean diet’, and an identified consortium of 24 SNPs from 22 genes, mainly related to 
obesity and cardiometabolic diseases. 

The purpose of the ordinal logistic regression model was to estimate the odds ratios of the 
different explanatory variables and rank them by importance, rather than a tool to predict the 
probability of overweight and obesity of new individuals. There are in the literature several 
previous reports that model the probabilities of overweight and obesity in children through ordinal 
regression models39,40,41,42,43. However, to the best of our knowledge, this is the first time that this 
type of model is used with such a wide set of predictors comprising different putatively influencing 
domains (genetic, diet, exercise, microbiome urolithin metabotype, and ethnicity, in addition to 
sex and age) and ranks them according to their relative importance. The χ2-df score returned the 
following importance ranking: age > SNP.Dim.14 > ethnicity > sex > urolithin metabotype > 
KIDMED; while physical activity seemed to have a negligible importance. The use of an AIC-based 
fast-backwards reduction of the model removed ‘Ethnicity’ from the final model, probably because 
of the large number of categories in this predictor39, that would be highly penalised by the AIC 
criterion. Besides, our sample was mainly of Caucasian-European origin (93.5%), and it is expected 
that in a sample with a more balanced distribution of ethnicity, this predictor would have high 
importance. Furthermore, the modest predictive capability of the model suggested the need for 
additional predictors, which is not unexpected, given the multifaceted aetiology of obesity. Still, 
the model, derived for estimating purposes, allowed us to rank predictors of different domains by 
their importance, as well as to estimate odds ratios for them.  

The classification of overweight and obesity in adults is rather simple and independent of age 
and sex (i.e. 25 ≤ BMI < 30 for overweight, and BMI ≥ 30 for obesity). However, the WHO-based 
definition for overweight-obesity in children and teens uses age- and sex-based percentiles5, and a 
higher BMI does not necessarily correspond with overweight-obesity in growing children. 
Therefore, using overweight and obesity as response variables instead of BMI values is especially 
useful in children and adolescents. This is due to the difficulty in comparing them at different ages 
and of the two sexes, given the remarkable, sex-dependent change in weight and height, during 
this period of development (i.e., while our model predicted that overweight-obesity decreases 
upon ageing, the use of BMI yielded the opposite result, masking the real result). Still, sex and age 
were essential predictors in our model, with estimated ORs of 1.67 for boys, and 0.88 for a 
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one-year increase, respectively, which means an increased percentage of overweighed-obese 
boys, and a reduction of overweight-obesity upon ageing. 

The gut microbiota contributes to the pathophysiology of obesity3, and a recent report shows 
the role of gut microbial metabolites in the expression of the microRNA-181 family, which 
regulates white adipose tissue inflammation and obesity in children14. However, the gut 
microbiota, as a predictor of childhood obesity, has been scarcely approached and not usually 
considered together with SNPs and other variables. In a targeted approach, among a few analysed 
microbial groups, Scheepers et al. reported that the Bacteroides fragilis group was associated with 
childhood weight development44. Later, Rampelli et al. connected the onset of obesity in children 
to an increase of Proteobacteria and a decrease of Clostridiaceae and Ruminococcaceae45. In the 
same line, Bai et al. described that the Proteobacteria phylum had significantly enriched OTUs for 
higher BMI levels in a cohort of children from the American Gut Project46. This is relevant since the 
microbiota-associated with UM-B is enriched in Proteobacteria24. Interestingly, Nirmalkar et al. 
reported that the Coriobacteriaceae family was 3-fold more abundant in obese children and 
adolescents than normoweight47. Specifically, the genus Collinsella was more abundant in obese 
adolescents, a microbial group that could be related to the endothelial dysfunction47,48. Overall, all 
these results are remarkable since we recently reported that UM-B was enriched in the 
Coriobacteriaceae family, which was positively correlated with blood total-cholesterol, 
LDL-cholesterol, and BMI in adults24. Although we had previously observed a trend between UM-B 
occurrence and overweight-obesity in adult individuals, however, we could not establish a 
definitive link probably due to the lack of other interacting factors such as those included in the 
present study (SNPs, diet, etc.)25,49. Therefore, the Coriobacteriaceae family, and probably the 
Proteobacteria phylum, more abundant in obese children as well as in UM-B, could be the link 
between UM-B occurrence and overweight-obesity, which suggests that the microbiota associated 
with urolithin metabotypes could contribute in the prediction of the probability of being 
overweighed or obese. Regarding UM-0, its occurrence in the population is approximately 
constant (~10%), although there is both a higher occurrence and variability in the childhood25. The 
microbiota associated with UM-0 has been reported to show lower diversity than UM-B and UM-A, 
which could be indicative of an obesity-prone microbiota4. Nevertheless, we cannot exclude a 
possible shift of metabotype in children from UM-0 to either UM-A or UM-B determined by 
ageing25 or after ellagitannin-rich diets as previously described in adults20. 

Regarding the possible health implications of belonging to one or another metabotype, we 
have recently reported that urolithin metabotypes determined the different restoration capacity 
of the gut microbiota and the anthropometric values (weight, waist and hip) of healthy women up 
to 12 months after delivery50. The gut microbiota of pregnant women is in dysbiosis, which persists 
at least 1 month after delivery. We observed that the gut microbiota associated with UM-B was 
more resilient than that of UM-A, which would have negative implications in the dysbiotic-prone 
UM-B. In contrast, the gut microbiota of UM-A women progressively became normal during the 
year after childbirth. Therefore, we suggested that the determination of urolithin metabotypes in 
pregnant and lactating women could be a useful tool to predict their predisposition to the 
recovery of the gut microbiota and anthropometric values, significantly altered during pregnancy 
and after childbirth50. 

Many studies describe the association, or lack of association, of specific SNPs with obesity. 
The rs9939609 SNP-FTO has been reported to confer a predisposition to obesity by regulating the 
control of food intake and food choice, suggesting a link to a hyperphagic phenotype or a 
preference for energy-dense foods in Scottish children51. This agrees with the connection between 
the low adherence to the Mediterranean diet and the risk allele A of rs9939609 SNP-FTO in our 
cohort. However, we did not observe a clear association of this SNP with overweight-obesity, but 
only a trend with many exemptions, in agreement with other studies where some SNPs, previously 
reported to be involved in obesity, such as the rs17782313-MC4R and rs9939609-FTO, exerted 
weak effects and very scarce contribution to obesity in 773 pre-pubertal Portuguese children52. In 
the present study, a consortium of 24 SNPs was identified as the second contributing predictor to 
overweight-obesity in our cohort. The rs1801253 SNP (also called Arg389Gly), located in the gen 
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ADRB1, was the most contributing SNP within this consortium. It is known the involvement of the 
ADRB1 gene polymorphisms in cardiovascular diseases53 but also in obesity54,55.  

The ADRB1 gene codifies a G-coupled protein (the β1-adrenergic receptor) that binds the 
catecholamines epinephrine and norepinephrine and controls sympathetic responses in the heart, 
kidney and adipocytes. Interestingly, Dionne et al. reported that the rs1801253 SNP-ADRB1 was 
associated with higher body weight and BMI in a cohort of Caucasian women (n = 931)54. In the 
same line, Aradillas-García et al. reported that the rs1801253 SNP-ADRB1, but not the Trp64Arg 
ADRB3, was associated with obesity in Mexican children56. The connection between ADBR1 SNPs 
and obesity could rely on the catecholamines, which are considered significant lipolysis 
regulators57 and affect differentiation and proliferation of adipocytes58. In this regard, Lee et al.59 
established the association between impaired urinary epinephrine and norepinephrine excretion 
and obesity, insulin resistance, and metabolic syndrome in a cohort of 577 Chinese subjects.   

Overall, all the above highlights again the need to consider SNPs consortia, interacting with 
other variables, instead of few SNPs in those studies aimed to associate SNPs with obesity. We are 
aware that the present study is an exploratory validation for a proof-of-concept, i.e., an ordinal 
logistic model that associates child overweight-obesity with a consortium of SNPs potentially 
interacting with the urolithin metabotypes-associated microbiota, adherence to the 
Mediterranean diet, age, and sex. Although we claim for the rationale of our approach and its 
potential usefulness, however, our results should be confirmed with additional research. We also 
acknowledge some limitations that should be considered in further studies, which also could 
improve its prediction capability. For example, it would be interesting to include other possible 
variables, such as the detailed composition and functionality of the individuals’ gut microbiomes, 
and dietary interventions to evaluate not only associations but also individuals’ responses. The 
latter would be even better than the use of validated questionnaires. Besides, a higher number of 
SNPs (or many SNPs associated with a specific gene) should be explored, especially in children 
from other geographical origins and ethnicities. Also, the inclusion of serobiochemical variables 
and traits related to obesity and its comorbidities (blood lipid profile, blood pressure, glucose 
homeostasis, etc.) could yield relevant information. Finally, a validation cohort (i.e., a 
parallel-group with all the children either normoweight or obese) should also be considered in 
further studies to confirm our model fully. 

Conclusions 

The present research highlights the need for a holistic approach to unravel the predictors of 
overweight-obesity in children. Our results confirm, in agreement with the multifaceted aetiology 
of obesity, the link of childhood overweight-obesity to multifactorial associations of environmental 
and genetic components. The ordinal logistic model revealed that child overweight-obesity 
prevalence was related to being a young boy with either UM-B or UM-0, low KIDMED score and 
high contribution of a consortium of 24 SNPs, being rs1801253-ADRB1, rs4343-ACE, 
rs8061518-FTO, rs1130864-CRP, rs659366-UCP2, rs6131-SELP, rs12535708-LEP, 
rs1501299-ADIPOQ, rs708272-CETP and rs2241766-ADIPOQ the top-ten contributing SNPs. 
Therefore, it is of particular relevance the evaluation of interactive SNPs consortia along with the 
stratification of the children according to their urolithin metabotypes, which could be early 
biomarkers, in the case of UM-B and UM-0, of a dysbiotic-prone obesity-associated microbiota. 

Data availability 
All data generated or analysed during this study are included in this published article (and its Supplementary 

Information files). 
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Figure Legends 

Figure 1. Distribution (%) of (A) BMI, (B) overweight–obesity (OW–OB) and (C) urolithin metabotypes in the 

cohort (n = 415) from 5 to 17 years. (D) Distribution of urolithin metabotypes (UM-A, UM-B and UM-0) in 

normoweight (NW) and OW+OB children. 

Figure 2. (A) KIDMED scores in girls () and boys () from 5 to 17 years. Results are expressed as mean ± 

SD. (B) KIDMED scores (box plots) as a function of the genotypes (TT, AT and AA) of the rs9939609 SNP in the 

FTO gene. Significant differences are shown after the Kruskal Wallis test. Bar charts show the proportion of 

normoweight (NW) and overweight-obesity (OW+OB) in the cohort depending on the rs9939609-FTO 

genotype of the individuals. 

Figure 3. Apparent predictor importance in the ordinal logistic model. Variables are ranked by relevance 

(based on their χ
2
-df score). The χ

2
 of the Wald test for each predictor is also shown. 

Figure 4. Description of components of SNP Dimension-14. Significant R
2
 (p < 0.05) for each SNP within the 

SNP Dimension-14 are shown. 
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Age (y) Sex Hip (cm)* Waist (cm)* Weight (kg)* Height (cm)* BMI (kg/m2)* NW (%) OW (%) OB (%) KIDMED (%) 

(L/M/G) 

Physical Activity 

(%) (H/L) 

Metabotype (%) 

(A/B/0) 

5 F (n=16) 65.5 (58.0-81.0) 58.5 (48.0-76.0) 20.9 (15.9-31.1) 110.5 (103.5-119.0) 16.4 (13.6-25.7) 50.0 18.8 31.2 28.6/64.3/7.1 76.9/23.1 81.3/0.0/18.7 

M (n=14) 66.5 (58.0-83.0) 59.5 (51.0-71.5) 22.2 (17.4-34.2) 114.5 (110.0-124.0) 16.7 (13.7-24.4) 50.0 21.4 28.6 57.1/28.6/14.3 84.6/15.4 64.3/0.0/35.7 

6 F (n=10) 69.5 (59.0-81.0) 59.3 (52.0-76.0) 23.7 (16.8-37.1) 118.9 (110.0-128.5) 15.9 (13.9-24.9) 60.0 10.0 30.0 30.0/50.0/20.0 60.0/40.0 90.0/10.0/0.0 

M (n=9) 68.0 (64.0-78.0) 59.0 (55.0-71.0) 22.7 (20.8-32.5) 121.5 (116.0-125.5) 16.3 (14.5-21.9) 55.5 0.0 45.5 11.2/44.4/44.4 77.8/22.2 77.8/11.1/11.1 

7 F (n=9) 70.0 (66.0-82.0) 64.0 (55.0-76.0) 26.8 (24.5-40.5) 130.0 (123.5-132.9) 17.6 (15.0-24.0) 55.5 11.1 34.4 22.2/44.4/33.3 88.8/11.2 55.5/33.3/11.2 

M (n=16) 70.5 (65.0-85.0) 59.5 (55.0-76.0) 26.6 (21.1-44.5) 123.8 (116.0-140.6) 17.0 (13.9-24.6) 56.3 12.5 31.2 33.4/53.3/13.3 93.8/6.2 68.8/18.8/12.4 

8 F (n=16) 74.5 (67.0-91.0) 60.5 (53.0-80.0) 32.1 (24.1-48.5) 132.5 (124.1-142.0) 18.3 (15.1-26.4) 50.0 18.8 31.2 6.7/86.6/6.7 56.3/43.7 93.8/0.0/6.2 

M (n=16) 75.0 (62.0-97.0) 63.0 (53.0-85.0) 28.4 (19.8-63.1) 128.2 (118.3-153.5) 17.6 (11.4-26.8) 50.0 18.8 31.2 37.4/56.3/6.3 73.3/26.7 81.3/0.0/18.7 

9 F (n=12) 77.0 (68.0-103.0) 64.0 (53.0-82.0) 36.9 (27.9-63.2) 141.6 (134.9-149.8) 18.4 (14.5-30.0) 58.3 16.7 25.0 41.7/50.0/8.3 100.0/0.0 100.0/0.0/0.0 

M (n=12) 80.6 (71.0-97.0) 70.0 (58.0-90.5) 38.5 (27.9-59.6) 137.3 (125.7-152.2) 20.1 (16.1-28.3) 33.3 41.7 25.0 33.3/66.6/0.0 91.7/8.3 75.0/16.7/8.3 

10 F (n=14) 79.0 (74.0-99.0) 65.5 (57.0-82.2) 38.5 (30.4-61.7) 143.0 (137.8-159.5) 19.2 (15.6-27.3) 50.0 28.6 21.4 35.7/50.0/14.3 57.1/42.9 78.6/14.3/7.1 

M (n=15) 87.0 (73.0-98.0) 71.0 (60.0-90.0) 46.7 (30.5-66.4) 146.7 (132.6-152.5) 20.8 (16.1-30.7) 26.7 33.3 40.0 40.0/53.3/6.7 93.3/6.7 86.7/13.3/0.0 

11 F (n=20) 86.5 (74.0-106.0) 65.0 (58.0-83.0) 46.4 (32.4-74.3) 153.0 (143.0-173.2) 19.3 (15.5-28.0) 65.0 25.0 10.0 10.0/80.0/10.0 60.0/40.0 95.0/5.0/0.0 

M (n=17) 88.0 (69.0-101.0) 73.0 (58.0-85.0) 47.0 (29.6-63.2) 149.0 (138.0-161.0) 20.8 (15.2-27.4) 35.3 35.3 29.4 11.7/82.4/5.9 76.5/23.5 94.1/0.0/5.9 

12 F (n=21) 88.0 (79.0-108.0) 66.0 (60.0-84.0) 48.8 (36.7-72.6) 156.5 (146.0-165.2) 20.4 (16.5-29.5) 66.7 19.0 14.3 33.3/52.4/14.3 71.4/28.6 61.9/23.8/14.3 

M (n=20) 90.0 (74.0-107.0) 72.0 (62.0-93.0) 54.1 (33.9-77.5) 156.5 (142.9 -170.5) 22.2 (16.1-28.8) 25.0 50.0 25.0 30.0/60.0/10.0 80.0/20.0 85.0/10.0/5.0 

13 F (n=14) 89.0 (75.0-123.0) 67.5 (58.0-100.0) 51.2 (35.0-92.9) 154.6 (145.3-167.1) 20.8 (14.6-38.4) 71.4 7.1 21.5 21.4/78.6/0.0 50.0/50.0 57.1/35.8/7.1 

M (n=17) 91.0 (81.0-128.0) 71.0 (62.0-100.0) 59.1 (42.2-112.6) 165.6 (152.1-180.2) 20.4 (15.1-38.5) 58.8 5.9 35.3 29.4/70.6/0.0 81.3/18.7 82.4/17.6/0.0 

14 F (n=19) 90.0 (81.5-106.0) 69.5 (58.0-90.0) 53.2 (43.4-73.5) 160.5 (151.7-171.5) 19.3 (16.1-29.6) 68.4 26.3 5.3 36.8/63.2/0.0 36.8/63.2 78.9/15.8/5.3 

M (n=11) 94.0 (71.0-123.0) 72.0 (67.0-101.0) 61.7 (46.0-106.9) 171.5 (162.5-189.5) 20.9 (17.1-36.1) 63.6 27.3 9.1 9.1/90.9/0.0 81.8/18.2 81.8/0.0/18.2 

15 F (n=15) 88.0 (82.0-99.0) 68.0 (59.0-81.0) 52.5 (43.5-63.4) 158.5 (156.0-175.5) 20.3 (16.9-24.5) 93.3 6.7 0.0 40.0/60.0/0.0 42.8/57.2 86.8/6.6/6.6 

M (n=23) 94.0 (80.0-112.0) 75.5 (60.0-96.0) 62.6 (43.5-93.3) 173.1 (156.0-184.5) 21.2 (17.9-30.3) 78.3 8.7 13.0 52.2/39.1/8.7 52.2/47.8 82.6/8.7/8.7 

16 F (n=23) 94.0 (82.0-138.5) 70.0 (61.0-137.0) 57.1 (41.0-146.1) 157.8 (143.5-172.2) 23.1 (17.5-49.3) 73.9 21.7 4.4 34.8/52.2/13.0 39.1/60.9 65.2/21.7/13.1 

M (n=22) 97.0 (83.0-121.0) 76.0 (64.0-100.0) 71.1 (49.4-110.8) 176.0 (164.2-186.5) 22.8 (18.2-35.8) 63.6 27.3 9.1 22.7/68.2/9.1 77.3/22.7 77.3/4.5/18.2 

17 F (n=19) 91.5 (84.0-110.0) 72.0 (59.0-87.0) 60.6 (50.7-76.1) 163.0 (149.5-170.0) 23.0 (17.9-28.0) 73.7 26.3 0.0 0.0/84.2/15.8 21.1/78.9 84.2/10.5/5.3 

M (n=15) 92.0 (85.0-111.0) 73.5 (64.0-91.0) 66.5 (50.5-96.0) 176.2 (160.5-186.8) 22.2 (17.8-30.0) 80.0 13.3 6.7 46.7/40.0/13.3 73.3/26.7 66.7/26.7/6.6 

Table 1. Characteristics of the study population. *Results are expressed as median and (range); F, Female; M, Male; KIDMED (L/A/G): Low quality, Medium quality 
and Good quality diet, respectively. NW, normoweight; OW, overweight; OB, obesity; Physical activity: H, high; L, low.
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Table 2. Beta estimates (βs), odds ratios (ORs), and their corresponding confident intervals (CIs). 
*SNP.Dim, dimensions (consortium) of SNPs obtained after Multiple Component Analysis; UM-B 
and UM-0, urolithin metabotype B and 0, respectively. 

 

Variables* βs (CIs) ORs (CIs) 

Sex (boy) 0.51 (0.10, 0.918) 1.67 (1.11, 2.5) 

Age -0.12 (-0.17, -0.0664) 0.88 (0.83, 0.93) 

UM-B 0.21 (-0.40, 0.837) 1.24 (0.66, 2.31) 

UM-0 0.68 (0.02, 1.34) 1.98 (1.03, 3.81) 

KIDMED -0.06 (-0.16, 0.0256) 0.93 (0.85, 1.03) 

SNP.Dim.3 1.05 (0.03, 2.07) 2.86 (1.03, 7.94) 

SNP.Dim.11 1.18 (-0.01, 2.37) 3.25 (0.98, 10.7) 

SNP.Dim.14 2.32 (1.08, 3.55) 10.1 (2.94, 35) 
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R
2
* SNP Gene  Name Process Disease 

0.294 rs1801253 ADRB1  Adrenoceptor β1 Lipolysis and fat oxidation CVD
# 

0.096 rs4343 ACE  Angiotensin I converting enzyme Signalling, metabolism CVD, MetS, Alzheimer’s 

0.091 rs8061518 FTO  Fat mass and obesity-associated Metabolism Obesity, CVD, MetS, diabetes 

0.076 rs1130864 CRP  C-Reactive Protein Inflammation CVD 

0.067 rs659366 UCP2  Uncoupling protein 2 Metabolism Obesity 

0.058 rs6131 SELP  Selectin P Cell adhesion CVD 

0.057 rs12535708 LEP  Leptin Signalling, metabolism Obesity 

0.041 rs1501299 ADIPOQ  Adiponectin Metabolism MetS, diabetes, cancer 

0.036 rs708272 CETP  Cholesteryl ester transfer protein, plasma Metabolism CVD 

0.033 rs2241766 ADIPOQ  Adiponectin Metabolism MetS, diabetes, cancer 

0.033 rs696217 GHRL  Ghrelin/obestatin prepropeptide Signalling, metabolism Obesity, cancer 

0.031 rs11868035 SREBF1  Sterol regulatory element-binding transcription factor 1 Metabolism Diabetes 

0.027 rs17782313 MC4R  Melanocortin 4 receptor Signalling, metabolism Obesity, diabetes, cancer 

0.023 rs1801282 PPARγ  Peroxisome proliferator-activated receptor-γ Signalling, metabolism Diabetes, cancer 

0.020 rs5443 GNB3  (G protein), β-polypeptide 3 Signalling, metabolism Obesity, CVD, diabetes 

0.019 rs3758538 (3944A>C) RBP4  Retinol binding protein 4 Inflammation Obesity 

0.018 rs1801133 MTHFR  Methylenetetrahydrofolate reductase Metabolism CVD, cancer 

0.017 rs1143634 IL1B  Interleukin 1β Inflammation Diabetes, periodontitis, cancer 

0.016 rs693 APOB  Apolipoprotein B Metabolism MetS, diabetes, cancer 

0.014 rs894160 PLIN1  Perilipin 1 Metabolism Obesity 

0.013 rs1799883 FABP2  Fatty acid-binding protein 2 Metabolism Diabetes, MetS 

0.013 rs662799 APOA5  Apolipoprotein A5 Triglycerides CVD 

0.013 rs429358 APOE  Apolipoprotein E Metabolism Alzheimer’s, CVD 

0.010 rs9930333 FTO  Fat mass and obesity-associated Metabolism Obesity, CVD, MetS, diabetes 

Table 3. The consortium of single-nucleotide polymorphisms (SNPs) integrated into the MCA dimension SNP.Dim.14. *R2, Contribution of the SNPs to Dim.14 

according to Figure 3. #CVD, cardiovascular disease; MetS, metabolic syndrome
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 Index-orig Training Test Optimism Index-corrected 

Dxy
* 0.4136 0.4688 0.3518 0.1170 0.2967 

R2 0.1824 0.2418 0.1323 0.1095 0.0729 

Intercept 0.0000 0.0000 -0.1099 0.1099 -0.1099 

Slope 1.0000 1.0000 0.6633 0.3367 0.6633 

Emax 0.0000 0.0000 0.1110 0.1110 0.1110 

B 0.2097 0.1978 0.2222 -0.0243 0.2340 

Table 4. Validation of the model using Bootstrap. *Dxy = bias-corrected Somers rank correlation coefficient 
that goes from -1 to 1; R2 = Nagelkerke R2 that goes from 0 to 1; Intercept and Slope of a logistic calibration 
equation (should be 0 and 1, respectively, for a perfect fit); Emax = maximum calibration error for p (Y = 0) 
based on the linear-logistic recalibration; B = Brier’s quadratic probability score, which goes from 0 (the 
best score) to 1 (the worst score). 
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Figure 1 Distribution (%) of (A) BMI, (B) overweight–obesity (OW–OB) and (C) urolithin 
metabotypes in the cohort (n = 415) from 5 to 17 years. (D) Distribution of urolithin metabotypes 
(UM-A, UM-B and UM-0) in normoweight (NW) and OW+OB children. 

  

Age (years)
5 6 7 8 9 10 11 12 13 14 15 16 17

B
M

I 
(k

g
/m

2 )

10

15

20

25

30

35

40
A

NW OW+OB
0

20

40

60

80

100

U
ro

li
th

in
 m

et
ab

o
ty

p
e 

d
is

tr
ib

u
ti

o
n

 (
%

)

UM-A 

UM-B 
UM-0 

UM-0 
UM-B 

UM-A 

D

Age (years)
5 6 7 8 9 10 11 12 13 14 15 16 17U

ro
li

th
in

 m
et

ab
o

ty
p

e 
d

is
tr

ib
u

ti
o

n
 (

%
)

0

20

40

60

80

100

C

UM-A UM-B UM-0 

B

Age (years)
5 6 7 8 9 10 11 12 13 14 15 16 17

0

20

40

60

80

100
Boys

Girls

O
W

-O
B

 (
%

)



 

17 

 

 

 

 

 

 

 

Figure 2. A) KIDMED scores in girls () and boys () from 5 to 17 years. Results are expressed as mean ± 

SD. (B) KIDMED scores (box plots) as a function of the genotypes (TT, AT and AA) of the rs9939609 SNP in 

the FTO gene. Significant differences are shown after the Kruskal Wallis test. Bar charts show the 

proportion of normoweight (NW) and overweight-obesity (OW+OB) in the cohort depending on the 

rs9939609-FTO genotype of the individuals.  
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Figure 3. Apparent predictor importance in the ordinal logistic model. Variables are ranked by relevance 

(based on their χ2-df score). The χ2 of the Wald test for each predictor is also shown. 
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Figure 4. Description of components of SNP Dimension-14. Significant R2 (p < 0.05) for each SNP 
within the SNP Dimension-14 are shown. 
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