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ABSTRACT

When estimating important measures such as the herd immunity threshold, and the corresponding efforts required to
eliminate measles, it is often assumed that susceptible individuals are uniformly distributed throughout populations. However,
unvaccinated individuals may be clustered in a variety of ways, including by geographic location, by age, in schools, or in
households. Here, we investigate to which extent different levels of within-household clustering of susceptible individuals
may impact the risk and persistence of measles outbreaks. To this end, we apply an individual-based model, Stride, to a
population of 600,000 individuals, using data from Flanders, Belgium. We compare realistic scenarios regarding the distribution
of susceptible individuals within households in terms of their impact on epidemiological measures for outbreak risk and
persistence. We find that higher levels of within-household clustering of susceptible individuals increase the risk, size and
persistence of measles outbreaks. Ignoring within-household clustering thus leads to underestimations of measles elimination
and outbreak mitigation efforts.

Introduction

The global elimination of measles is an important goal of the WHO1. To reach this goal by 2020, the WHO has set the target
of 95% vaccination coverage, both at the country and district level. Many regions are close to reaching this target, or have
vaccination coverage levels that already exceed this threshold. Nevertheless, outbreaks of measles still occur in these same
regions2–4.

Increasing attention is being devoted to explain why outbreaks still occur in regions with high vaccination coverage5–7.
Finding the answer to this question might give us an indication of where the barriers for successful elimination of measles lie
and enable us to make the final push for eradication of this disease.

Such an explanation is undoubtedly multifaceted, relating to vaccination coverage and vaccine effectiveness over time,
as well as to the intricacies of social interactions between individuals in populations. In relation to the latter, one potentially
contributing factor is that susceptible individuals might not be randomly distributed in a population, and that this may influence
to which extent an overall high vaccination coverage avoids outbreaks from occurring or persisting.

The traditional formula to estimate a threshold for herd immunity states that a fraction as large as 1− (1/R0) should be
immune to infection for herd immunity to be ensured. With an R0 for measles between 12 and 18, a population immunity
level of 95% should thus be enough to stop the disease from spreading8. However, this formula is based on the assumption
that susceptible individuals are evenly distributed throughout the population and that mixing occurs homogeneously. This is,
however, not realistic, and may lead to an underestimation of the herd immunity threshold9.

When susceptible individuals are clustered in a population, this may lead to a higher risk for measles outbreaks to occur,
even when a high level of population immunity already exists10, 11. Susceptible individuals in a population may be clustered in
a number of ways. One way of clustering, which has already received some attention, and which has turned out to have an
impact on the risk for measles outbreaks, is clustering based on geographical proximity9, 12, 13. Such findings support policy and
provide a basis to set routine immunization levels not only at country- but also at district level, or to recommend campaigns in
under-immunized regions9, 12.

Another way in which individuals can be clustered is by age. As social contact patterns are highly assortative with
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age14, susceptible individuals belonging to under-immunized age categories are likely to cluster and thus to be at greater
risk for measles infection9, 15, 16. Other reasons for the clustering of un-vaccinated individuals can be socio-cultural and/or
socio-economic, i.e. related to religion, ideology, educational attainment, income, or psychological receptiveness to rumours of
vaccine associated adverse events2, 17–20. Finally, the household one belongs to can also be influential in determining one’s
vaccination status. Parents who have a negative attitude towards vaccination, or no access to vaccination resources, might leave
one or more of their children un-vaccinated21–23. This can lead to an accumulation of susceptible children and young adults
within the same households.

In the current paper, we aim to investigate the influence of within-household clustering, using an individual-based model. In
this type of model, the population consists of unique entities that interact with each other under the constraints of a given social
structure and transmission model. This makes it possible to model multiple levels of heterogeneity in the population, such as
differences in social contact behaviour or in preventive behaviour. Such sources of heterogeneity are especially relevant for
diseases - such as measles - for which a high level of immunity already exists within a population24.

In Flanders, Belgium, 96.2% of infants were vaccinated with measles-containing vaccines at 1 year of age, and 93.4% of
children at 10 years of age, as of 201622, 25. This is above - or, for adolescents, close to - the threshold that was set by the WHO.
However, this does not mean that Flanders is safe from measles outbreaks. Regions enjoying similarly high overall vaccination
coverage have recently experienced severe outbreaks4, 6, 26, and in Flanders, smaller outbreaks regularly occur2, 3, 17, 27.

In this paper, we will use Stride, a previously developed individual-based model for the transmission of infectious diseases28,
to investigate the impact of different levels of within-household clustering of susceptible individuals on the risk for measles
outbreaks. To parametrise the model we used data from Flanders, Belgium. We investigate how the level of clustering within
households impacts the probability of an outbreak to occur, the distribution of final outbreak sizes, and the distribution of the
effective reproduction number.

Methods
Stride is a stochastic model, meaning that some of its processes, such as the simulation of social contacts and disease
transmission have a probabilistic component. The simulator is designed to be versatile: by supplying different input files, it is
possible to simulate a broad range of populations, scenarios and diseases. The core logic of the model is implemented in C++,
making it highly portable and open to performance-optimization29. Stride is an open-source project. Its code is maintained in a
public Github repository30. We briefly discuss the main features of the model and simulator here, and refer to Kuylen et al.
(2017)28 for more details.

Population
The population we used consisted of 600,000 individuals, a sample of 10% of the population in Flanders. The synthetic
population consists of reference households, obtained from a social contact survey conducted in Flanders in 2010–201131, 32.
The geographic distribution of these households is based on 2001 census data33. The population is closed, meaning that no
births or deaths occur during the simulation. Children are assigned to a daycare (0–2 years old), preschool (3–5 years old),
primary (6–11 years old), secondary (12–17 years old) or tertiary (18–23 years old) school based on enrolment statistics for
Belgium, as acquired from Eurostat34. Adults (18–64 years old) are assigned to a workplace based on age-specific employment
data and aggregated workplace size data from Eurostat and commuting data from the 2001 census. To account for general
contacts, all individuals are also assigned to two artificial ‘communities’. One of these represents the general contacts made
during the week, while the other represents those made during the weekend, as social contact behaviour differs substantially
between work week and weekend days. Each of these communities consists of 1,000 individuals on average, which is in line
with the size of such communities used in a previous model35. The age-dependent contact rates that determine social behaviour
in each of these contexts - to which we refer as ‘contact pools’ - are based on data from a social contact survey in Flanders32, 36.
We did not model holidays.

Immunity
At the initiation of each simulation, each individual is defined to be either immune or susceptible to the simulated infection.
Individuals are marked as immune based on their age and the target level of household-based clustering. This target level
of clustering is in turn determined by an input parameter with a value between 0 and 1. In short, this parameter represents
the probability that if one person - born since 1985 - in a household is vaccinated, all other persons born since 1985 in that
household will also be vaccinated.

To immunize the population, we follow the procedures that we describe below. The Immunizer class samples individuals
from the population to immunize at the beginning of the simulation. It needs two parameters to do this. First, it needs an
age-specific distribution of immunity: for each age, we need to know the fraction of immune individuals. The distribution we
used is a projection of the age-dependent immunity levels to measles in 2020 in Flanders, Belgium. It is based on projections
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made by Hens et al.27, and was obtained in the same way as was described in a more recent paper16. Secondly, the Immunizer
also needs to be supplied with a target clustering level, as was described above.

When sampling immune individuals in the population, we first sample among those individuals that are 35 years of age or
older – i.e. individuals that were born before 1985. As measles virus circulation was not substantially affected by vaccination
until the mid 1980s in Belgium, we assume that the majority of individuals born before 1985 acquired natural immunity37.
As such, we assume that clustering of susceptible individuals within households as a result of vaccination decisions does not
yet play a role in this age category. To immunize individuals born before 1985, we use the following procedure. First, we
calculate for each age older than 35 how many immune individuals should be in the population, based on the age-specific
immunity level and the number of individuals of that age that are present in the population. Next, we select a random individual.
If this individual is still susceptible, and there are not yet immune individuals of the age this person belongs to, we make them
immune. We repeat this procedure until all age-dependent immunity quota for individuals older than 35 have been fulfilled.

Next, we immunize individuals younger than 35 years of age, taking into account the clustering level that was provided as
an input parameter. First, we again calculate the required number of immune individuals per age given the target coverage.
Secondly, we draw a random individual from a random household. If there are not yet enough immune individuals in their
age-category, and provided they are still susceptible, we set this individual’s health state to ‘immune’. Next, we compare a
random draw between 0 and 1 to the clustering level. If the draw is smaller than the clustering level, we immunize all other
individuals in this household that are younger than 35 years of age. We do this within a 10% range of the constraints of
age-dependent immunity levels. If the random draw is greater or equal to the target clustering level, we go back to step 2,
sampling a random individual from a random household. We repeat this procedure until all age-dependent immunity quota have
been fulfilled.

Contact and transmission events
The simulator moves forward in discrete time-steps of one day. Each time-step consists of two phases. First, the health status
and corresponding presence in contact pools is updated for each individual. Second, the actual contacts and transmission events
within each contact pool are simulated.

We adhere to the following natural history for measles. We draw 4 durations from a distribution for each individual: the
duration of the incubation period, the duration of the latent period, the duration of the infectious period, and the duration of
the symptomatic period. The duration of the incubation period is sampled from a log-normal distribution with median 12.5
and dispersion 1.2538. At the end of the incubation period, individuals become infectious for a duration of 6 to 8 days39.
Next, after either 2 or 3 days of being infectious but still asymptomatic, individuals become symptomatic38. When individuals
become symptomatic, it is assumed that they will remain home and thus only make contacts with persons within their own
household. This symptomatic period lasts 6 to 8 days, and we assume that each primary infected individual eventually becomes
symptomatic40.

To simulate contacts and transmissions within each contact pool, we use the age- and context-dependent contact rates
described above. When a contact occurs between an infectious individual and a susceptible individual, a transmission probability
is used to determine whether an actual transmission of the virus occurs. This Ptransmission is supplied as an input parameter.

Simulations
First, we established a relationship between the transmission probability Ptransmission and R0, the basic reproduction number.
We did this by running a large number of simulations, for transmission probabilities ranging from 0 to 1. We tested 21 values
for the transmission probability, and ran 1,000 stochastic simulations for each of these values. Seeds to initialize our random
number generator were generated from a non-deterministic, machine-specific source. We kept track of the number of secondary
cases that was caused by one index case in an otherwise completely susceptible population and used this as an estimator for R0.
We ran each simulation for 30 days, as we were only interested in the transmissions made by the index case, who recovered
after – at most – 27 days. From the 21,000 data points we collected in this way, we fitted a function, allowing us to predict a
corresponding R̂0 value from a given Ptransmission value. We fitted the data using the optimize.curve_fit function in the scipy
python package41. This uses a non-linear least squares method to fit the simulation data to a given function. In our case we
used a function of the form a+b∗ log(1+Ptransmission).

Secondly, we ran simulations over the course of 730 simulated days, until no more new infections were being recorded, to
track the full course of the epidemic. We tested 13 values for the transmission probability between 0.2 and 0.8 We also tested 5
different target levels for the clustering of susceptible individuals within households (0.00, 0.25, 0.50, 0.75, 1.00), defined as
the probability that another person (aged below 35 years of age) within the same household is immune if one person (aged
below 35 years of age) in a household has been vaccinated. For each of these 65 scenarios, we ran 1,000 simulations.

We started each simulation with the introduction of one random infected individual in the population. Before the first
time-step, we recorded the number of immune and susceptible individuals in each age category. To determine to which extent
susceptible individuals were actually clustered within households, we calculated a ‘household assortativity coefficient’ for
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the entire population at the beginning of each simulation. To do this we calculated the assortativity based on immunity status
(susceptible or immune) in a network of individuals connected by household relations42, 43. We constructed a network, the
nodes of which represented the individuals in the population. Each node has one attribute, ‘susceptible’, which can be either
true or false. An edge between two nodes exists if two individuals belong to the same household. We used the networkX python
package to construct the network and calculate the attribute assortativity coefficient44.

During the simulation, we also keep track of new transmissions. This enables us to determine the total number of cases over
the course of the simulation. As we record who infects whom, it is also possible to calculate an effective R - i.e. how many
persons the index case infects on average.

To run these simulations, we used the Python environment we created for Stride (PyStride), and used the multiprocessing
package to run multiple simulations in parallel45. We ran all simulations on a Linux machine, using 8 cores (16 with
hyper-threading).

Results
Relationship Ptransmission ∼ R0
First we established a relationship between the transmission probability Ptransmission and R0. We estimated R0 as the expected
number of secondary cases one infected individual would infect in an otherwise completely susceptible population.

In Fig. 1, the median (solid blue line), mean (dotted pink line), and 95% percentile interval (grey shape) over 1,000
simulations for each of 21 values of Ptransmission between 0 and 1 are shown. We see that both the mean and the median
number of secondary cases steadily increases as the transmission probability is increased. The shape roughly follows that of a
logarithmic function, which is the reason why we chose to fit the data to a function of the form a+b∗ log(1+Ptransmission).
We observe that the 95% percentile interval widens as the transmission probability increases, but that nevertheless, mean and
median remain very similar over all values of Ptransmission.

We fitted the data using the optimize.curve_fit function in the scipy python package41. This gave us the formula shown in
equation (1) to estimate R0 for a given Ptransmission.

R̂0 =−0.30+38.92∗ log(1+Ptransmission) (1)

In Fig. 1, we also added the fitted function for comparison (dotted brown line). When Ptransmission is 0, we observe a
corresponding R̂0 value of 0. We observe that the fitted function closely follows both the mean and median number of secondary
cases we observed in our simulations. Based on the formula we found, a realistic range for transmission probabilities for
measles in our model is between 0.372 and 0.601, which corresponds to a value of R0 between 12.01 and 18.02, which is in
line with the basic reproduction number commonly estimated for measles46. We ran simulations for Ptransmission ranging from
0.2 to 0.8, to be certain to include all relevant R0 values (R0 ∼ 6.80 to 22.58).

Population immunity profiles
To get an idea of the way in which immunity is distributed over the population in the different scenarios, we investigated
the fraction of susceptible individuals by age, and the assortativity of individuals within households based on their immunity
status as described in the ‘Methods’ section. The mean fraction of susceptible individuals per year of age for simulations with
clustering level 0, 0.25, 0.5, 0.75 and 1 can be seen in Fig. 2. Each data point is the mean over simulations for 13 values for
the transmission probability, and with 1,000 simulations per combination of clustering level and transmission probability, i.e.
13,000 simulations per tested clustering level in total. We also added the 95% percentile interval of the target projections we
used as input data in Fig. 2 (grey shape). More detailed distributions of susceptibility by age for clustering levels from 0 to 1
can be found in Supplementary Fig. S1.

We see that overall, the immunity levels in all scenarios seem to be consistent with the target projected immunity levels per
age. As the clustering level increases, however, we observe small discrepancies between the simulated and projected immunity
levels per age. This can be attributed to the fact that we use a household sample to initialize our population, and that we do
not have the ‘right’ household constitutions in our simulated population to accommodate for high levels of clustering within
households and age-specific immunity levels at the same time. Slight variations in older age categories can be attributed to
fewer individuals being present in these age categories.

We also looked at the relationship between the clustering level we provided as an input parameter to the simulator, and the
resulting household assortativity coefficient of the simulated population. The clustering level represents the probability that if
one household member under the age of 35 is immune to measles, all other household members under 35 years of age will also
be immune. We calculated the household assortativity coefficient – defined as the assortativity of individuals within households,
based on immunity status – for clustering levels 0, 0.25, 0.5, 0.75 and 1. We did this for both the entire population and for
individuals under the age of 35.
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As we increase the clustering level, we observe that the household assortativity coefficient also increases. This is the case
when we observe the entire population (Fig. 3a), as well as when we only observe individuals under 35 years of age (Fig. 3b).
When we measure the household assortativity coefficient over the entire population, it increases from about 0.3 to 0.5 as the
target clustering level increases from 0 to 1. However, when we only take into account individuals aged under 35 years of age,
we see an increase from about 0.35 to 0.85 as the clustering level increases from 0 to 1. This discrepancy is as expected, as
we only applied household-based clustering of susceptible individuals for individuals age under 35 years of age. Taking into
account older individuals when calculating the household assortativity coefficient lowers the coefficient, as these individuals
have not been actively clustered by immunity status. We also observe that there is not much variation per clustering level over
the different simulations.

Effective R
For each combination of transmission probability and clustering level that we tested, we also calculated the effective R. We
defined this as the expected number of secondary cases caused by our index case in a partially immune population. In Fig. 4, a
heat-map indicates the effective R – as calculated from 1,000 simulations per scenario – for clustering levels 0, 0.25, 0.5, 0.75
and 1 and transmission probabilities between 0.2 and 0.8 (R0 ∼ 6.80 to 22.58). We observe that a higher clustering level results
in a higher effective R for the same transmission probabilities.

The effect is stronger for lower values of Ptransmission, and becomes weaker as Ptransmission increases. This is clear when
we investigate the percentage the effective R increases when increasing the clustering level from 0 to 1. An overview of the
increase in effective R when increasing the clustering level from 0 to 1 can be found in Table 1. We see that, while the increase
in effective R is above 60% when Ptransmission is 0.2 (R̂0 = 6.80), it decreases to about 18% for a transmission probability of 0.6
(R̂0 = 17.99).

Outbreak persistence and size
We are also interested in the number of outbreaks that persist versus the number of outbreaks that goes extinct after only a few
cases. To investigate this, we first define what we regard as persistence versus what we regard as extinction. For this purpose,
we examined the frequency of outbreak sizes for different values of Ptransmission. Histograms for outbreak sizes – defined as the
total number of infected cases after 730 days – over clustering levels 0, 0.25, 0.5, 0.75 and 1 can be seen in Supplementary Fig.
S2 (Ptransmission = 0.20 to 0.35, R̂0 = 6.80 to 11.38), Supplementary Fig. S3 (Ptransmission = 0.40 to 0.55, R̂0 = 12.80 to 16.76),
and Supplementary Fig. S4 (Ptransmission = 0.60 to 0.80, R̂0 = 17.99 to 22.58). We see that, for all transmission probabilities,
outbreaks either die out after only a few cases (bins on the far left), or persist and infect a large part of the susceptible population
(bins on the far right). These histograms also show that, as the clustering level increases, outbreaks tend to become larger:
outbreaks that persist with clustering level 0 (red bars) are generally smaller than outbreaks that persist with clustering level 1
(green bars). Based on these plots, we set the extinction threshold - above which we will regard an outbreak as persistent - at
5,000 cases.

Based on this threshold, we calculated the fraction of outbreaks that persisted in each scenario. A heat-map showing the
probability of persistent outbreaks for clustering levels 0, 0.25, 0.5, 0.75, and 1 and transmission probabilities between 0.2 and
0.8 (R̂0 between 6.80 and 22.58) is shown in Fig. 5. With Ptransmission = 0.2, we observe no persistent outbreaks, regardless
of the clustering level. However, with a transmission probability of 0.3, which corresponds to an R0 of about 9.91, there are
still no persistent outbreaks with a clustering level of 0 or 0.25, but persistent outbreaks start to appear for clustering levels
0.5, 0.75 and 1. For a transmission probability of 0.35 (R̂0 = 11.38), we observe persistent outbreaks for all clustering levels.
However, at a clustering level of 0, only about 20% of outbreaks is persistent, while this increases to about 50% for a clustering
level of 1. For larger transmission probabilities, the same trend can be observed: as the clustering level increases, so does
the percentage of outbreaks that persist. The effect is stronger for lower values of Ptransmission, and less pronounced for higher
values of Ptransmission. A more detailed overview of outbreak probabilities per value of Ptransmission can be found Supplementary
Fig. S5 (Ptransmission = 0.20 to 0.35, R̂0 = 6.80 to 11.38), Supplementary Fig. S6 (Ptransmission = 0.40 to 0.55, R̂0 = 12.80 to
16.76), and Supplementary Fig. S7 (Ptransmission = 0.60 to 0.80, R̂0 = 17.99 to 22.58).

Similar trends can be observed when we look at the escape probabilities for the different scenarios. We define the escape
probability as shown in equation (2), with Nsusceptible the number of susceptible individuals at the beginning of the simulation,
and Ncases, the number of infected cases after 730 simulated days.

Pescape =
Nsusceptible −Ncases

Nsusceptible
(2)

A heat-map for the mean escape probability over 1,000 runs for each scenario (clustering levels ranging from 0 to 1 and
transmission probabilities ranging from 0.2 to 0.8 - R̂0 of 6.80 to 22.58 - is shown in Fig. 6. For a transmission probability of
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0.2 and 0.25 (R̂0 = 6.80 and R̂0 = 8.38, respectively), we see that the escape probability is almost 1 on average for all clustering
levels. This is what we would expect, as we observed before that there were no persistent outbreaks at this transmission
probability. However, with a transmission probability of 0.3 and 0.35 (R̂0 = 9.91 and R̂0 = 11.38 respectively), we see that
while the escape probability is still almost one for a clustering level of 0, we observe that the escape probability lowers to about
0.9 for a clustering level of 1. For values of Ptransmission 0.4 (R̂0 = 12.80) or higher, we see that while the mean escape probability
for clustering level 0 is below 1, it decreases further as the clustering level increases. This effect becomes less pronounced for
Ptransmission 0.7 and 0.8 (R̂0 = 20.35 and R̂0 = 22.58 respectively), but it can still be observed. A more detailed overview of the
distribution of escape probabilities by clustering level and transmission probability can be found in Supplementary Fig. S8
(Ptransmission = 0.20 to 0.35, R̂0 = 6.80 to 11.38), Supplementary Fig. S9 (Ptransmission = 0.40 to 0.55, R̂0 = 12.80 to 16.76), and
Supplementary Fig. S10 (Ptransmission = 0.60 to 0.80, R̂0 = 17.99 to 22.58).

We also examined the sizes of the simulated outbreaks in the different scenarios. In Fig. 7, the mean outbreak size for
persistent outbreaks over 1,000 runs is shown for clustering levels ranging from 0 to 1 and transmission probabilities ranging
from 0.2 to 0.8 (R̂0 of 6.80 to 22.58). As discussed above, we set the extinction threshold at 5,000 cases.

We observe that the outbreak size when Ptransmission = 0.2 (R̂0 = 6.80) remains 0 at all clustering levels. With a transmission
probability of 0.25 (R̂0 = 8.38), persistent outbreaks only occur at a clustering level of 1. On average, these outbreaks only just
reach the extinction threshold of 5,000 cases. For a transmission probability of 0.3 (R̂0 = 9.91), persistent outbreaks occur
for clustering levels 0.25, 0.50, 0.75 and 1. With a transmission probability above 0.35 (R̂0 ≥ 11.38), we observe that as the
clustering level increases, the average outbreak size also increases. The increase in average outbreak size from clustering level
0 to 1 is steep for transmission probabilities 0.35 (R̂0 = 11.38) to 0.55 (R̂0 = 16.76). For higher values of Ptransmission, the same
trend can be observed, but the increase in outbreak size when the clustering level is increased from 0 to 1 is smaller.

A more detailed representation of the distribution of outbreak sizes by clustering level and transmission probability can be
seen in Supplementary Fig. S11 (Ptransmission = 0.20 to 0.35, R̂0 = 6.80 to 11.38), Supplementary Fig. S12 (Ptransmission = 0.40
to 0.55, R̂0 = 12.80 to 16.76), and Supplementary Fig. S13 (Ptransmission = 0.60 to 0.80, R̂0 = 17.99 to 22.58). Again, we only
looked at persistent outbreaks, and set the extinction threshold at 5,000 cases. As the clustering level increases from 0 to 1,
we observe that for all transmission probabilities, the outbreak sizes also increase. This is, again, more pronounced for lower
values of Ptransmission. For a transmission probability of 0.35 (R̂0 = 11.38), we see that the median outbreak size increases from
about 10,000 to about 25,000. For this same transmission probability we notice that there is a higher variance for the outbreak
size at lower clustering levels than can be observed at higher levels of clustering. The same can still be observed - albeit to a
lesser extent - when we look at results for Ptransmission = 0.4 (R̂0 = 12.80). Here the median outbreak size increases from a little
over 20,000 to about 35,000 as the clustering level increases from 0 to 1. For higher values of Ptransmission, the median outbreak
size also increases as the clustering level increases. However, the variance in outbreak sizes is small for all clustering levels.
We also observe that, as Ptransmission increases, the relative increase in outbreak size becomes smaller as the clustering level
increases from 0 to 1.

Finally, we also wanted to know which individuals in the population had the most risk of being infected. For each scenario,
we calculated the mean age of infected individuals. As expected, there is not much difference between the different scenarios.
With a higher clustering level, infected individuals tend to be slightly younger on average, but are still very close in age to
infected individuals when testing a lower clustering level. A heat-map of average ages of infected individuals for transmission
probabilities 0.2 to 0.8 (R0 ∼ 6.80 to 22.58) and clustering levels 0 to 1 can be found in Supplementary Fig. S14.

Discussion
We looked at the impact of different levels of within-household clustering of susceptible individuals on the risk for measles
outbreaks. We did this by including age-dependent immunity rates and household-based clustering into Stride, an individual-
based simulator for the transmission of infectious diseases.

We established a measure for estimating the level of household-based clustering of susceptible individuals in a population:
the household assortativity coefficient. We calculated this measure as the assortativity based on immunity status within a
network of nodes – representing individuals – connected by household relations – meaning that two nodes were connected if
they belonged to the same household.

We also simulated outbreaks of measles by introducing one infected individual into the simulated population of Flanders,
Belgium and following the evolution of the outbreak for 730 simulated days. We found that the level of within-household
clustering of susceptible individuals has an impact on important measures for outbreak risk. The effective R increases as the
clustering level increases. This is true for all tested transmission probabilities (0.2 to 0.8, which we calculated to be equivalent
to an R0 of about 6.80 to 22.58). However, the relative increase in effective R is higher for lower values of Ptransmission and is
less pronounced for higher transmission probabilities.

This means that, as more clustering of susceptible individuals within households occurs in a population, an index case will on
average infect more cases compared to a population with a lower household assortativity coefficient. As such, household-based
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clustering of susceptible individuals has an impact from the very beginning of an outbreak.
It also plays a role in the rest of the evolution of measles outbreaks. We observed that outbreaks have a higher probability of

persisting when there is a higher level of household-based clustering of susceptible individuals. When we set the threshold for
persistent outbreaks at 5000 cases, we saw that while there were no persistent outbreaks with a transmission probability of 0.3
(R̂0 = 9.91) and a clustering level of 0 and 0.25, bt persistent outbreaks did appear when the clustering level was at 0.5, 0.75 or
1. For higher values of Ptransmission, we noticed that the probability for an outbreak to persist increased as the clustering level
increased.

We observed the same trend when looking at escape probabilities: as the clustering level increases, the escape probability
decreases, meaning that a larger fraction of susceptible individuals will get infected over the course of an outbreak. This
can also be seen when looking at the sizes of persistent outbreaks. On average, outbreaks become larger when the level of
household-based clustering increases. As such, a higher level of clustering of susceptible individuals within households entails
a higher risk for susceptible individuals to become infected whenever an infected individual is introduced in the population.

These effects are strongest for transmission probabilities between 0.3 and 0.6 (R̂0 between 9.91 and 17.99). For larger
values of Ptransmission, the effects of increasing the level of household-based clustering of susceptible individuals become less
pronounced, but can still be observed.

We conclude that, as the level of household-based clustering of susceptible individuals has an impact on the risk for measles
outbreaks, it is important to include this form of clustering of susceptibility into models for measles transmission in highly
vaccinated populations. Omitting this form of clustering would lead to an underestimation of the risk for outbreaks and thus of
the efforts needed to inhibit the spread of measles and to achieve measles elimination. Taking into account within-household
clustering, and potentially other ways in which susceptible individuals can be clustered in a population, provides new and more
accurate herd immunity thresholds for measles.

Some limitations need to be taken into account when interpreting these results. Firstly, the population we used in Stride is
closed. No individuals are born or die over the course of the simulation. However, for a childhood disease such as measles,
long-term simulations would benefit from having a demographic component.

Furthermore, the projections of age-specific immunity levels in 2020 we used as input for our simulations were partially
based on a serological survey25. The serological survey information is based on antibody titre levels, which is a humoral
immune response indicator. However, cellular immune response mechanisms – which are only partially correlated with humoral
response markers – can still provide immunity even when antibody levels are low or undetectable47. The levels of immunity
that we have used may thus represent an underestimation of the actual immunity levels against measles in Flanders.

On the other hand, even when an individual’s humoral immunity levels are considered protective, exposure studies suggest
that a sufficiently high infecting dose can still trigger an active infection47. This could further increase the importance of
within-household clustering of susceptible or partially vaccinated people, as the infecting dose is likely highest for people living
in the same household as an infectious individual.

In our simulations, we applied household-based clustering for individuals born since 1985. We assumed that most individuals
born before that date had acquired natural immunity against measles. However, in vaccination guidelines, 1970 is used as a
cut-off for natural immunity, assuming individuals born before 1970 to have natural immunity against measles48.

For this study, we have also made some assumptions in our model of the natural history of measles disease. We assumed
that every infected individual will eventually become symptomatic, and that individuals, while symptomatic, will only contact
members of their own household. We also assumed that all susceptible individuals had the same chance of becoming infected,
and subsequently infectious and symptomatic. We did not take into account variation in the probability and duration of
symptoms of previously vaccinated versus unvaccinated susceptible individuals49, 50. Finally, we also assumed that the durations
of the incubation period, latent period, infectious period and symptomatic period were independent from each other within each
individual. Future analyses should aim to relax these assumptions.

Additionally, data from observational studies on levels of clustering of susceptible individuals within households should
be obtained and used as an input to models for measles transmission. Furthermore, the concept of clustering can be further
expanded by examining other types of clustering, including geographical clustering and within-school clustering of susceptible
individuals19.

Finally, if the underlying reasons for non- or incomplete vaccination can be uncovered and quantified, other relevant types
of clustering may be defined in future models. As these models become more realistic, they can be used more effectively to
inform policy on measles elimination.

Data Availability
The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.
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Figure 1. Mean (solid blue line), median (dotted pink line) and 95% percentile interval (grey shape) of secondary cases
caused by an index case over 1,000 simulations per value for Ptransmission. The dotted brown line represents the function we fit
to the data.
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Figure 2. The mean fraction of susceptible individuals per year of age for scenarios with clustering levels 0, 0.25, 0.75 and
1.0. The grey shape represents the 95% percentile interval for the projections we used as input data. Results are based on
13,000 stochastic simulations per clustering level.

Ptransmission R̂0 % increase in effective R
0.2 6.80 60.76
0.3 9.91 44.19
0.4 12.80 36.20
0.5 15.48 28.70
0.6 17.99 17.83
0.7 20.35 18.31
0.8 22.58 17.96

Table 1. Percentage by which the effective R increases when the clustering level increases from 0 to 1, for different values of
PTRANSMISSION. Results are based on 1,000 simulations per combination of Ptransmission and clustering level.
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(a) Household assortativity coefficient as calculated over the entire
population for clustering levels 0, 0.25, 0.5, 0.75 and 1.
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(b) Household assortativity coefficient as calculated for individuals
under the age of 35 for clustering levels 0, 0.25, 0.5, 0.75 and 1.

Figure 3. Household assortativity coefficients observed for clustering levels 0, 0.25, 0.5, 0.75, 1. Results are based on 13,000
stochastic simulations per clustering level.
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Figure 4. Effective R for clustering levels 0, 0.25, 0.5, 0.75 and 1 and values of Ptransmission from 0.2 to 0.8 (R0 ∼ 6.80 to
22.58). Results are based on 1,000 simulations per scenario.
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Figure 5. Fraction of persistent outbreaks for clustering levels 0, 0.25, 0.5, 0.75, and 1, with values for Ptransmission ranging
from 0.2 to 0.8. Per scenario, we ran 1,000 simulations. Extinction threshold = 5,000 cases.
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Figure 6. Mean escape probability for clustering levels 0, 0.25, 0.5, 0.75, and 1, with Ptransmission ranging from 0.2 to 0.8. We
calculated the average escape probability over 1,000 runs for each scenario.
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Figure 7. Mean outbreak size (averaged over 1,000 runs per scenario) for persistent outbreaks. Results for transmission
probabilities 0.2 to 0.8 (R̂0 of 6.80 to 22.58) and clustering levels 0 to 1 are shown here. We set the extinction threshold at
5,000 cases.
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