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Abstract 18 

Rare variants play an essential role in the etiology of cancer and characterizing rare germline 19 

variants that impact the risk of cancer is an ongoing challenge. We performed a genome-wide 20 

rare variant analysis using germline whole exome sequencing (WES) data derived from the 21 

Geisinger MyCode initiative to discover cancer predisposition variants. The case-control 22 

association analysis was conducted by binning pathogenic and likely pathogenic variants in 23 

5,538 cancer patients and 7,286 matched controls in a discovery set and 1,991 cancer patients 24 

and 2,504 matched controls in a validation set across nine cancer types. We discovered 87 25 

genes and 106 pathways significantly associated with cancer (Bonferroni-corrected P < 0.05) out 26 

of which seven genes and 26 pathways replicated from the validation set (suggestive threshold 27 

P < 0.05). Further, four genes and 21 pathways were discovered to be associated with multiple 28 

cancers (Bonferroni-corrected P < 0.05). Additionally, we identified 13 genes and two pathways 29 

associated with survival outcome across seven cancers (Bonferroni-corrected P < 0.05), where 30 
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two genes, PCDHB8 and DCHS2, were also associated with survival outcome in TCGA data. In 31 

summary, we conducted one of the largest pan-cancer association studies using germline data 32 

derived from a single hospital system to find novel predisposition genes and pathways 33 

associated with nine cancers. Our results can inform future guidelines for germline genetic 34 

testing in cancer, which will be helpful in screening for cancer high-risk patients. This work adds 35 

to the knowledge base and progress being made in precision medicine. 36 

 37 

 38 

Introduction 39 

Cancer is the second most lethal disease in United States with an estimated 1,735,350 new 40 

cases and 609,640 deaths in 2018
1
. Cancer is caused by inherited germline variants and 41 

acquired somatic mutations. A recent twin study showed ~33% heritability of cancer across 23 42 

cancer types with a high estimate of 57% for prostate (MIM: 176807), 31% for breast (MIM: 43 

114480), 38% for kidney (MIM: 144700), and 58% for skin melanoma (MIM: 155600)
2
. Germline 44 

genetic markers for cancers have been widely studied leading to the discovery of many 45 

heritable predisposition genes such as BRCA1 (MIM: 113705), BRCA2 (MIM: 600185) and PALB2 46 

(MIM: 610355) in breast cancer, RB1 (MIM: 614041) in retinoblastoma and MLH1 (MIM: 47 

120436), MSH2 (MIM: 609309), MSH6 (MIM: 600678), and PMS2 (MIM: 600259) in Lynch 48 

syndrome (MIM: 120435). To date, many genome-wide association studies (GWAS) have been 49 

conducted and many more variants and genes have been discovered as associated with various 50 

cancer types
3-8

. However, a large portion of inherited genetic factors that result in 51 

carcinogenesis is still unknown and many studies are being undertaken to discover these 52 
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genetic variants. For instance, the genetic contribution explained by all variants discovered to 53 

date is about 39% in prostate cancer
2; 9

 and 30% in breast cancer
2; 10

.  54 

 55 

Since common variants discovered to be associated with multiple cancers have only modest 56 

effect size, the missing heritability could be further explained by rare variants. Moreover, rare 57 

variants have been known to contribute to various complex diseases including cancer
11-13

. The 58 

aggregation of rare variants in a gene can lead to loss of function of the gene or change in 59 

expression
14

. Similarly, since pathways perform a sequence of biochemical actions leading to a 60 

cellular function or product, changes in the expression of genes involved within a pathway can 61 

lead to cancer
15; 16

. Previous studies have also indicated that cancer is caused by an 62 

accumulation of a number of singular or rare variants in particular genes or pathways
12

. To that 63 

effect, binning the pathogenic and likely pathogenic rare variants into genes and pathways 64 

would help us increase statistical power to detect associations and also infer biological 65 

mechanisms
13; 17; 18

. 66 

 67 

The MyCode community initiative is a precision medicine project, launched at Geisinger in 68 

2007, which enabled the storage of blood, serum, and DNA samples in a system-wide 69 

biorepository that is available for use in broad research
19

. To date, over 244,000 patients have 70 

signed up for the MyCode initiative and over 90,000 patient blood samples have been 71 

sequenced as part of the DiscovEHR project in collaboration with the Regeneron Genetics 72 

Center
20

. The sequenced data can be easily linked to the electronic health record (EHR) of the 73 

patient, allowing access to rich longitudinal data. Apart from the EHR, Geisinger also maintains 74 
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a cancer registry that contains all the patients diagnosed or treated for cancer at any Geisinger 75 

medical facility. Further, as part of the MyCode program, the genetic data is also being used to 76 

detect increased risk of developing one or more of 21 medically actionable conditions, including 77 

breast cancer, ovarian cancer (MIM: 167000), Marfan syndrome (MIM: 154700), Lynch 78 

syndrome, etc., and the results are returned to the patients though a “Return of Results” 79 

program
21

. Moreover, many similar programs around the world are helping to integrate 80 

genomics into clinical practice
22

. Manolio et al. emphasize that the integration of genomic 81 

findings to clinical practice has been relatively slow and insist on the need to have an openly 82 

accessible knowledge base of variants, phenotypes and clinically actionable variants
23

. The 83 

sharing of genetic findings is likely to help the scientific research community to improve our 84 

understanding of the phenotype of interest and propel precision medicine by bringing more 85 

genomics into clinical practice. 86 

 87 

In summary, we conducted one of the largest pan-cancer association studies using germline 88 

data from a single hospital system to find novel genes and pathways associated with nine 89 

cancers. Our study also validates several genes and pathways that have already been implicated 90 

in other genome-wide association studies. We identified 87 genes that were significant across 91 

cancers, of which seven were replicated in an independent dataset and four genes were shared 92 

among multiple cancers. We also identified 106 pathways that reached genome-wide 93 

significance, of which 26 pathways were replicated. Further, 21 pathways were significant 94 

across multiple cancers. In addition to the genes and pathways associated with cancer risk, we 95 

also identified 13 genes and two pathways associated with survival outcome across cancers. 96 
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 97 

Results 98 

 99 

Study design and population characteristics 100 

 101 

This study was based on a subset of 7,449 cancer cases and 9,792 controls selected by matching 102 

age, BMI and gender from ~90,000 sequenced samples from the DiscovEHR study. The samples 103 

were sequenced in two phases using different platforms as described in the Methods section. In 104 

phase 1, 60,000 samples were sequenced, and 5,538 cancer patients across nine cancers and 105 

7,286 matched controls were pulled. In phase 2, 30,000 samples were sequenced which 106 

included 1,991 cancer patients and 2,504 matched controls. Consequently, the phase 2 dataset 107 

was used to replicate results from phase 1. Cancer patient IDs that were retrieved from the 108 

cancer registry were classified into particular cancers using International Classification of 109 

Diseases for Oncology (ICD-O) codes. After classifying the cancer patients to their respective 110 

cancers, only nine cancers, including bladder (MIM: 109800), breast, colorectal (MIM: 114500), 111 

kidney, lung (MIM: 211980), melanoma, prostate, thyroid (MIM: 188550), and uterine cancer, 112 

had more than 300 samples in the discovery set. A low number of samples in association 113 

studies results in a higher type 1 error rate and lower statistical power to detect associations
24

. 114 

Thus, the rest of the cancers were excluded from this study. The distribution and basic 115 

demographics of patients across these cancers are shown in Table 1. A common set of controls 116 

were used for all the cancers except breast, uterine and prostate cancer as they are sex-specific 117 
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cancers. The sex-matched controls were separately pulled to match the same number of 118 

controls across all cancers. 119 

 120 

Table 1 provides age, BMI, female ratio, and vital status (alive or deceased) information across 121 

cancers. Among all cancers, breast cancer had the largest number of cases (N = 1,214) followed 122 

by prostate cancer (N = 1,146). Further, uterine cancer had a significantly higher average BMI as 123 

compared to other cancers. The average BMI for uterine cancer patients was 38.33 kg/m
2
 in the 124 

discovery dataset and 36.76 kg/m
2
 in the replication dataset. Additionally, lung cancer had the 125 

highest number of cases who are deceased, which is expected as lung cancer is by far the 126 

leading cause of death due to cancer
1
. Further, observing the female ratio across the cancers 127 

also shows a gender disparity in some cancers. Specifically, the incidence rate in bladder cancer 128 

was found to be 4.46 fold higher in male than female, and in thyroid cancer it was 3.95 fold 129 

higher in female than male. The difference in incidence rates have been well documented in 130 

other studies with a 3-4 times increased risk of bladder cancer risk in men
25

 and 2.9 times 131 

increased risk of thyroid cancer in women
26

. 132 

 133 

Variant filtering based on functional annotation and scores improves power and has been 134 

successfully used in many association studies
14; 27

. In this study, the variants from whole exome 135 

sequence data were annotated using Variant Effect Predictor (VEP)
28

 and ClinVar
29

. 136 

Subsequently, only the variants categorized as pathogenic and likely-pathogenic based on the 137 

annotations were retained for further analysis. A strategy for classifying variants as pathogenic 138 

and likely pathogenic is elaborated in the Methods section. Additionally, all common variants 139 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 12, 2019. ; https://doi.org/10.1101/2019.12.09.19013334doi: medRxiv preprint 

https://doi.org/10.1101/2019.12.09.19013334
http://creativecommons.org/licenses/by-nc-nd/4.0/


were removed, and only rare variants (MAF < 0.05) were retained. The number of variants 140 

available after filtering out for each cancer cohort is listed in Table S1. 141 

 142 

Pathway-based rare variant analysis 143 

 144 

Association analysis using rare variants usually suffers from a lack of power as very large 145 

datasets are required. Therefore, rare variants are often binned into a biologically informed-146 

unit such as a gene or pathway to improve the power
17

. In this study, pathogenic and likely 147 

pathogenic rare variants with minor allele frequency (MAF) < 0.05 were binned into genes 148 

followed by KEGG pathways using BioBin
17; 30; 31

. Next, an association test was performed to 149 

determine if the gene/pathway is significantly associated with the phonotype. SKAT-O is an 150 

optimal unified approach that combines a burden and non-burden sequence kernel association 151 

test (SKAT) test, and maintains power regardless of the direction of effect and causality of the 152 

variants
32

. After determining the association p-values, they were adjusted for multiple testing in 153 

each cancer type separately using a Bonferroni correction. Any genes/pathways with a 154 

Bonferroni-corrected P < 0.05 were considered as significant results. The same procedure was 155 

followed to conduct rare variant analysis in discovery and replication datasets. Figure 2 shows 156 

all the pathways that were Bonferroni significant across all cancers and the same are listed in 157 

Table S4-S6. 158 

 159 

In total, 106 pathways were found to be significantly associated across all cancers (Figure 2). 160 

However, no significant pathways were found in prostate cancer. Further, 26 pathways: 12 in 161 
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bladder cancer, five in colorectal cancer, five in kidney cancer, two in lung cancer and two in 162 

thyroid cancer, marked in red in Figure 2, were replicated from the replication dataset (SKAT-O 163 

P < 0.05). More information regarding the 26 pathways including locus count, minor allele 164 

count (MAC) in cases, MAC in controls, SKAT-O p-value and Bonferroni-corrected p-value in 165 

discovery and replication datasets can be found in Table 2. Additionally, 21 pathways were 166 

found to be significantly associated in more than one cancer, with the FoxO signaling pathway 167 

and GnRH signaling pathway significantly associated with four cancers, followed by apoptosis 168 

and bladder cancer significantly associated with three cancers and the rest of the 17 pathways 169 

significantly associated with two cancers (Table 3). 170 

 171 

Gene-based rare variant analysis 172 

 173 

All pathogenic and likely pathogenic variants below MAF < 0.05 were binned into gene 174 

boundaries defined by Entrez annotations derived from Library of Knowledge Integration (LOKI) 175 

using BioBin
17; 30

. The total number of genes that the variants were binned across all cancers is 176 

listed in Table S2. The bar plot in Figure 3 shows the total number of loci binned for a given 177 

gene and variant types as annotated by VEP. In total, there were 87 genes that were 178 

significantly associated with a specific cancer (Bonferroni-corrected P < 0.05) (Figure 3). 179 

Furthermore, seven genes - MLNR (MIM: 602885), CPAMD8 (MIM: 608841), CHRNE (MIM: 180 

100725), HOXB13 (MIM: 604607), SCML4 (HGNC: 256380), BST1 (MIM: 600387) and TMEM186 181 

(HGNC: 25880), marked in red in Figure 3, were replicated in the phase 2 dataset (P < 0.05) 182 

(Table 4). 183 
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 184 

Additionally, four genes, including MAPK12 (MIM: 602399), ECE2 (MIM: 610145), DNMT3A 185 

(MIM: 602769) and CHIA (MIM: 606080), were significantly associated in multiple cancers. The 186 

gene MAPK12 was significantly associated with bladder cancer and colorectal cancer, ECE2 and 187 

CHIA for melanoma and colorectal cancer, and DNMT3A for bladder and lung cancer. Further 188 

association test statistics on these genes are described in Table 5. The PhenoGram
33

 plot in 189 

Figure 4 shows all the genes found to be significantly associated across all cancers. Additionally, 190 

the lollipop
34

 plots in Figure 5 and Figure S1 shows the type of variants – frameshift, missense, 191 

stop gained, stop lost, splice acceptor, splice donor, start lost, and their relative position in the 192 

gene. Variants that were found in the Catalog of Somatic Mutation in Cancer (COSMIC) 193 

database were marked with COSMIC ids. The nonsense stop gained variants marked in yellow 194 

usually results in a truncated protein, which are non-functional and the frameshift variants 195 

marked in red usually cause a loss of function due to a shift in the reading frame. 196 

 197 

Pathogenic and likely pathogenic variants in known oncogenes and tumor suppressor genes 198 

 199 

Previously, Huang et al.
14

 identified potential genes in cancers with a higher enrichment of 200 

pathogenic or likely pathogenic variants identified in the Exome Aggregation Consortium (ExAC) 201 

non-TCGA cohort from a curated list of genes that contribute to cancer susceptibility. They 202 

identified 28 cancer gene associations (FDR < 0.05) and 16 suggestive associations (FDR < 0.15) 203 

by conducting total frequency test (TFT)
14

 on germline data across 33 cancers. We wanted to 204 

see if any of these genes also had higher mutational germline burden in our study as it would 205 
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help validate cancer susceptibility genes and even discover new gene associations that were 206 

not statistically significant in Huang et al. As such, the list of gene-cancer pairs were filtered to 207 

the nine cancer types under consideration in this study and TFT was run on the genes to 208 

validate the enrichment of pathogenic and likely pathogenic variants in cancer patients against 209 

control group. Seven genes – ATM (lung, MIM: 607585), CHECK2 (breast, HGNC: 11200), MSH2 210 

(colorectal), BRCA2 (thyroid), POLE (kidney, MIM: 174762), PALB2 (breast), MLH1 (colorectal) 211 

were found to be significant at a TFT p-value < 0.05. Moreover, two of the genes – ATM (lung) 212 

and BRCA2 (thyroid) found to be previously significant 
14

 were replicated in this study. Further, 213 

three genes – ATM (lung), CHECK2 (breast) and MSH2 (colorectal) were significant at FDR < 214 

0.15. The carrier frequency of these genes and distribution of pathogenic and likely pathogenic 215 

variants across oncogenes and tumor suppressor genes is shown in Figure 6 (Table S8). In 216 

summary, we were able to validate two genes (TFT p-value < 0.05) and we discovered two more 217 

genes with a suggestive association (FDR < 0.15). 218 

 219 

Survival analysis 220 

 221 

In this study, we also sought to discover variants that have an impact on the survival of 222 

patients. To this aim, a weighed burden matrix was used to run cox regression adjusting for age 223 

and BMI as covariates. The cox p-values were further adjusted using a Bonferroni correction 224 

separately on each cancer type to account for multiple testing. Thirteen genes and two 225 

pathways across seven cancers were found to be significantly associated with survival at 226 

Bonferroni < 0.05. Further, to confirm that the p-values were not a random effect, permutation 227 
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testing was conducted by randomly shuffling the weighed burden values among patients and 228 

running cox regression 100,000 times. We observed considerably less significant permutation p-229 

values across all genes and pathways. The permutation p-values and other statistics are listed in 230 

Table 6 for significant genes and Table 7 for significant pathways. All the Kaplan-Meier survival 231 

curves are shown in Figure S2. The genes that were significantly associated were further tested 232 

for association with survival in The Cancer Genome Atlas (TCGA) provisional data on the cBio 233 

Cancer Genomics Portal (http://cbioportal.org)
35

.The two groups were formed using somatic 234 

mutations and mRNA expression (RNA Seq V2 RSEM) using a z-score threshold ± 2. Two genes 235 

PCDHB8 (Logrank P = 9.22E-03, MIM: 606334) and DCHS2 (Logrank P = 0.036, MIM: 612486) 236 

were significant at a Logrank P < 0.05. 237 

 238 

Discussion 239 

 240 

In this study, we present results from a rare variant analysis conducted across nine cancers 241 

using a cohort of 7,449 cancer cases and 9,792 controls from a single hospital system using 242 

whole exome sequencing data and clinical data from a patient EHR. A total of 133 pathways (26 243 

replicated) and 91 genes (7 replicated) were identified as associated with cancers. Furthermore, 244 

21 pathways and four genes were associated with multiple cancer types. Additionally, we 245 

identified 13 genes and two pathways as associated with survival across multiple cancers. 246 

 247 

Many KEGG pathways identified in this study have already been implicated in cancer, such as 248 

“pathways in cancer”, “GnRH signaling pathway” 
36

, “bladder cancer”, “FoxO signaling pathway” 249 
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37
, “metabolic pathways”, “gap junction” 

38
, “apoptosis”, “base excision repair”, “melanoma”, 250 

“choline metabolism in cancer” and “basal cell carcinoma”. One pathway of interest that is 251 

associated with bladder cancer is the “insulin secretion pathway”. Previous studies have shown 252 

diabetes mellitus increases the risk of bladder cancer
39

 and is possibly due to administration of 253 

the anti-diabetic drug Pioglitazone
40

. Another pathway “HTLV-I infection” was found to be 254 

associated with kidney cancer and was also replicated. HTLV-I is a known oncovirus that causes 255 

cancer
41

. Further studies on the “HTLV-I infection" pathway could elucidate the role of germline 256 

variants in cancers. Another pathway “Legionellosis” was found to be associated with kidney 257 

and bladder cancer, Legionella pneumonia in cancer has a very high mortality rate ~31%
42

, and 258 

variants in pathway could play a role in susceptibility or recovery of the patients. Another 259 

pathway, the “Hippo signaling pathway” was found to be associated with uterine cancer. The 260 

“Hippo tumor suppressor pathway” is known to phosphorylate YAP and TAZ which are critical 261 

for cell growth, reprogramming and development
43

. The Hippo pathway also interacts with the 262 

PI3K/AKT pathway which is commonly involved in cancer
43

. Additionally, Hippo pathway is 263 

known to affect the survival of cancer patients
44

 and in this study, one of the genes DCHS2, 264 

which is part of Hippo pathway, was also associated with survival in uterine cancer and it was 265 

also replicated in the TCGA data. 266 

 267 

A number of previous studies have shown HOXB13 to be associated with prostate cancer
45-48

, 268 

and in this study as well, HOXB13 was found to be associated with prostate cancer in the 269 

discovery dataset and was replicated. Another gene, CPAMD8, which is involved in broad-270 

spectrum protease inhibition, innate immunity and damage control was found to be associated 271 
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with kidney cancer in the discovery and replication datasets
49

. CPAMD8 is known to be 272 

substantially expressed in kidney
49; 50

 and given its functional role, rare gene-disruptive variants 273 

in CPAMD8 could lead to carcinogenesis. We also identified two genes associated with uterine 274 

cancer that replicated - CHRNE which is a subunit of nicotinic acetylcholine receptors (nAChRs) 275 

and TMEM186 which is a member of the transmembrane protein family. Nicotine, a compound 276 

present in cigarettes, mediates cell proliferation and angiogenesis though nicotinic 277 

acetylcholine receptors (nAChRs) and its subunits
51

. Still, its mechanism of action is not well 278 

understood for uterine cancer where some studies have shown smoking to reduce the risk of 279 

uterine cancer contrary to other cancers
51; 52

. Again, the exact role of TMEM186 in uterine 280 

cancer is also unexplored. TMEMs are differentially regulated in many types of cancers and 281 

some TMEMs are known to act as tumor suppressors while others as oncogenes
53

. Further, in 282 

bladder cancer, the Putative Polycomb group (PcG) protein gene (SCML4), is involved in the 283 

regulation of crucial developmental and physiological processes and is known to promote 284 

proliferation and inhibit apoptosis. SCML4 was replicated in bladder cancer
54

.  285 

 286 

Different cancer types share some pathways and genes, which generally include common 287 

tumor suppressor genes and oncogenes
14

. In this study, we identified 21 pathways and four 288 

genes that were associated with multiple cancers. Two of the genes MAPK12 and DNMT3A are 289 

well known genes involved in cancer with MAPK12 acting as p38 MAPK, which is involved in cell 290 

differentiation, apoptosis and autophagy, whereas DNMT3A is involved in DNA methylation and 291 

its disruption leads to tumorigenesis
55; 56

. Gene ECE2 cleaves endothelin-1 (ET-1) which is a 292 

potent vasoconstrictor peptide and ET-1 is known to be involved in angiogenesis, apoptosis and 293 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 12, 2019. ; https://doi.org/10.1101/2019.12.09.19013334doi: medRxiv preprint 

https://doi.org/10.1101/2019.12.09.19013334
http://creativecommons.org/licenses/by-nc-nd/4.0/


growth in colorectal cancer and melanoma
57

. Elevated levels of plasma levels and increased 294 

immunopositivity of ET-1 has been observed in colorectal cancer
57

. 295 

 296 

We also discovered 13 genes that are associated with survival in cancers. The presence of rare 297 

pathogenic and likely pathogenic variants reduced the overall survival rate for all the genes 298 

identified across cancers. Some of the genes discovered were already known to be associated 299 

with survival in cancers and a subset of them have also been suggested as a target for cancer 300 

therapy like SAXO2 (HGNC: 283726) which is involved in microtubule binding in uterine 301 

cancer
58

, PCDHB8 whose downregulation is known to result in poor prognosis in bladder 302 

cancer
59

 , ATXN3 (MIM: 607047) whose downregulation increases expression of tumor 303 

suppressor PTEN (MIM: 601728)
60

, and TPTE2 (MIM: 606791) , a homolog of PTEN, whose 304 

upregulation suppresses metastasis and/or tumorigenesis
61

. Other genes were associated with 305 

survival in this study - ANO5 (MIM: 608662) is known to regulate cell migration and invasion
62

, 306 

the HOGA1 (MIM: 613597) gene is involved in metabolism, CSH2 (MIM: 118820) is involved in 307 

postnatal and intrauterine growth
63

 and HLA-G (MIM: 142871) offers an immune escape 308 

mechanism as it is involved in cytokine signaling in the immune system and class I MHC 309 

mediated antigen processing and presentation
64

. Thus, disruption of the normal activity of 310 

these genes could promote cancer. Another gene NAA38 (MIM: 617990)which was associated 311 

with survival in thyroid has been shown to be associated with survival in glioblastoma (MIM: 312 

137800)
65

. Furthermore, two genes PCDHB8 and DCHS2 were significantly associated with 313 

survival in the TCGA provisional dataset. 314 

 315 
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Even though many associations were identified in this study, further studies would be required 316 

to elucidate the molecular mechanisms. A shortcoming of this study was that the replication 317 

cohort was underpowered to replicate all the findings. Additionally, the participants in the 318 

replication cohort were derived from participants who enrolled into the MyCode program more 319 

recently than the discovery dataset. Therefore, most of the patients in the replication set were 320 

alive and it was not practical to run survival analysis using the replication dataset. The 321 

limitations imposed by the sample size and power would be addressed in the future as the 322 

MyCode and DiscovEHR programs are still ongoing and more samples are being sequenced. 323 

Another limitation of our study is that our population predominantly consists of European 324 

ancestry, mainly due to the patient population at Geisinger which is predominantly of European 325 

ancestry. 326 

 327 

In conclusion, this study conducted genome-wide rare-variant analysis to find novel genes and 328 

pathways associated across nine cancers. We also replicated many genes and pathways that are 329 

very well known in cancers, which further emphasizes the fact that some portion of the missing 330 

heritability is attributed to rare variants. We also identified some genes associated with the 331 

survival of the patients which have already been suggested as targets in cancer therapy. We 332 

also discovered novel genes and pathways associated with survival of patients which could be 333 

potential targets for cancer therapy. The genes and pathways discovered in this study can be 334 

used to screen for high-risk cancer patients and personalized therapy. In summary, results from 335 

this study could help define a portion of the missing heritability associated with cancer and 336 

have broad applications in precision medicine. 337 
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 338 

Methods 339 

 340 

Study population 341 

The study population consisted of Geisinger patients who consented to participate in the 342 

MyCode community initiative. As part of MyCode initiative, individuals agreed to provide blood 343 

and DNA samples for broad, future research, including genomic analyses as part of the 344 

Regeneron-Geisinger DiscovEHR collaboration and linking to data in the Geisinger EHR under a 345 

protocol approved by the Geisinger Institutional Review Board. The cases were a subset of 346 

cancer patients from a cancer registry that were part of 90,000 patients sequenced as part of 347 

the DiscovEHR project. The cases were classified into different cancers using ICD-O site codes as 348 

defined in Table S3. Cases that were recorded as having cancer in multiple primary sites were 349 

removed. Further, only cancers with at least 300 cases in 60,000 patients were sequenced in 350 

phase 1 of the DiscovEHR study were included and other cancers were discarded due to a low 351 

number of cases. A common control set was selected for all non-sex specific cancers using 352 

matched age and BMI to cases from a pool of patients who did not have any ICD9/ICD10 code 353 

related to cancer in a problem-list entry of the diagnosis code, an inpatient hospitalization-354 

discharge diagnosis code, or an encounter diagnosis code. The controls for breast, uterine and 355 

prostate cancer were pulled separately to have the same number of controls as the common 356 

control set. Age was calculated as age at diagnosis for cases and current age if alive or age at 357 

death for controls. The median of BMI values recorded in the EHR from a year before diagnosis 358 

date was used as BMI for cases. Furthermore, the median of BMI values from a year before 359 
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current date or date of death for alive and deceased patients respectively was used as BMI for 360 

controls. 361 

 362 

Sequencing and quality control 363 

All the study population was sequenced as part of the DiscovEHR project at the Regeneron 364 

Genetic Center. Initially, around 60,000 samples were sequenced using NimbleGen probe 365 

target-capture (SeqCap VCRome) and further a separate batch of 30,000 samples were 366 

sequenced using xGen capture (Integrated DNA Technologies) followed by sequencing on the 367 

Illumina HiSeq 2500. The variant calling was done using GATK
66; 67

. Further detailed description 368 

of sequencing is available at Shivakumar et al.
13

 and Mirshahi et al.
68

. Additional call rate quality 369 

controls were applied. The markers and samples with a call rate below 90% were filtered out. 370 

All related patients showing up to 3
rd

 degree relatedness corresponding to IBD > 0.125 were 371 

removed. 372 

  373 

Variant annotation and filtering 374 

 375 

All variants were annotated using VEP and ClinVar. All the loci that satisfied the following two 376 

conditions were retained and the rest were filtered out. 377 

1. Loci that were annotated with impact ‘HIGH’ using VEP. 378 

2. Loci that were annotated as pathogenic and likely pathogenic with at least 1 star using 379 

ClinVar. 380 
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Variants that satisfied the conditions were considered pathogenic and likely pathogenic and all 381 

analysis were run using only these loci. 382 

 383 

Gene based rare variant association 384 

 385 

All the variants that were annotated as pathogenic and likely pathogenic were binned using 386 

BioBin
17; 30

. BioBin uses pre-compiled knowledge in a LOKI database, which is compiled using 387 

information from various data sources including Entrez and KEGG. The variants were binned 388 

into genes using Entrez annotations. Only variants with MAF < 0.05 were considered rare and 389 

the rest of the variants were filtered out. Additionally, bins with less than 20 variants (MAC) 390 

were filtered out due to low sample size. Further, the binned variants were weighed using 391 

Madsen-browning weights
69

. The statistical association tests were run using SKAT-O 392 

implemented as R package
32

. Additionally, the association tests were adjusted using age, BMI 393 

and first four principle components as covariates. The principle components were calculated 394 

using EIGENSOFT
70

, using common variants after LD pruning with indep-pairwise 50 5 0.5 and 395 

Hardy-Weinberg equilibrium of 10
-6

. The association test p-values were further adjusted using 396 

Bonferroni correction to account for multiple testing correction. 397 

 398 

Pathway based rare variant association 399 

BioBin was used to bin rare variants with a MAF < 0.05 into KEGG pathways derived from 400 

LOKI
17; 30

. Any pathway bin that did not contain a total of at least 20 variants across case and 401 

cancer were filtered out due to small sample size. Further all the bins were weighted using 402 
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Madsen-browning weighting
69

. Statistical association was run using SKAT-O implemented as R 403 

package 
32

. The association tests were adjusted using age, BMI and four principle components 404 

as covariates. Further, the association p-values were adjusted using Bonferroni correction.  405 

 406 

Survival analysis 407 

 408 

Survival analysis was run using cox regression adjusting for age and BMI. Specifically, the BioBin 409 

bin-phe output files which contains a weighted burden of variants were used to get the 410 

weighted burden of each patient for the bin (gene/pathway) and cox regression was run on the 411 

bin adjusting for age and BMI. Survival analysis was performed on each cancer using gene-412 

based bins and pathway-based bins. Further, survival p-values were adjusted for multiple 413 

testing using Bonferroni correction. 414 
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 664 
 665 

Figure 1. Schematic overview of Pan-caner analysis. The phenotype data was obtained from the 666 

Geisinger cancer registry and EHR and the genotype data was obtained from DiscovEHR study. 667 

Figure shows multiple steps involved in the analysis – variant filtering, quality control, rare 668 

variant analysis, and survival analysis. 669 
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670 
Figure 2. Pathways (x-axis) that were significantly associated with cancer (y-axis) (Bonferroni-671 

corrected P < 0.05). The pathways marked as replication ‘Yes’ were significant in discovery 672 

(Bonferroni-corrected P < 0.05) and replication (SKAT-O P < 0.05) datasets. The top bar plot 673 

shows the distribution of variant types as annotated by VEP across each pathway. 674 
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691 
Figure 3. Genes (x-axis) that were significantly associated with cancer (y-axis) using Bonferroni < 692 

0.05. The genes marked as replication ‘Yes’ were significant in discovery (Bonferroni < 0.05) and 693 

replication (association p-value < 0.05) datasets. The top bar plot shows the distribution of 694 

variant types as annotated by VEP across each gene. 695 
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697 
 698 

Figure 4. PhenoGram plot of all significant genes across all cancers. 699 

 700 
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C. 705 

 706 
 707 

Figure 5. Lollipop plot of genes with all loci binned in them. The color represents different types 708 

of variants as assonated by VEP. A. Lollipop plot for HOXB13 gene; B. Lollipop plot for MAPK12 709 

gene; C. Lollipop plot for ECE2 gene. 710 
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 712 

Figure 6. Carrier frequency of pathogenic and likely pathogenic variants across known 713 

oncogenes and tumor suppressors.  714 

The color of the boxes represents the carrier frequency of pathogenic and likely pathogenic 715 

variants as denoted by the frequency legend. 716 

The 7 genes significant at TFT p-value < 0.05 are marked with blue or green border. 717 

The 2 genes replicated from Huang et al 
14

 are marked with green border. 718 

 719 
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721 
Figure 7. Kaplan Meier survival plot for gene PCDHB8 which was significantly associated with 722 

survival in bladder cancer. PCDHB8 was also significantly associated with survival in bladder 723 

cancer in TCGA dataset. 724 
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Table 1. Characteristics for the cancer patients. 744 

Cancer Phase Case sample 

size 

Diagnosis age
#
 Female 

ratio 

BMI
*
 Alive Deceased

Bladder 
1 322 67.27 +/- 11.83 18.32% 29.72 +/- 6.01 215  107 

2 93 65.72 +/- 12.65 25.81% 30.76 +/- 6.13 86 7 

Breast 
1 1214 59.37 +/- 11.91 100% 31.08 +/- 7.2 1036 178 

2 472 56.37 +/- 12.16 100% 30.86 +/- 6.94 454  18 

Colorectal 
1 477 64.37 +/- 12.29 46.54% 30.85 +/- 6.81 317  160 

2 163 59.42 +/- 12.74 44.79% 31.36 +/- 7.22 144  19 

Kidney 
1 309 62.19 +/- 11.53 37.22% 32.64 +/- 7.4 244  65 

2 94 60.27 +/- 11.43 39.36% 32.73 +/- 6.53 86  8 

Lung 
1 512 67.47 +/- 10.52 43.36% 28.82 +/- 6.61 175  336 

2 146 63.51 +/- 10.19 53.42% 29.1 +/- 7.11 92  53 

Melanoma 
1 730 61.32 +/- 14.8 42.05% 30.42 +/- 6.27 614  116 

2 252 57.22 +/- 15.19 45.63% 30.31 +/- 6.6 243 9 

Prostate  
1 1146 65.24 +/- 8.05 0% 30.01 +/- 5.25 935  211 

2 369 63.86 +/- 8.74 0% 30.16 +/- 5.36 356 13 

Thyroid 
1 441 48.64 +/- 14.65 79.82% 31.79 +/- 7.69 414 26 

2 101 46.08 +/- 16.14 80.20% 31.62 +/- 7.88 101 0 

Uterine 
1 387 60.26 +/- 11.69 100% 38.33 +/- 9.82 342  45 

2 221 61.07 +/- 10.41 100% 36.76 +/- 10.44 209 12 

All 

Combined 

1 5538 61.85 +/- 12.71 51.97% 31.12 +/- 7.18 4292 1244 

2 1911 59.38 +/- 12.77 57.61% 31.37 +/ 7.45 1771 139 
Table shows case distribution and characteristics from Phase 1 and Phase 2.  745 
#
Average Age of patients at diagnosis in years +/- standard deviation 746 

*
Average BMI of the patients in kg/m

2 
+/- standard deviation 747 
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Table 2. Pathways significantly associated with cancers in both discovery and replication 764 

datasets. 765 
Cancer KEGG Pathway Discovery Replication 

  N 

locus 

MAC 

Case 

MAC 

Control 

SKAT-O P Bonferro

ni P 

N 

locus 

MA

C 

Case 

MAC 

Contro

l 

SKAT-

Bladder Insulin secretion 325 56 822 2.72E-12 8.57E-10 160 19 435 2.07E

Bladder Bladder cancer 124 34 550 4.28E-07 1.35E-04 55 13 432 1.84E

Bladder GnRH signaling pathway 358 81 1728 1.99E-06 6.28E-04 187 32 761 1.47E

Bladder FoxO signaling pathway 341 63 1298 2.37E-06 7.46E-04 179 23 653 1.11E

Bladder Inflammatory mediator regulation of TRP 

channels 

419 87 1770 3.47E-06 1.09E-03 212 31 696 2.22E

Bladder Pathways in cancer 1203 256 5138 1.11E-05 3.49E-03 565 100 2402 2.55E

Bladder Metabolic pathways 5806 1225 27356 2.23E-05 7.04E-03 2906 425 11816 3.59E

Bladder Regulation of lipolysis in adipocytes 191 62 1215 3.45E-05 1.09E-02 94 23 427 3.08E

Bladder Glycosphingolipid biosynthesis - lacto and 

neolacto series 

95 28 601 3.88E-05 1.22E-02 45 8 196 8.40E

Bladder Apelin signaling pathway 492 92 1630 4.65E-05 1.47E-02 230 39 743 1.70E

Bladder Endocrine resistance 325 70 1435 7.95E-05 2.50E-02 148 37 984 2.92E

Bladder Thyroid hormone synthesis 352 60 1100 9.94E-05 3.13E-02 174 20 473 2.05E

Colorectal Gap junction 269 64 875 1.36E-07 4.27E-05 128 27 402 8.70E

Colorectal Retrograde endocannabinoid signaling 296 72 960 1.06E-06 3.33E-04 150 36 603 7.34E

Colorectal Amino sugar and nucleotide sugar 

metabolism 

252 66 947 1.06E-05 3.35E-03 121 23 321 5.19E

Colorectal Long-term depression 250 76 999 2.25E-05 7.10E-03 126 42 570 1.27E

Colorectal Apoptosis 474 132 1930 1.06E-04 3.33E-02 246 85 953 1.00E

Kidney Base excision repair 191 49 865 9.83E-10 3.10E-07 88 10 242 4.25E

Kidney Primary bile acid biosynthesis 88 17 199 1.60E-05 5.03E-03 38 5 70 6.18E

Kidney HTLV-I infection 728 248 5636 2.19E-05 6.90E-03 342 101 2260 4.55E

Kidney Glycerolipid metabolism 282 74 1333 7.03E-05 2.22E-02 152 26 841 1.50E

Kidney Breast cancer 413 60 1116 8.80E-05 2.77E-02 184 55 1137 2.62E

Lung Collecting duct acid secretion 98 23 166 2.29E-06 7.22E-04 47 6 104 1.11E

Lung Complement and coagulation cascades 383 164 2092 1.05E-04 3.31E-02 188 22 748 2.26E

Thyroid Nicotinate and nicotinamide metabolism 158 64 942 5.73E-05 1.80E-02 75 15 389 9.20E

Thyroid Other types of O-glycan biosynthesis 75 10 134 1.22E-04 3.85E-02 45 5 57 3.10E

N locus: Total number of genomic loci binned in pathway. 766 
MAC Case: Total minor allele count of variants in pathway in case population. 767 
MAC Control: Total minor allele count of variants in pathway in control population. 768 
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Table 3. Pathways significantly associated with more than one cancer. 774 

KEGG Pathway N Cancers Cancers 

Apoptosis 3 Colorectal, Kidney, Lung 

Axon guidance 2 Colorectal, Lung 

Basal cell carcinoma 2 Bladder, Kidney 

Bladder cancer 3 Bladder, Kidney, Uterine 

Choline metabolism in cancer 2 Kidney, Lung 

FoxO signaling pathway 4 Bladder, Colorectal, Kidney, Lung 

Gap junction 2 Colorectal, Uterine 

Glycerolipid metabolism 2 Kidney, Melanoma 

GnRH signaling pathway 4 Bladder, Colorectal, Kidney, Uterine 

Homologous recombination 2 Breast, Lung 

HTLV-I infection 2 Bladder, Kidney 

Legionellosis 2 Bladder, Kidney 

Melanoma 2 Kidney, Uterine 

Metabolic pathways 2 Bladder, Kidney 

Neurotrophin signaling pathway 2 Colorectal, Melanoma 

Pancreatic secretion 2 Thyroid, Uterine 

Platinum drug resistance 2 Kidney, Lung 

Protein processing in endoplasmic reticulum 2 Kidney, Uterine 

Rap1 signaling pathway 2 Lung, Uterine 

Regulation of actin cytoskeleton 2 Colorectal, Lung 

VEGF signaling pathway 2 Colorectal, Lung 

All pathways were significant in the cancers provided in column 3 with Bonferroni-corrected P < 0.05 775 
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Table 4. Genes associated with cancers that were replicated.  793 
Cancer Gene information Discovery Replication 

 Gene Chr: Build 38 

position 

N 

locus 

MAC 

Case 

MAC 

Cont

rol 

SKAT-O 

p-value 

Bonferroni 

corrected 

p-value 

N 

locus 

MAC 

Case 

MAC 

Cont

rol 

SKAT-O

p-value

Kidney MLNR 13: 49220338-

49222377 

5 6 39 1.07E-07 3.70E-04 3 7 48 7.89E-0

Kidney CPAMD8 19: 16892947-

17026818 

23 9 75 2.24E-07 7.70E-04 14 3 43 1.29E-0

Uterine CHRNE 17: 4801064-

4806369 

17 9 95 7.92E-07 2.70E-03 17 8 27 1.29E-0

Prostate HOXB13 17: 48724763-

48728749 

5 19 37 2.86E-06 1.06E-02 2 8 14 5.54E-0

Bladder SCML4 6: 107697297-

107845959 

6 5 116 2.26E-07 7.70E-04 4 3 18 1.13E-0

Thyroid BST1 4: 15701866-

15774178 

21 5 41 2.36E-07 8.20E-04 13 4 49 2.56E-0

Uterine TMEM186 16: 8795180-

8797648 

3 13 101 8.66E-08 3.00E-04 2 10 47 4.49E-0

N locus: Total number of genomic loci binned in gene. 794 
MAC Case: Total minor allele count of variants in gene in case population. 795 
MAC Control: Total minor allele count of variants in gene in control population. 796 
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Table 5. Genes significantly associated with more than one cancer. 814 
Cancer Gene information Discovery 

Cancer Gene Chr: Build 38 position N locus MAC Case MAC 

Control 

SKAT-O p-

value 

Bonferroni 

corrected p-value

Bladder MAPK12 22: 50252901-50261810 7 6 42 1.18E-06 4.02E-03 

Colorectal MAPK12 22: 50252901-50261810 9 8 42 1.18E-05 4.08E-02 

Colorectal ECE2 3: 184276011-184293031 17 4 17 7.23E-06 2.50E-02 

Melanoma ECE2 3: 184276011-184293031 20 6 17 2.93E-06 1.04E-02 

Lung DNMT3A 2: 25232961-25342590 30 10 28 6.62E-10 2.00E-06 

Bladder DNMT3A 2: 25232961-25342590 25 6 27 2.21E-06 7.53E-03 

Colorectal CHIA 1: 111290852-111320566 9 9 70 4.14E-10 1.00E-06 

Melanoma CHIA 1: 111290852-111320566 9 8 70 1.38E-05 4.89E-02 

 815 

 816 

 817 

 818 

 819 

 820 

 821 

 822 

 823 

 824 

 825 

 826 

 827 

 828 

 829 

 830 

 831 

 832 

 833 

 834 

 835 

 836 

 837 

 838 

 839 

 840 

 841 

 842 

 843 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 12, 2019. ; https://doi.org/10.1101/2019.12.09.19013334doi: medRxiv preprint 

https://doi.org/10.1101/2019.12.09.19013334
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 6. Genes associated with survival 844 

Cancer Gene N cases
#
 N controls

*
 Cox p-value FDR Bonferroni Permutation

p-value 

Thyroid NAA38 10 430 1.67E-05 9.80E-03 9.80E-03 2.98E-03 

Melanoma THNSL1 18 712 1.75E-06 1.60E-03 1.60E-03 8.40E-04 

Uterine SAXO2 17 370 7.56E-05 1.95E-02 3.89E-02 6.20E-04 

 DCHS2
^

 19 368 9.71E-07 5.00E-04 5.00E-04 1.50E-04 

 DBF4B 13 374 1.77E-04 3.04E-02 9.15E-02 5.84E-03 

Bladder PCDHB8
^
 29 293 1.36E-06 6.00E-04 6.00E-04 4.50E-04 

Breast ANO5 15 1199 1.75E-04 4.92E-02 2.46E-01 1.56E-03 

 HOGA1 10 1204 4.23E-05 1.98E-02 5.94E-02 2.39E-03 

 CSH2 22 1192 3.71E-07 9.80E-03 9.80E-03 2.98E-03 

 ATXN3 10 1204 3.89E-05 1.60E-03 1.60E-03 8.40E-04 

 FAM186A 35 1179 1.64E-04 1.95E-02 3.89E-02 6.20E-04 

Prostate TPTE2 15 1131 3.25E-05 5.00E-04 5.00E-04 1.50E-04 

Kidney HLA-G 10 299 5.54E-06 3.04E-02 9.15E-02 5.84E-03 
# 

Number of cancer patients who have rare variants in given gene 845 
* 

Number of cancer patients who do not have rare variants in given gene 846 
^ 

Genes significantly associated with survival in TCGA data- PCDHB8 (Logrank P = 9.22E-03) and DCHS2 (Logrank P = 847 
0.036) 848 
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Table 7. Pathways associated with survival 866 

Cancer KEGG Pathway N cases
#
 N controls

*
 Cox p-value FDR Bonferr

oni 

Permuta

tion p-

value 

Melano

ma 

Phenylalanine tyrosine 

and tryptophan 

biosynthesis 

19 711 6.77E-05 2.05E-

02 

2.05E-

02 

5.20E-04

Melano

ma 

Phenylalanine 

metabolism 

31 699 1.57E-04 2.39E-

02 

4.77E-

02 

3.90E-04

# 
Number of cancer patients who have rare variants in given gene 867 

* 
Number of cancer patients who do not have rare variants in given gene 868 

 869 
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