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ABSTRACT  50 

Introduction  51 

A major hurdle to HIV-1 eradication is the establishment of a latent viral reservoir early after 52 

primary infection. Several factors are known to influence the HIV-1 reservoir size and decay 53 

rate on suppressive antiretroviral treatment (ART), but little is known about the role of human 54 

genetic variation. 55 

Methods 56 

We measured the reservoir size at three time points over a median of 5.4 years, and searched 57 

for associations between human genetic variation and two phenotypic readouts: the reservoir 58 

size at the first time point and its decay rate over the study period. We assessed the contribution 59 

of common genetic variants using genome-wide genotyping data from 797 patients with 60 

European ancestry enrolled in the Swiss HIV Cohort Study and searched for a potential impact 61 

of rare variants and exonic copy number variants using exome sequencing data generated in a 62 

subset of 194 study participants.  63 

Results 64 

Genome- and exome-wide analyses did not reveal any significant association with the size of 65 

the HIV-1 reservoir or its decay rate on suppressive ART.  66 

Conclusions  67 

Our results point to a limited influence of human genetics on the size of the HIV-1 reservoir 68 

and its long-term dynamics in successfully treated individuals.   69 

 70 

 71 

 72 

 73 
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INTRODUCTION 74 

Combination antiretroviral treatment (ART) has turned the previously lethal infection by human 75 

immunodeficiency virus type 1 (HIV-1) into a chronic disease. Despite this significant 76 

achievement, HIV-1 as retrovirus, self-integrating its genome into the host chromosome, 77 

persists indefinitely in infected individuals during treatment [1–4], and life-long ART is 78 

required to control the infection.  79 

A major hurdle to HIV-1 eradication is the establishment, already during primary infection, of 80 

a latent viral reservoir of HIV-1 DNA persisting as provirus in resting memory CD4+ T cells 81 

[1,2,5–8]. At the molecular level, chromatin remodeling, epigenetic modifications, 82 

transcriptional interference, and availability of transcription factors have been considered as 83 

possible mechanisms contributing to HIV-1 latency [9]. The viral reservoir is measurable 84 

through different methods, including viral outgrowth assay and intracellular HIV-1 DNA 85 

quantification [10,11]. Currently, there is no consensus on the best HIV-1 reservoir biomarker. 86 

Total cell-associated HIV-1 DNA, easy to measure in different cell and tissue samples and 87 

applicable to large populations, has been shown to be a good proxy for the reservoir size [12]. 88 

Indeed, while HIV-1 DNA measurement is able to detect both integrated and nonintegrated 89 

viral genomes coding for intact or defective viruses [13], total HIV-1 DNA levels have been 90 

shown to correlate with viral outgrowth [14], and to predict the time to viral rebound at 91 

treatment interruption [15]. Moreover, the substantial loss of nonintegrated HIV-1 DNA 92 

genomes following ART initiation suggests that total HIV-1 DNA after prolonged suppression 93 

is largely accounted for by integrated viral genomes [16].  94 

After an initial rapid decay following ART initiation, changes of the viral reservoir size over 95 

time display wide inter-individual variability. By limiting dilution culture assay, the half-life of 96 

the viral reservoir was first estimated to be 44 months (95% confidence interval 27.4-114.5) in 97 

individuals with undetectable viremia [4]. A more recent study showed a slow decline of total 98 
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HIV-1 DNA with a half-life of 13 years after the first four years of suppressive ART [17]. 99 

Generally, different studies show a broad variability of the average decay rate, from 2.5 months 100 

to no measurable decay [18–26]. One study even reported an increase in the viral reservoir size 101 

in as much as 31% of patients in the 4-7 years following ART initiation [27], and recent data 102 

from our group confirm this observation, reporting an increase in the reservoir size in 26.8% of 103 

individuals in the 1.5-5.5 years after ART initiation [28].   104 

Several factors are known to influence the decay rate of the viral reservoir: initiation of ART 105 

during acute HIV-1 infection substantially accelerates the decay rate, while viral blips and low-106 

level viremia during ART slow it down, as shown in previous studies [22] and in recent data 107 

from our cohort [28]. Conversely, treatment intensification, i.e.  treating with additional drugs, 108 

does not appear to influence the decay rate, suggesting that residual replication is not the main 109 

driver of the viral reservoir [29] or that it may happen in sanctuary sites.  110 

Human genetic variants have been shown to influence the outcome of various infections, 111 

including HIV. Previous genome-wide association studies (GWAS) addressed the role of 112 

common genetic polymorphisms in several HIV-related phenotypes, including plasma viral 113 

load (HIV-1 RNA) at set point, exceptional capacity to control viral replication, pace of CD4+ 114 

T lymphocyte decline, time to clinical AIDS, rapid progressor status or long-term non-115 

progressor status (LTNP) [30–37], and, in one single study, the amount of intracellular HIV-1 116 

DNA, measured at a single time point during the chronic phase of infection [38]. Rare genetic 117 

variants that are detectable through DNA sequencing technologies have been investigated far 118 

less. However, a large exome sequencing study did not reveal any convincing association of 119 

such variants with the natural history of HIV disease [39].  120 

To date, no studies have addressed the role of human genetic variation in determining the initial 121 

viral reservoir size and the reservoir decay rate over time. In the current study, we searched for 122 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted December 6, 2019. ; https://doi.org/10.1101/19013763doi: medRxiv preprint 

https://doi.org/10.1101/19013763
http://creativecommons.org/licenses/by-nc/4.0/


 

6 
 

host genetic factors associated with the HIV-1 reservoir size and its long-term dynamics in a 123 

cohort of 797 HIV-1 positive individuals on suppressive ART for at least five years.  124 

 125 

 126 

METHODS   127 

Ethics statement  128 

Participants in the Swiss HIV Cohort Study (SHCS) consented to the cohort study and genetic 129 

analyses, as approved by the corresponding local Ethics Committees. 130 

 131 

Study participants 132 

The SHCS is an ongoing, nation-wide cohort study of HIV-positive individuals, including more 133 

than 70% of all persons living with HIV in Switzerland. Clinical and laboratory information 134 

has been prospectively recorded at follow-up visits every 3-6 months since 1988 [40]. The 135 

general enrolment criteria have been described previously [28]. Additionally, availability of 136 

genome-wide genotyping data from previous studies or of a DNA sample for genotyping was 137 

required for inclusion in this study (Figure 1).  138 

 139 

Quantification of total HIV-1 DNA 140 

The collection of longitudinal cryopreserved peripheral blood mononuclear cells (PBMCs) 141 

from eligible participants and the quantification of total HIV-1 DNA by droplet digital PCR has 142 

been described previously along with the calculation of the reservoir decay rate [28].  Briefly, 143 

this study utilized total HIV-1 DNA quantifications from three time points at a median of ~1.5 144 

years, ~3.5 years, and ~5.4 years after initiation of ART.   145 

 146 

Genotyping and genome-wide association analyses 147 
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Genome-wide genotyping data were obtained from previous GWAS that used various 148 

microarrays, including the HumanCore-12, HumanHap550, Human610, Human1M and 149 

Infinium CoreExome-24 BeadChips (Illumina Inc., San Diego, CA, USA), or generated from   150 

DNA extracted from peripheral blood mononuclear cells using the HumanOmniExpress-24 151 

BeadChip (Illumina Inc., San Diego, CA, USA).    152 

Genotypes from each genotyping array were filtered and imputed separately, with variants first 153 

flipped to the correct strand with BCFTOOLS (v1.8) according to the human GRCh37 reference 154 

genome and filtered based on a less than 20% deviation from the 1000 genomes phase 3 EUR 155 

reference panel. Genotypes were phased, and missing genotypes were imputed with EAGLE2 156 

[41] and PBWT [42] respectively, using the 1000 Genomes Project Phase 3 reference panel on 157 

the Sanger Imputation Service [43]. Study participants were filtered based on European 158 

ancestry as determined by principal component analysis (PCA) using EIGENSTRAT (v6.1.4) 159 

[44] and the HapMap project [45] as reference populations (Figure S1A). Imputed variants were 160 

filtered by minor allele frequency (MAF) < 5%, missingness > 10%, deviation from Hardy-161 

Weinberg equilibrium (PHWE < 1e-6) and imputation quality score (INFO < 0.8). The remaining 162 

genotypes were then combined using PLINK (v1.90b5) [46] prior to analyses.  163 

To carry out the GWASs, genome-wide genotypes were tested for association with each of the 164 

two study phenotypes (reservoir size or reservoir decay rate) in two separate genome-wide 165 

association analyses. Statistical significance was set to the standard genome-wide significance 166 

threshold of P < 5e-8 to correct for multiple testing. The associations were computed using 167 

linear mixed models with genetic relationship matrixes calculated between pairs of individuals 168 

according to the leave-one-chromosome-out method as implemented in GCTA mlma-loco 169 

(v1.91.4beta) [47,48], only including age and sex as covariates, to avoid masking of true 170 

associations by confounders. To further assess the contribution of variables previously shown 171 

to be associated with either reservoir size or decay rate, we ran multiple genome-wide 172 
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association analyses, each including age, sex, and one single covariate, for each of the two study 173 

phenotypes. Finally, we conducted a GWAS including all the covariates except those showing 174 

mutual correlations. These covariates included time on ART, time to viral suppression, 175 

infection stage (acute or chronic), HIV-1 RNA pre-ART, last CD4+ T cell count pre-ART, 176 

HIV-1 subtype, transmission group, and occurrence of blips or low-level viremia during 177 

treatment. 178 

Classical HLA alleles at the four-digit level and variable amino acids within HLA proteins were 179 

imputed using SNP2HLA (v1.03) with the T1DGC reference panel consisting of 5,225 180 

individuals of European ancestry [49]. Association analyses with the imputed HLA alleles and 181 

multi-allelic amino acids was performed using linear regressions in PLINK and multivariate 182 

omnibus tests, respectively.  For all HLA analyses age, sex and the first principal component 183 

was included as covariates. 184 

Genotypes at specific loci, i.e. the CCR5∆32 deletion (rs333) and the HLA-B*57:01 allele, 185 

known to influence the setpoint viral load (spVL) [50,51], available from genome-wide 186 

genotyping data, were tested for association with the reservoir size and its decay rate in 797 187 

patients. High quality genotyping information on the CCR5∆32 deletion was available for most 188 

individuals (N = 687), while all had available HLA information.  189 

 190 

Exome sequencing and analysis 191 

All coding exons were captured using either the Illumina Truseq 65 Mb enrichment kit 192 

(Illumina Inc., San Diego, CA, USA) or the IDT xGen Exome Research Panel v1.0 (Integrated 193 

DNA Technologies Inc., Coralville, IA, USA) and sequenced on the Illumina HiSeq4000.  194 

Sequence reads were aligned to the human reference genome (GRCh37) including decoys with 195 

BWA-MEM (v0.7.10) [52]. PCR duplicates were flagged using Picard tools (v2.18.14) and 196 

variant calling performed using GATK (v3.7) [53].  197 
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To ensure a high-quality variant set across capture kit batches, all samples were merged and 198 

variants filtered based on sequencing depth (DP ≥ 20) and genotype quality (GQ ≥ 30) using 199 

BCFTOOLS (v1.8). Furthermore, individual genotypes were set as missing in cases of low 200 

depth (DP < 10) or low quality (GQ < 20). The effect of the included variants was annotated 201 

with SnpEff (v4.3T) [54]. 202 

For single variant association analysis, the VCF file was converted to PLINK format using 203 

BCFTOOLS and PLINK. Only variants with a MAF above 5%, missingness per variant below 204 

5% and absence of severe deviation from Hardy-Weinberg equilibrium (PHWE > 1e-6) were 205 

retained for the subsequent association analyses using PLINK. Sex, age and the first principal 206 

component were included as covariates. Only individuals of European descent were retained 207 

for the analyses, as determined by PCA (Figure S1B).       208 

The combined effect of rare protein-altering variants (MAF < 5%), defined as either missense, 209 

stop-gain, frameshift, essential splice variant or an indel by SnpEff, on the reservoir size and 210 

decay rate was analyzed using optimal sequence kernel association tests (SKAT-O) [55]. For 211 

the decay rate, individuals were split into two groups due to the non-normal distribution; one 212 

exhibiting a very high decay over time (< -0.03 -log10(DNA)) and another with a stable 213 

reservoir size (≥ -0.03 and ≤ 0.03 -log10(DNA)). For this case-control analysis we used the 214 

SKATbinary function with linear weighted variants as implemented in the SKAT R package. 215 

In both cases, the analyses were adjusted for age, sex, and the first principal component.  216 

Classical HLA class I and II alleles at the four-digit level were imputed from the exome 217 

sequencing data using HLA*LA [56]. All reads mapping to the MHC region or marked as 218 

unmapped were extracted using Samtools (v1.8) and used as input into HLA*LA. For 219 

association analyses, the 4-digit HLA alleles were extracted and analyzed using PyHLA [57] 220 

assuming an additive model, a minimum frequency of 5% and including age, sex and the first 221 

principal component as covariates.  222 
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 223 

Copy number variation 224 

Copy number variations (CNVs) were called from exome sequencing data using CLAMMS 225 

[58]. CNVs were called for all samples in batches according to the exome capture kit used. 226 

Within batches, samples were normalized based on coverage and potential intra-batch effects 227 

adjusted for through the use of recommended mapping metrics extracted with Picard tools 228 

(v2.18.14). After CNV calling, samples with the number of CNVs two times above the median 229 

were excluded (N = 2). CNV association analyses were performed for duplications and 230 

deletions separately for common CNVs (frequency > 5 %) with PLINK adjusting for age and 231 

sex. Potential rare CNVs (frequency < 5%) impacting immune related genes were examined by 232 

overlapping called CNVs with curated immune-related genes from Immport [59] which were 233 

also listed as protein coding in GENCODE (v25).    234 

 235 

Statistical analyses 236 

All statistical analyses were performed using the R statistical software (v3.5.2), unless 237 

otherwise specified. 238 

 239 

 240 

RESULTS  241 

Host genetic determinants of the reservoir size and long-term dynamics 242 

To investigate the effects of host genetic variation on the size of the HIV-1 reservoir 1.5 years 243 

after ART initiation and its long-term dynamics under ART over a median duration of 5.4 years, 244 

we performed a GWAS, including 797 well-characterized HIV-1 positive individuals. All study 245 

participants were enrolled in the SHCS and were of European ancestry with longitudinal total 246 

HIV-1 DNA measurements available (Table 1). The median HIV-1 reservoir size was 2.76 247 
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(IQR: 2.48-3.03) log10 total HIV-1 DNA copies/1 million genomic equivalents measured ~1.5 248 

years after initiation of ART (Figure S2A). The median decay rate between 1.5-5.4 years after 249 

initiation of ART was -0.06 (IQR: -0.12-0.00) log10 total HIV-1 DNA copies/1 million 250 

genomic equivalents per year (Figure S2B). With our sample size we had 80% power to detect 251 

variants with a MAF of 10% explaining at least 5% of the variance in HIV-1 reservoir size or 252 

decay rate [60].  253 

First, we performed GWAS using age and sex as covariates. We did not observe any genome-254 

wide significant variant (P < 5e-8) associated with either HIV-1 reservoir size or long-term 255 

dynamics (Figure 2, S3). However, as we have previously determined, multiple factors are 256 

associated with the HIV-1 reservoir size and its decay rate [28], some of which are correlated 257 

(Figure S4). Thus, we performed additional analyses iteratively including these factors to test 258 

whether they could mask genetic associations. We ran multiple GWAS each adjusting for age, 259 

sex, plus one of the associated covariates, as well as all of the covariates together. The addition 260 

of the covariates did not have any significant effect on the results nor the genome-wide inflation 261 

factor (lambda) (Table S1). 262 

Genetic variation in the HLA region has previously been associated with multiple HIV-related 263 

outcomes, including spVL [51]. To test whether specific HLA variants were associated with 264 

reservoir size or long-term dynamics, we imputed the HLA alleles and amino acids for all 797 265 

individuals from the genotyping data. In line with the previous results, we did not observe any 266 

genome-wide significant associations with any HLA allele or amino acid.  267 

 268 

Impact of protein-coding and rare variants 269 

To assess the impact of rare variants as well as protein-coding variants missed by genotyping 270 

arrays on the HIV-1 reservoir size and long-term dynamics, we performed exome sequencing 271 

in 194 of the 797 study participants. Patients were selected at the two extremes of the observed 272 
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reservoir decay rate: either very rapid, or absent (no change in reservoir size over ~5.4 years), 273 

while individuals with increasing HIV-1 reservoir sizes were excluded (N=12). Thus, the long-274 

term dynamics phenotype was binarized for subsequent analyses of the decay rate, while the 275 

HIV-1 reservoir size phenotype remained normally distributed (Figure S5).  276 

To ensure that no common variants, missed by the genotype chips, were associated with the 277 

HIV-1 reservoir size or long-term dynamics, we performed a GWAS for common variants using 278 

age and sex as covariates. As with the genotyping data, we observed no genome-wide 279 

significant variants for either phenotype (Figure S6).   280 

We then examined the potential role of rare variants (MAF < 5%) with a functional impact 281 

defined as either missense, frameshift, stop gained, splice acceptor or donor.  Since HIV-1 282 

primarily infects CD4+ T cells, we only included variants within genes expressed in these cells 283 

as determined by Gutierrez-Arcelus et al. [61]. The significance threshold after correcting for 284 

the number of tests performed was P = 1.21e-5. We did not observe any significant associations 285 

for either the HIV-1 reservoir or the decay rate. The AMBRA1 gene showed the strongest 286 

association with HIV-1 reservoir size (P = 4.15e-5, not significant) (Figure S7).     287 

To confirm the lack of HLA association seen with the genotyping data, we imputed the HLA 288 

haplotypes from the exome data using HLA*LA. Again, we did not observe any significant 289 

HLA association with the study outcomes.   290 

 291 

Copy number variations 292 

To examine the role of large exonic CNVs not captured by standard genotyping and exome 293 

pipelines, we called CNVs from the mapped sequencing reads of the exome samples using the 294 

software CLAMMS. The contribution of common CNVs to HIV-1 reservoir size and long-term 295 

dynamics was analyzed by association analyses including age, sex and the first principal 296 

component as covariates. No significant association was observed after Bonferroni correction 297 
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(Figure S8). We also searched for rare CNVs in curated immune-related genes from Immport 298 

[59] but did not discover any suggestive immune-related CNVs .  299 

 300 

Influence of HLA-B*57:01 and the CCR5∆32 deletion on reservoir size and long-term 301 

dynamics 302 

We have previously shown that pre-ART RNA viral load levels are associated with the HIV-1 303 

reservoir size and the occurrence of blips [28]. The HLA-B*57:01 allele and the CCR5∆32 304 

deletion are well known genetic variants influencing HIV-1 spVL [50,51], and could thus also 305 

be associated with the with the HIV-1 reservoir size or its decay rate. However, we did not 306 

observe any nominal association (all P > 0.05) with either reservoir size or its long-term 307 

dynamics for HLA-B*57:01 and CCR5∆32 (Figure S9).   308 

 309 

 310 

DISCUSSION 311 

We used a combination of genomic technologies to assess the potential role of human genetic 312 

factors in determining both the HIV-1 reservoir size and its long-term dynamics in a well-313 

characterized, population-based cohort. We studied 797 HIV-1 infected individuals of 314 

European origin under suppressive ART over a median of 5.4 years, for whom extensive clinical 315 

data are available, allowing detailed characterization and correction for potential confounders 316 

[28]. We measured the HIV-1 reservoir size at three time points and selected two phenotypes 317 

for our genomic study: the reservoir size at ~1.5 years after ART initiation and the slope of the 318 

reservoir decay rate calculated over the three time points. Previous HIV host genetic studies 319 

mostly focused on phenotypes reflecting the natural history of HIV-1 infection, prior to ART 320 

initiation, including spontaneous viral control and disease progression [30–37]. A single study 321 

specifically tested for associations between common genetic variants and the amount of 322 
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intracellular HIV-1 DNA, measured at a single time point during the chronic phase of infection 323 

prior to initiation of any antiretroviral therapy [38]. Here, in contrast, we longitudinally assessed 324 

samples collected from patients under suppressive ART to search for human genetic 325 

determinants of the long-term dynamics of the HIV-1 reservoir during treatment.  326 

We first conducted a GWAS on 797 individuals to test for association between common genetic 327 

variants and the phenotypes. Given the small proportion of non-European subjects in the initial 328 

study cohort, we only included patients of European ancestry to avoid any false positive 329 

associations or masking of true positive associations due to different allele frequencies in small 330 

proportions of individuals belonging to different subpopulations (Figure 1) [62]. Regardless of 331 

including or not independent covariates other than the standard ones (i.e., sex and age), no 332 

genetic variant reached the genome-wide significance threshold for association with any of the 333 

two phenotypes. This may reflect a small effect size of genetic variants on the HIV-1 reservoir 334 

size and decay rate. We acknowledge that a larger sample size and thus increased statistical 335 

power may allow detecting genetic variants with a smaller effect size associated with the 336 

phenotypes. However, it should be noted that this study is by far the largest today that has 337 

investigated the size and decay of the HIV-reservoir in well characterized and well suppressed 338 

HIV-infected individuals over a longer time period.  Alternatively, the control of the HIV-1 339 

reservoir size and its long-term dynamics may be under the control of viral or host factors other 340 

than the individual genetic background. A previous report from our group had shown a 341 

correlation between viral blips during the first 1.5 years of suppressive ART and the HIV-1 342 

reservoir size 1.5 years after ART initiation, and between viral blips after 1.5-5.4 years of 343 

suppressive ART or low-level viremia and a slower decay rate [28]. Importantly, viral blips are 344 

generally thought to reflect transient increases in viral replication, probably occur under 345 

multifactorial influence from viral and host factors [63–70], with these latter possibly including, 346 

but not being limited to, germline genetic variation. The biological relations between viral 347 
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reservoir, decay rate, viral blips, and the contribution of the individual genetic background still 348 

need full elucidation.  349 

Standard GWAS is designed to detect associations with common genetic variants (i.e., with a 350 

MAF of at least 0.05), with little power to investigate the role of rare variants. Thus, to further 351 

assess the contribution of rare variants in individuals at the extreme of the decay rate 352 

distribution, we used exome sequencing in a selected subset of 194 study participants with very 353 

high decay rate, or conversely, a stable reservoir size over time (Figure S5). Here again, our 354 

analyses did not detect significant association with the phenotypes. Although not reaching 355 

statistical significance, a rare genetic variant with potential functional impact in AMBRA1 had 356 

a p-value for association just below the corrected threshold. The expression of AMBRA1, a core 357 

component of the autophagy machinery, has previously been associated with long-term viral 358 

control in HIV-1 non-progressors [71]. Future studies may further elucidate whether genetic 359 

variation in AMBRA1 may account for inter-individual differences in the long-term dynamics 360 

of the HIV-1 reservoir.  361 

Large deletions or duplications of genomic material may be implicated in human phenotypes, 362 

with CNVs impacting the exonic regions being more likely to have a functional role. Thus, we 363 

further investigated whether any common or rare CNV spanning exonic regions was associated 364 

with the phenotype.  Again, no CNV was statistically associated with the phenotypes both in 365 

the exome-wide analyses and in analyses focused on immune-related genes.  366 

An inherent limitation of our exome-based association analyses was their inability to detect rare 367 

variants outside the coding or splice-site regions. The exonic regions account for approximately 368 

1-2% of the whole human genome. Because many regulatory sequences are located in extra-369 

genic sites, our analysis did not fully investigate the role of highly conserved, non-coding 370 

genetic regions in influencing the phenotypes linked to HIV-1 latency. 371 
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Additionally, we focused on specific genetic variants, i.e., the HLA haplotypes and the 372 

CCR5∆32 deletion, previously demonstrated to have a role in HIV-1 related phenotypes 373 

[30,51]. Indeed, previous studies unraveled a robust association between variation in the HLA 374 

region and the HIV-1 spVL [30]. Likewise, heterozygosity for the CCR5∆32 deletion has been 375 

shown to influence spontaneous HIV-1 control [51]. Thus, we imputed HLA genotypes from 376 

genotyping and exome data, and studied the CCR5∆32 deletion, without, however, detecting 377 

any significant associations with the phenotypes or the covariates (Figure S9).  Specifically, we 378 

found no correlation between HLA genotypes and HIV-1 RNA plasma levels prior to ART 379 

initiation, apparently contrasting with the previous findings of an association between HLA-380 

B*57:01 haplotype and spVL. This probably reflects historical changes in the therapeutic 381 

approach following a diagnosis of HIV-1 infection, given that ART is currently initiated soon 382 

after clinical diagnosis, before most patients reach a stable plateau of plasma viral load.   383 

In our study, the quantification of the reservoir size at different time points may have been 384 

influenced by factors as, for example, blips and low-level viremia, which may have reduced 385 

our ability to detect significant genetic effects. It is also possible that, in the future, novel 386 

methods to assess the viral reservoir will allow the detection of significant contributions of 387 

genetic factors [72]. So far, it remains unanswered whether the initial response to acute 388 

infection, the containment of ongoing replication, and the control of latently infected cells are 389 

under the influence of the same or different molecular networks. It needs to be noted that in 390 

previous work we have shown that host genetic factors as defined by GWAS did not explain 391 

the severity of symptoms during acute HIV-infection, although severity of symptoms correlated 392 

well with viral load and CD4 cell counts [73]. In contrast to host genetic factors, we recently 393 

identified a significant impact of the viral genome on the size of the latent reservoir 1.5 years 394 

after treatment initiation. However, what parts of the virus genome were responsible for this 395 

“viral effect” needs to be determined further.  396 
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In conclusion, our study suggests that human individual germline genetic variation has little, if 397 

any, influence on the control of the HIV-1 viral reservoir size and its long-term dynamics. 398 

Complex, likely multifactorial biological processes govern HIV-1 viral persistence. Larger 399 

studies will possibly clarify the role of common or rare genetic variants explaining small 400 

proportions of the variability of the phenotypes related to viral latency.  401 
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 678 
FIGURE LEGENDS 679 

Figure 1. Patient selection flowchart. Specific inclusion and exclusion criteria are listed for 680 

each selection step. ART (antiretroviral therapy); PBMCs (peripheral blood mononuclear cells); 681 

PI (protease inhibitor); PCA (principal component analysis). 682 

 683 

Figure 2. Association results with HIV-1 reservoir size. Manhattan plot with association p-684 

values (-log10(P)) per genetic variant plotted by genomic position. Dashed line indicates the 685 

threshold for genome-wide significance (P = 5e-8). No variants were found to be genome-wide 686 

significant.    687 
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TABLES 698 

Table 1. Patient characteristics   

Total number of individuals  

  Genotyped 797 
  Genotyped + exome sequenced 194 
Age at first HIV-1 DNA sample in years    
   median (IQR) 44 (38, 50) 
Sex    
   Female 123 (15.4%) 
   Male 674 (84.6%) 
Transmission group    
   HET 241 (30.2%) 
   IDU 77 (9.7%) 
   MSM 448 (56.2%) 
   Other 31 (3.9%) 
HIV-1 subtype    
   B 550 (69.0%) 
   Non-B 128 (16.1%) 
   Unknown 119 (14.9%) 
Occurrence of blips or low-level viremia    
   Blips 200 (25.1%) 
   Low-level viremia 68 (8.5%) 
   None 529 (66.4%) 
Time on ART    
   median (IQR) 1.50 (1.28, 1.69) 
Infection stage    
   Acute 140 (17.6%) 
   Chronic 657 (82.4%) 
Time to viral suppression    
   median (IQR) 0.34 (0.23, 0.51) 
Log10 HIV-1 plasma RNA pre-ART per mL    
   median (IQR) 480 (248, 684) 
CD4+ cell count pre-ART cells/µL blood    
   median (IQR) 186 (90, 270) 
HIV-1 reservoir size    
   median (IQR) 2.76 (2.48, 3.03) 
HIV-1 reservoir decay rate    
   median (IQR) -0.06 (-0.12, -0.00) 

Transmission group indicates the self-reported route of infection (heterosexual (HET), 699 

intravenous drug usage (IDU), men who have sex with men (MSM), and other (including 700 

transfusions and unknown)). The occurrence of viral blips was defined by measurements of ≥ 701 
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50 HIV-1 RNA copies/mL plasma within a 30-day window. Individuals with consecutive 702 

measurements of ≥ 50 HIV-1 RNA copies/mL plasma for longer durations were classified as 703 

exhibiting low-level viremia. Time to viral suppression was the time from initiation of ART to 704 

the first viral load measurement below 50 copies/mL HIV-1 plasma RNA. HIV-1 reservoir size 705 

was measured in log10 total HIV-1 DNA/1 million genomic equivalents ~1.5 years after 706 

initiating ART. The HIV-1 reservoir decay rate was based on the three measurements of total 707 

HIV-1 DNA levels taken at the median of 1.5, 3.5 and 5.4 years after initiation of ART. 708 
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Figure 1

18,688 individuals (Swiss HIV Cohort Study, 19/12/2014)

Inclusion criteria:
• HIV-1 infection
• Receiving ART for ≥ 5 years
• No treatment interruption of > 7 days
• No virological failure defined as two consecutive
 measurements > 200 HIV-1 RNA copies/ml plasma
• PBMCs available for three time points: 
 1.5 +/- 0.5 years, 3.5 +/- 0.5 years, and 
 5.5 +/- 1 year, after initiating first-line ART

1932 individuals

Exclusion criteria:
• Start on less potent ART regimens, i.e., mono/ or dual
 therapy, less potent/unboosted PI (NFV, SQV etc.)

1382 individuals

• Received ≥ 3 PBMC samples (mandatory 1st - 3rd time point)

1166 individuals

• Successful total HIV-1 DNA quantification in ≥ 3 PBMC samples
 (mandatory 1st - 3rd time point)

1057 individuals

• Successfully genotyped

995 individuals

• European ancestry (by PCA)

797 individuals 194 individuals+ Exome sequencing
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