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Abstract

Malaria is a vector-borne disease that is responsible for over 400,000 deaths per year. Although many coun-
tries world wide have taken measures to decrease the incidence of malaria many regions remain endemic, and
in some parts of the world malaria incidence is increasing. While control efforts are largely focused at national
levels, the movement of individuals between countries may complicate the efficacy of elimination efforts. Here,
we consider the case of neighboring countries Botswana and Zimbabwe, connected by human mobility. Both
have improved malaria rates in recent years, but are not yet reached elimination. We use a two-patch Ross-
MacDonald Model with Lagrangian human mobility to examine the coupled disease dynamics between these
two countries. In particular, we are interested in the impact that interventions for controlling malaria applied in
one country can have on the incidence of malaria in another country. We find that dynamics and interventions
in Zimbabwe can dramatically influence pathways to elimination in Botswana, largely driven by Zimbabwe’s
population size and larger basic reproduction number.

1 Introduction

Concerted efforts over the past 20 years have dramatically decreased the incidence of malaria in many countries
around the world. However, the response to interventions to reduce malaria has varied geographically, with
neighboring country’s efforts often producing significantly different results. For example, in Botswana, from
2000 to 2012, malaria cases were reduced from over 70,000 to only about 300. While neighboring countries
Zimbabwe, Namibia, and Zambia have also decreased their malaria rates, they remain high-infection regions
with substantial tourism and migration between these countries and Botswana [3, 5, 37, 39].

Okano et al.[42] demonstrated the role that source-sink dynamics can play in maintaining epidemics in
regions that would not sustain disease transmission in isolation. Here, we use a model-based approach to
examine the role that human movement can play in infection dynamics in regions that are interconnected by
human mobility, and that are close to eliminating the disease. We use Botswana and Zimbabwe as a case study
to consider infection dynamics as both of these countries attempt to go from low infection rates to elimination
while remaining connected by human movement.

While a variety of models have considered the infection rates in malaria endemic countries [9, 32, 50,
51], little is understood about the final steps before elimination. As more countries move closer to malaria
elimination, it is important to understand the dynamics of infection when the number of cases is low. This
period of endemicity is particularly important because of recent empirical observations that infection rates have
increased in multiple countries that were previously on positive trajectories towards elimination. For example,
malaria was re-introduced to Greece through migration [43], and Botswana has seen an uptick in infection rates
since 2017, including an increase in imported cases [5].

Many previous studies have considered a two-patch model of human and vector dynamics in the context of
malaria transmission. Cosner et. al [24] demonstrated that movement between humans is important for disease
persistence. In their study they built a two-patch example in which the disease would have died out in both

Folashade Agusto
University of Kansas, Lawrence, KS, e-mail: fbagusto@gmail.com

Amy Goldberg
Duke University, Durham, NC, e-mail: amy.goldberg@duke.edu

Omayra Ortega
Sonoma State University, Rohnert Park, CA, e-mail: ortegao@sonoma.edu

Joan Ponce
Purdue University, West Lafayette, IN, e-mail: ponce0@purdue.edu

Sofya Zaytseva
University of Georgia, Athens, GA e-mail: szaytseva@uga.edu

Suzanne S. Sindi
University of California Merced, Merced, CA, e-mail: ssindi@ucmerced.edu

Sally Blower
University of California Los Angeles, Los Angeles, CA, e-mail: SBlower@mednet.ucla.edu

1

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted December 4, 2019. ; https://doi.org/10.1101/19013631doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

fbagusto@gmail.com
amy.goldberg@duke.edu
ortegao@sonoma.edu
ponce0@purdue.edu
szaytseva@uga.edu
ssindi@ucmerced.edu
SBlower@mednet.ucla.edu
https://doi.org/10.1101/19013631
http://creativecommons.org/licenses/by-nc/4.0/


2 Agusto, Goldberg, Ortega, Ponce, Zaytseva, Sindi, Blower

patches in isolation, but is sustained by human movement. Acevedo et al. [8] studied the impact of human
migration in a multi-patch model. They showed that local transmission rates are highly heterogeneous, and
the reproduction number, R0, declines asymptotically as human mobility increases. Ruktanonchai et al. have
studied of the impact of human mobility on malaria [45, 46]. They conducted an extensive theoretical study
of the system level R0 under a multi-patch model, and considered how malaria could be eliminated [46]. They
also characterized mobility with call-records from mobile phones to determine transmission foci [45]. Prosper
et al. [44] showed that even regions with low malaria transmission connected by human movement to regions
with higher malaria endemicity should engage in malaria control programs. However, these previous studies
largely focused only on the asymptotic elimination of the disease by reducing the system basic reproduction
number and not on the dynamics of the disease from the time intervention begins.

We use a multi-patch model to identify processes that could hinder elimination prospects, focusing on mi-
gration from other endemic countries. Specifically, we hypothesize that migration from malaria-endemic neigh-
bors, particularly Zimbabwe, is a barrier to elimination of malaria in Botswana. To test this hypothesis, we use
multi-patch Ross-MacDonald models [24, 45, 46]. In contrast to most previous studies, we consider both the
R0 and the number of infections in each patch. We study these quantities in Botswana under varying migra-
tion rates from neighboring Zimbabwe, and use elasticity analysis to identify the potentially most effective
intervention strategies.

Resources for interventions to reduce malaria are limited, and often directed at a single-country level. There-
fore it is important to understand the relative utility of various interventions types and locations. Such inter-
vention strategies may have different relative effectiveness under different regimes of population density or
migration. Under our model, we test which interventions, in which patch, may be most effective in reducing
malaria in Botswana. Considering source-sink dynamics of the system, we examine how interventions in one
patch influence the infection rate in the other patch.

In Section 2, we first provide details on Botswana and Zimbabwe, our two-country case study. We then
present the model of malaria dynamics we are using, detail the metrics we use and establish the parameters we
use for Botswana and Zimbabwe. In Section 3, we study the dynamics of a two-patch model under different
scenarios between the two countries. In Section 4, we discuss our findings and generalizations of our approach.

2 Malaria Dynamics in Botswana and Zimbabwe

In this case study we consider malaria dynamics between the connected countries Botswana and Zimbabwe.
The malaria burden in Botswana is low, but potentially increasing, while it is surrounded by highly malaria-
endemic countries. The areas that report the highest malaria burden are located in northern Botswana, including
Okavango delta, Ngamiland and Chobe, and to some extent Boteti and Tutume [3, 37, 39]. We focus on the
first three regions: Okavango delta, Ngamiland and Chobe. Interestingly, they do not contain the majority
of Botswana’s population. Instead, most people reside along the Eastern side of the country due to better
environmental conditions such as more frequent rains and fertile soil [1]. However, our focus areas are located
on the borders with Zimbabwe, Zambia, and Namibia, and include the majority of the malaria cases as well as
some of the busiest border posts (Figure 2). As more than 93% of all arrivals into Botswana occur by road [3],
the transmission of malaria through these ports of entry from areas of higher malaria incidence into Botswana
requires further investigation.

Multiple countries border Botswana and may influence malaria dynamics. Here, we focus on Zimbabwe as
a malaria-endemic neighbor to Botswana for two reasons. First, according to the official statistics for 2017 [4],
Zimbabwe is home to the plurality of people traveling into Botswana on an annual basis. Second, Zimbabwe
continues to be a highly malaria endemic country, with overall larger malaria incidence (defined as number of
cases of the disease, per person per year) as compared to Botswana (see Figures 1 and 2).

Human movement is often considered under two different frameworks: Eulerian (migration) and Lagrangian
(visitation) movement. Here, we focus on Lagrangian movement for a few reasons. First, legal immigration
into Botswana has been on the decline according to the national census [6], with less than 0.2 percent of the
total population being foreign workers, with valid worker permits [6]. Similarly, we expect undocumented
migration to be relatively low compared to visitation because of recently introduced heightened border controls
and increased punishment measures aimed to curb the number of people entering into Botswana illegally,
particularly from Zimbabwe. Therefore, while permanent migration in and out of Botswana is present, we first
focus on the simpler model with visitation-only (temporary) movement between patches.

2.1 Two-Patch Botswana-Zimbabwe Model

Mathematical models of malaria transmission have provided insight into the factors driving transmission, and
the effectiveness of possible interventions, which have formed the basis of predictions under scenarios of cli-
matic, cultural or socio-economic change [33, 35, 53]. We follow one of the most prominent models of malaria
transmission, the deterministic coupled differential equations of the Ross-MacDonald model. These equations
consider the infection rates of humans and mosquitoes over time as a function of human recovery rate, mosquito
ecology, human and mosquito population sizes, and human-mosquito interactions [35, 49].
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Fig. 1: Malaria Incidence in Botswana and Zimbabwe. World Health Organization data showing malaria
incidence data for both countries - Botswana and Zimbabwe [5].
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Fig. 2: Malaria Incidence in Botswana and Neighboring Countries. Geographical map of Botswana and
its neighbors plotted along with malaria incidence (number of cases per person per year) [15], population of
Botswana [41], and relevant border posts with annual number of entries [4]. We see that while Botswana has
the lowest malaria incidence of all its neighbors, the risk of malaria transmission from the bordering countries
is high given the number of border posts and the number of yearly arrivals from the neighboring countries.

Fig. 3: Conceptual Two-Patch Malaria Model. Patch 1 (Botswana) and Patch 2 (Zimbabwe) contain both
infected humans (X1 and X2) and infected mosquitoes (Y1 and Y2). Interactions that could result in infection are
identified with dotted lines. Thick red dotted lines denote within patch routes of infection, while the thin purple
dotted lines denotes infection acquired by human mobility.
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To study malaria dynamics in Botswana and Zimbabwe, we use the two-patch model of [24, 46]. Within
each patch, the dynamics are governed by the (one-patch) Ross-MacDonald equations. Individuals live in one
patch/country, but may spend some proportion of their time in the other patch/country (Figure 3). To spatially
couple the two patches, we follow the Lagrangian approach and assume that the movement dynamics between
patches is predominantly characterized by visitation, as opposed to permanent migration. In this way, we incor-
porate the fraction of time that infected population of both mosquitoes and humans in patch 1 spends in patch
2 and vice versa [24]. We let the infected human populations from population i, be Xi, and infected mosquitoes
from population i, be Yi. Additionally, we make the assumption that our total human population (Hi) is fixed at
steady state – to simplify our calculations – and allow Xi, the number of infected humans, and Yi, the number
of infected mosquitoes, to vary. Coupling the dynamics in both patches, the two-patch malaria model with
Lagrangian movement is given as:

dX1

dt
=
(

p11a1b1e−µ1τ1Y1 + p12a2b2e−µ2τ2Y2
) (H1 −X1)

H1
− r1X1 (1)

dX2

dt
=
(

p21a1b1e−µ1τ1Y1 + p22a2b2e−µ2τ2Y2
) (H2 −X2)

H2
− r2X2 (2)

dY1

dt
=

(
q11a1c1

X1

H1
+q12a2c2

X2

H2

)
(V1 −Y1)−µ1Y1 (3)

dY2

dt
=

(
q21a1c1

X1

H1
+q22a2c2

X2

H2

)
(V2 −Y2)−µ2Y2. (4)

(The parameter and variable definitions are given in Table 1.) The model incorporates human movement through
the visitation parameters pi j, defined as the proportion of time an individual from population i spends in popula-
tion j. For simplicity, we assume that mosquitoes do not move. That is, we fix q11 = q22 = 1 and q12 = q21 = 0.

Variable Definition
Yi infected mosquitoes in patch i
Xi infected humans in patch i
Hi total human population in patch i at equilibrium values
Vi total mosquito population

Parameter Definition
ai human biting rate of mosquitoes in patch i
bi transmission efficiency from infected mosquitoes to humans
ci transmission efficiency from infected humans to mosquitoes
pi j fraction of time a human resident in patch i spends visiting patch j
qi j fraction of time a mosquito resident in patch i spends visiting patch j
m ratio of vector to host
µi mosquito mortality rate patch i
τi incubation period from the time a mosquito becomes infected until it becomes infectious
ri recovery rate of humans in patch i

Table 1: Variable and Parameter Descriptions. This definitions correspond to the Ross-MacDonald Model
with Lagrangian Dynamics (Equations (1)- (4)).

In our analysis of coupled malaria dynamics in Botswana and Zimbabwe we consider two metrics: (1)
R0, the Basic Reproduction Number (both at the system level and single-patch level), (2) the number of new
infections per year in each patch. We next describe these quantities in terms of our model.

2.1.1 The Reproduction Number R0

The basic reproduction number, R0, represents the average number of secondary infections from an infected
individual. Generally, when R0 > 1, then infection spreads, and when R0 < 1, infection will eventually decrease
to zero. As such, R0 is a metric that reflects the long-term asymptotic tendency of the infection dynamics. The
approach to compute R0, under the two-patch system is given in [24, 46]. The expression for the reproduction
number, R0, under single patch Ross-MacDonald model is given by [24, 35, 46]

R0 =

(
ab
µ

)( V
H ace−µτ

r

)
. (5)

We see that R0 is the product of the expected number of humans infected by a single infectious mosquito over
its lifetime as well as the number of infected mosquitoes that arise from a single infectious human over the
infection period. Using the approach in [46], the system-level R0 for a two-patch model can be written as

R0 =
p11R1

0
2

+
p22R2

0
2

+

√
(p11R1

0 + p22R2
0)

2 −4(p11 + p22 −1)R1
0R2

0

2
. (6)
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The first two terms in Equation (6) are the weighted average of the individual reproduction numbers in each
patch and the second term is the average number of secondary infections imported into each patch. The term in
the square root is average number of secondary infections imported into each patch.

Within the context of a multi-patch environment, individual patches are characterized as sinks (single-patch
R0 < 1) or sources (single-patch R0 > 1). Based on Equation (6), if both patches in our two-patch model are
sinks, the system R0 will be less than 1 and malaria will asymptotically die out. If both are sources, then malaria
will proliferate. In the following sections we consider the interesting case in which one patch is a sink and the
other is a source.

2.1.2 The Number of New Cases

The second metric we use when evaluating malaria dynamics is the number of new infections in each patch i.
That is, the total number of malaria infections for individuals in patch i regardless of where they were infected.
We choose this particular metric as it allows for the comparison of the model output to data on the number of
new malaria cases, commonly reported by such agencies as the WHO [5]. The first term in the Xi Equations (1)
and (2) represents the rate per unit time of new infections of individuals from patch i. Since our unit of time is
days, the total number of infections within a year starting at t0 is given by

Yearly New Cases Patch 1 :=
∫ t0+365

t0

(
p11a1b1e−µ1τ1Y1(t)+ p12a2b2e−µ2τ2Y2(t)

) (H1 −X1(t))
H1

dt (7)

Yearly New Cases Patch 2 :=
∫ t0+365

t0

(
p21a1b1e−µ1τ1Y1(t)+ p22a2b2e−µ2τ2Y2(t)

) (H2 −X2(t))
H2

dt. (8)

Notice that the terms in the previous equations could be further distinguished between new cases that were
acquired in the home patch (p11 and p22 terms) and those that were acquired in the other patch (p12 and p21
terms). Because humans do not die from malaria in our model formulation, it is possible for the same individual
to be counted multiple times in the number of new cases because they could be infected more than once during
a given year. In our analysis below, we will study Equations (7)-(8) both at the steady-state values for Xi and Yi
and in response to different intervention strategies.

2.2 Choosing Parameters for Each Country

The final step before our analysis is to select parameters. Our two patch model for malaria dynamics has many
parameters (see Table 1) that in principle could differ between patches. However, because the reported data
for each country was limited, the parameters could not be determined uniquely for each patch. As such, we
selected parameters according to the following process.

First, we determined the human and vector populations. For the human population in each country, we
used reported values for each as shown in Table 2. Because there were wildly varying ranges for the ratio of
mosquitoes to humans, and the number of mosquitoes may vary by a factor of 10 between the wet and dry
seasons, for simplicity we assumed a fixed ratio of 10 female mosquitoes per human [13, 38].

Next, there were a number of kinetic parameters we assumed were the same between both patches. The
rate of recovery of humans from malaria, r, varied in the literature and typically corresponded to recovery
without treatment [14, 23]. Because both Botswana and Zimbabwe are countries have undertaken efforts to
control malaria, we assumed infected individuals would have access to treatment and estimated that the typical
infected period of a human would be 14 days (r = 1/14) for both countries. Reported values for the transmission
efficiency of malaria between mosquitoes to humans, b, and humans to mosquitoes, c, also varied [17, 21, 22,
30]. We selected the representative values of b = 0.5 and c = 0.1 and assumed these did not vary between
patches. For the value of τ , the incubation time between a mosquito acquiring malaria and becoming infection,
we chose 10 which is consistent with the reported value in [40].

Finally, the remaining two parameters a and µ were chosen to be different in the two patches based on
the reported use of interventions in Botswana and Zimbabwe. The use of insecticidal treated bednets (ITN)
is one of the more common intervention strategies. Interestingly, while the ITN coverage for Zimbabwe has
increased since 2011, the actual usage has decreased [52]. In comparison, this does not seem to be an issue for
Botswana, where the usage of nets has increased since 2011 [18] due to aggressive campaigns undertaken by
various agencies [2]. The parameter in our model which would reflect this type of intervention is the feeding
rate, a. Further, the overall coverage of indoor residual spraying (IRS) has remained high (about 90 percent) for
Zimbabwe [47]. At the same time, IRS has been a problem area for Botswana since 2011, remaining at around
70 percent as reported by the WHO and [1, 48], despite the 90 percent target. The parameter in our model which
reflects this type of intervention is the mosquito death rate, µ . Therefore, when considering intervention in both
of these countries, we focus on the present day scenario where Botswana has a relatively smaller µ1 value
(corresponding to smaller mosquito death rate due to insufficient spraying (IRS) coverage), while Zimbabwe
has a relatively larger a2 value (corresponding to higher feeding rate due to insufficient bed net (ITN) coverage).
We assumed µ1 = 1/30 for Botswana and µ2 = 1/10 for Zimbabwe. The value of a was then fit so that each
country had the same R0 as the median reported value for each country by the Malaria Atlas Project (1.01 and
1.5) [12]. (See Tables 2 and 3 for a full list of parameters used in our work.)
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Country (Patch) Population (H) Mean Reproduction number (R0)

Botswana (Chobe, Ngami and Okavango) 175,631 1.01
Zimbabwe 12,973,808 1.5

Table 2: Population and R0 for Botswana and Zimbabwe. Populations numbers were obtained for Botswana
from studies conducted by the Blower Lab [41] and Zimbabwe the 2012 Zimbabwe Census [10]. Mean R0
values were obtained from the malaria Map Atlas [12].

Country a b c µ τ r m =V/H
Botswana 0.082 0.5 0.1 1/30.0 10 1/14.0 10
Zimbabwe 0.241 0.5 0.1 1/10.0 10 1/14.0 10

Table 3: Parameters for Botswana and Zimbabwe. As described greater detail in Section 2.2 we chose values
for the malaria dynamics parameters in each country from values in the literature as well as considering reports
of interventions in each country.

3 Results

With our model and parameters for each country established, we next analyze malaria dynamics in Botswana
and Zimbabwe under several scenarios. First, the impact of mobility alone on system level behavior. Second,
impact of intervention strategies in one country, while the other remains the same. Finally, we consider the
impact of changes in both countries at the same time. We consider the synergistic impact of improved interven-
tions in both countries as well as how a worsening of malaria conditions in one country can impact the ability
of interventions in the other country to eliminate malaria.

3.1 Impact of Mobility Alone on Botswana and Zimbabwe

We first focus on how mobility alone impacts malaria in our two-patch model under our two metrics. First,
we consider the system level R0. Because both countries have an R0 value larger than 1 (Table 2), they are
currently both sources. Since mobility functions as a mixing parameter, while the system level R0 can be
decreased with a significant increase in mobility from a higher R0 patch (Zimbabwe) into a lower R0 patch
(Botswana) (increasing p21, decreasing p12), it cannot be driven below 1 by varying mobility alone (see Figure
4) and Equation (6)). We note that, as expected, the system level R0 depends more on p21 than p12 because of
the larger single-patch R0 of Zimbabwe.

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

p12

p
21

Impact of Migration on the Total R0

Total R0

1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45

Fig. 4: System Level R0 Under Varying Mobility. While Botswana and Zimbabwe are both sources with
reproduction numbers R0 = 1.01 and R0 = 1.5, respectively, the system level R0 cannot be driven below 1 with
mobility alone.

The reproduction number is a consequence of the system parameters, so we next study its sensitivity to our
choice of parameters. We use an elasticity analysis to gain insight into which parameters have the most impact
on the basic reproduction number. The elasticity of the reproduction number R0 to a general parameter p is
simply the proportional change in R0 resulting from a proportional change in p [20, 25, 44]:

εp =
δR0

δ p
p

R0
. (9)

If the elasticity of R0 with respect to a parameter p is εp, then a 1% change in p will result in an εp% change in
R0. That is, the elasticity gives the amount of change in R0 in response to changes in p, making comparisons be-
tween parameters of different scales possible. Moreover, an elasticity analysis provides insight into prioritizing
parameters for targeting by control strategies.
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The elasticity analysis of the R0 for each country individually identifies µ and a as the parameters with the
largest impact on R0 in both Botswana and Zimbabwe (Figure 5 (a) and (b)). Indeed, these two parameters are
related to two most commonly implemented malaria interventions: indoor residual spraying and insecticide-
treated bed nets. (We note that for the single patch R0, the elasticity of parameters are similar between Botswana
and Zimbabwe. This is to be expected because they share many parameters; however, differences appear in the
elasticity for µi and τi.)

Next, we conduct an elasticity analysis of the system level R0 for the two connected patches under two
different mobility strategies. Figures 5 (c) and (d) plot the elasticity of the system level R0. We see that µ and a
are still the parameters that most affect R0. However, when we allow visitation, the extent of mobility, measured
as pi j, impacts the degree to which the system level R0 is sensitive to the parameters. Therefore, we focus on
a and µ for each country in conjunction with different mobility scenarios for the following sections. As above,
the parameters in Zimbabwe (patch 2) all affect R0 more than the analogous parameters in Botswana (patch 1).
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Fig. 5: Elasticity Analysis of the Basic Reproduction Number. (a) The elasticity of the R0 in Botswana
without visitation, p12 = p21 = 0. (b) The elasticity of the R0 in Zimbabwe without visitation, p12 = p21 = 0.
(c) The elasticity of the system level R0 for the case of low mobility from Botswana to Zimbabwe and high
mobility from Zimbabwe to Botswana, p12 = 0.1 and p21 = 0.2. (d) The elasticity of the system level R0 for
the case low mobility from Botswana to Zimbabwe and low mobility from Zimbabwe to Botswana, p12 = 0.2
and p21 = 0.1.

Although mobility changes cannot eliminate malaria, we observe that they may substantially impact the
number of cases of malaria in each patch at steady-state. In Figure 6 we compare the number of cases of
malaria under both high and low mobility between countries. (We fix the largest rate of mobility to be 0.5 since
it is reasonable to assume that a resident would spend at least 50% of their time in their home patch.) We note
that the number of cases overall is significantly lower when residents of Zimbabwe spend a large amount of
time in Botswana. This makes sense as it exposes them to a more favorable R0. For both patches and both
high and low visitation rates to Botswana from Zimbabwe (p21), we note that the more time a resident from
Botswana spends in Zimbabwe (higher p12) the higher the total number of cases is. As expected, the ratio of
cases acquired locally compared to the total cases changes with p21. For low p12 there appears to nearly always
be a greater proportion of imported cases to Botswana while with high p12 it is possible for the local cases to
exceed the imported cases for low p21. In summary, these results show that while elimination is not possible the
more time any resident spends in the better patch (in this case Botswana) the lower the total number of cases at
steady-state.

Since changes in mobility alone are not sufficient to drive the system level R0 below 1, we want to further
investigate how changes in both intervention and mobility can significantly impact the overall disease dynam-
ics. As both countries are still struggling to meet their malaria intervention goals, it is of interest how future
changes in intervention strategies along with mobility patterns could influence malaria incidence in the region.
Therefore, in the next sections, we consider four different scenarios: 1) Botswana improves its intervention
strategy, Zimbabwe remains the same 2) Zimbabwe improves its intervention strategy, Botswana remains the
same 3) Both countries improve their intervention strategies 4) Botswana improves its intervention strategy,
Zimbabwe decreases the quality of its intervention.
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Fig. 6: Impact of Mobility on Local and Imported Malaria Cases. We fix the visitation rate of Zimbabwe
residents visiting Botswana (p21) at a low (Left) and high (Right) rate and then vary the visitation rate of
Botswana residents to Zimbabwe on the x-axis (p12). We plot the steady-state number of infections per year
corresponding to the number of residents infected in Botswana (Top) and Zimbabwe (Bottom). For both coun-
tries, there are substantially fewer cases under high rates of visitation from people in Zimbabwe to Botswana.
Left: As visitation to Zimbabwe increases, the number of total cases in Botswana increases but the number
of locally acquired cases decreases. The number of cases in Zimbabwe is only modestly impacted. Right: As
visitation to Zimbabwe p12 increases, the locally acquired cases in Botswana decrease by approximately 80%.
With higher visitation rates from Zimbabwe to Botswana (p21 = 0.5) we have roughly half of the total cases
we obtain annually in Botswana with lower levels of visitation.

3.2 Impact of a Successful Intervention Strategy in Botswana

Here, we investigate the impact increased indoor residual spraying (IRS) in Botswana. As mentioned earlier,
one of the challenges for Botswana remains to be a low uptake of vector control strategies. The implementation
of indoor residual spraying has particularly been problematic, with IRS coverage consistently falling short
of the 90 percent goal. Therefore, we argue that a realistic scenario for the future is the increase in spraying
coverage in Botswana. In our model, this is controlled by the mosquito death rate µ1. Therefore, an important
question we ask is if Botswana increases its IRS coverage and Zimbabwe does nothing, how much does mobility
play a role in bringing down the system level R0?

Under this scenario, Botswana (a weak source), can easily be driven to be a sink with successful intervention
(R0 < 1) while Zimbabwe remains a source (R0 > 1). From Figure 7, we see that the total system R0 can be
brought down below 1 with a combination of a modest increase in intervention in Botswana (starting with at
least a 5 percent improvement) and a significant increase in mobility from Zimbabwe to Botswana (starting at
50 percent of the time a resident of Zimbabwe spends in Botswana).
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Fig. 7: System Level R0 Under Intervention in Botswana. We fix p12 (the rate of visitation from Botswana
to Zimbabwe) and p21 (the rate of visitation from of Zimbabwe to Botswana) and vary 1/µ1, parameter con-
trolling the mosquito death rate (mosquito lifespan in days), and reflecting changes in the insecticide spraying
intervention in Botswana. The system total R0 (Equation (6)) can be reduced below 1 by decreasing 1/µ1, but
for larger values of 1/µ1 the R0 is dominated by p21.

Further, as Figure 7 shows, the total system R0 can also be reduced below 1 by implementing more inter-
vention and a less dramatic increase in mobility (p21). However, for moderate to high improvements (at least
15 percent), the behavior is dominated by the mobility between Zimbabwe to Botswana (p21).
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Even if the R0 is brought below 1, it may take a long time for the disease to die out. Therefore, we investigate
the number of new infections over time in response to an intervention in Botswana (20% increase in µ1),
assuming implementation in 2019 under two different mobility scenarios. Under this intervention, Botswana
is now a sink with a single-path R0 = 0.789. As Figure 8 shows, if mobility is high enough Zimbabwe to
Botswana, then malaria cases decrease. The level of mobility depicted, p21 = 0.36, was chosen to be just above
the level that would drive th system R0 below 1. However, we note that even 10 year later the number of cases
in both countries is still far above 0.

Together, Figures 7 and 8 demonstrate that if a successful intervention strategy can change a source country
into a sink, the level of mobility between sink and source becomes important. In particular, it can result in the
overall malaria elimination. However, elimination may still be years away.

Fig. 8: Impact of Mobility and Successful Intervention in Botswana on New Cases. The total number of
new malaria cases (Equations (7) and (8)) under the scenario that Botswana increases µ1 by 20 percent under
two mobility strategies: high (dotted curves, Total R0 = 0.995) and moderate (solid curves, Total R0 = 1.35).

3.3 Impact of a Successful Intervention Strategy in Zimbabwe

We next investigate increased bednet usage in Zimbabwe. As Zimbabwe continues to struggle with implemen-
tation of this intervention strategy, it is of interest how a more successful implementation of bednet usage can
impact overall malaria dynamics in the entire region in the context of mobility. Therefore, an important question
we ask is if Zimbabwe increases its insecticide-treated bednet coverage (ITN) and Botswana does nothing, how
much of a role does mobility play in bringing down the system level R0? In this case, we change the mosquito
feeding rate a2, which reflects changes in ITN. In this scenario, Zimbabwe can be driven to be a sink with
successful intervention, while Botswana remains a weak source. We find that with significant improvement in
bednet usage (at least a 20 percent improvement) and increased visitation from the worse-off patch (Botswana)
to a better patch (Zimbabwe), the system level R0 can be decreased and brought down below 1 (see Figure 9).
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Fig. 9: System Level R0 Under Intervention in Zimbabwe. Impact on the system total R0 (Equation (6)) by
varying visitation rate from Botswana to Zimbabwe and decreasing the human biting rate of the mosquitoes in
Zimbabwe (a2), corresponding to improvement in the insecticide-treated bednet coverage.
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As before, we examine the dynamics of the new cases after this theoretical intervention begins in Zimbabwe
(Figure 10). Under this intervention, Zimbabwe is now a sink (R0 = 0.957). As in Figure 8, we observe that
under the same reasonable mobility patterns, (p12 = 0.02, p21 = 0.1, a successful intervention in Zimbabwe
brings down the overall number of cases. However, when comparing the two intervention strategies (Figure 8
and Figure 10), we find that the intervention in Zimbabwe is more effective at reducing the total number of
cases. The greater efficacy of the intervention in Zimbabwe makes sense as Zimbabwe has a larger population
size. Further, as Figure 10 shows, if only a 20 percent improvement in intervention is implemented (the neces-
sary minimum for elimination), then mobility between Zimbabwe and Botswana actually has to be quite low to
achieve elimination. The level of mobility depicted, p21 = 0.02, was chosen to be just below the level necessary
to drive the total system R0 below 1.

Fig. 10: Impact of Mobility and Successful Intervention in Zimbabwe. The total number of new malaria
cases (Equations (7) and (8)) under the scenario that Zimbabwe decreases a2 by 20 percent under two mobility
strategies: moderate (solid curves, system R0 = 1.005) and low (dotted curves, system R0 = 0.998).

3.4 Synergistic Impact of Improved Interventions in Both Countries

Next, we consider the impact of an increase in intervention in both countries and ask the question if both
countries increase their intervention, how much does mobility play a role in bringing down the system level
R0? In this case, we consider simultaneously changing µ1 in Botswana and a2 in Zimbabwe.
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(a) Low mobility (p12 = 0.02, p21 = 0.02).
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(b) Intermediate mobility (p12 = 0.02, p21 = 0.1).

Fig. 11: System Level R0 Under Intervention in Both Countries. (a) We show percent reduction of 1
µ1

in Botswana on the x-axis, corresponding to decreasing the lifespan of a mosquito with successful usage of
IRS (spraying) and percent reduction of a2 in Zimbabwe (on the y-axis), corresponding to the decreasing of
mosquito feeding rate through ITN intervention, under the scenario of low mobility. (b) This is the same as part
(a), but for the scenario of intermediate mobility.

We find that improved intervention in both countries is a more viable option for elimination of the disease
as it requires not only a less dramatic improvement in intervention on the part of both countries, but also a less
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dramatic change in mobility to obtain disease elimination. Figure 11 demonstrates that even under a moderate
mobility scenario, p21 = 0.1, the disease may be eliminated with less effort on the parts of both countries.

Fig. 12: Synergistic Impact of Improved Interventions in Both Countries. The total number of new malaria
cases (Equations (7) and (8)) under the scenario that Botswana increases µ1 by 10 percent and Zimbabwe
decreases a2 by 10 percent under two mobility strategies: moderate (solid curves, system R0 = 1.1) and high
(dotted curves, system R0 = 0.994).

We then investigate the number of new infections over time in response to a 10 percent improvement in
intervention in both countries implemented in 2019 under two different mobility scenarios. Under this inter-
vention, Botswana is a sink (R0 = 0.89) and Zimbabwe remains a weaker source (R0 = 1.211). As Figure (12)
shows, if mobility is high enough between Zimbabwe and Botswana, malaria can be eliminated. The level of
mobility depicted, p21 = .21, was chosen just above the level necessary to drive the total system R0 below 1.
Comparing this with previous scenarios, we find that when both countries implement successful intervention
strategies, it is possible to obtain disease elimination with an overall smaller improvement in intervention and
a smaller change in mobility on the part of both countries. Together, Figures 11 and 12 suggest that if both
countries are able to make modest improvement, asymptotic elimination is more easily attained and requires a
less dramatic change in mobility patterns.

3.5 Impact of a Worsening of Malaria Conditions in Zimbabwe on the Ability of
Interventions in Botswana to Eliminate Malaria

Finally, we ask the question if Botswana improves its intervention, while conditions in Zimbabwe become
worse, how much does mobility play a role in bringing down the system level R0? Here, we again consider
simultaneous changes in µ1 for Botswana and changes a2 for Zimbabwe which can drive Botswana to become
a sink while Zimbabwe remains a strong source.

As this is a more extreme case of the first scenario discussed previously, we expect that the system level
R0 can be driven below 1 only if mobility from the source into the sink increases dramatically. Moreover, the
increase in mobility has to be more significant than in the scenario where the conditions in Zimbabwe do not
worsen. From Figure 13), we see this is indeed the case. We again consider the dynamics of the new cases
after this theoretical intervention. In this scenario, Botswana is driven to be a sink by a 20 percent increase in
intervention (R0 = 0.789), while Zimbabwe remains a strong source (R0 = 2.154) with a 20 percent decrease
in intervention. As Figure 13 shows, if mobility is high enough between Zimbabwe and Botswana, malaria
elimination can be achieved. The level of mobility necessary to result in elimination is p21 = 0.58, which is
significantly higher than all other cases considered, and is an unrealistic scenario in which people spend more
time away from their home country than in it. This result confirms that if the malaria burden were to get worse
in Zimbabwe, achieving overall elimination would prove to be a lot harder. Indeed, it would only be possible
with substantial intervention success in Botswana along with a significant increase in mobility from Zimbabwe
into Botswana.

4 Discussion

While massive improvements have been made on a global scale in managing malaria, we are still not at the
level of elimination. For 2017, the World Health Organization (WHO) estimates over 400,000 deaths to malaria,
the vast majority of which occurred in 17 countries [5]. Significant challenges remain in the management of
malaria, including climate change and emerging resistance of mosquitoes to insecticides [26, 33]. Further
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Fig. 13: Impact of a Worsening of Malaria Conditions in Zimbabwe and Interventions in Botswana on
New Cases. The total number of new malaria cases (Equations (7)) and (8)) under the scenario that Botswana
increases µ1 by 20 percent and Zimbabwe increases a2 by 20 percent under two mobility strategies: moderate
(solid curves, system R0 = 1.941) and high (dotted curves, system R0 = 0.994).

complicating elimination efforts, recent data suggests that malaria incidence is actually increasing in multiple
countries that were previously on positive trajectories [5, 36]. As such, this work which considers the dynamics
and management of malaria in multiple connected countries is particularly timely.

Here, we considered the dynamics of a vector and human population in two patches that represent Botswana
and Zimbabwe. We focused on how strategies and treatments in one country are impacted by the other country.
Our sensitivity analysis and simulations demonstrated that elimination is most easily attained when countries
work together. We considered the impact of different intervention strategies by varying parameters in each
patch independently. Finally, we show that, since Zimbabwe has a much larger human population with a higher
R0, it can significantly influence the efforts in Botswana.

To facilitate analysis, our work has considered a simplified model of malaria dynamics. We now note two
features which we did not include and would have the potential to impact our findings. First, we followed a
previous approach to modeling human mobility which considers visitation between patches. We note that this
allows humans to be infected in either patch. That is, we assume mosquitoes do not move and only infect hu-
mans within their patch. While this assumption is likely to make sense for short term visitation, this has created
the effect in our model where increasing the amount of time an individual in Zimbabwe spends in Botswana
does not change the incidence of malaria in the vector population. Indeed, empirical evidence suggests that
mosquitoes can move long distances when winds are high [31]. Second, our model does not consider death
of the human population. It has been previously observed that such features can introduce bifurcations which
fundamentally alter the system dynamics [11, 19, 28, 34].

Because malaria elimination remains an important problem, mathematical modeling will continue to be an
powerful tool for evaluating treatment strategies and generating predictions. The modeling framework we have
chosen may be easily generalized. First, we note that humans in our model have a home patch. As such our
human mobility is that of short visitation (Lagrangian dynamics) rather than migration (Eulerian dynamics)
[24, 45, 46]. Our model could be adapted to include both types of mobility. Second, our model framework
can clearly include multiple patches. Because many of the countries with the highest malaria incidence are
geographically adjacent, it is clear that to fully evaluate elimination strategies multiple countries must be si-
multaneously depicted. Third, in our model the total number of vector and humans remains constant. This
allowed us to only model the fraction of infected populations in each category. However, an alternate approach
which would allow the total populations to change would be to separately model the susceptible and infected
populations in each category as was done recently in [16]. Fourth, as has been noted in many recent studies
global climate change will significantly impact vector populations and for longer term elimination evaluation
such effects should be included [27, 33]. Finally, mathematical models such as ours require tuning of param-
eters. The process of linking empirical observations to parameters is complicated. While our metric of the
number of new infections provides an easier way to compare model output to data (for example, WHO data
which reports number of new malaria cases), fitting the model to data remains a challenge. In our work, some
parameters come from the literature while some are fit under the assumption that the mean Malaria Atlas Project
reported R0 values for each country were correct. However, this led to predictions in new cases that were far
greater than the WHO reported cases in each country. Therefore, in the future, more care needs to be taken
when parameterizing the model and making sure it is consistent with the WHO reported cases in each country.
In addition, as mosquito populations evolve resistance to insecticides it is possible that to fully capture their
behavior, such factors need to be included [29].

As our work has shown, malaria elimination will require the concerted effort across geopolitical boundaries.
Mathematical modeling will be a powerful tool for evaluating intervention strategies and directing resources.
Malaria elimination is an important human health goal and requires interactions between health organizations,
scientists and governments [7].
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