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Abstract 

Background. Numerous studies have found associations when change scores are regressed onto 

initial impairments, slopes � 0.7, in people with stroke. However, there are important statistical 

considerations that limit the conclusions we can draw about recovery from these studies. 

Objective. To provide an accessible “check-list” of conceptual and analytical issues on 

longitudinal measures of stroke recovery. Proportional recovery is an illustrative example, but 

these considerations apply broadly to studies of change over time. 

Methods. Using a pooled dataset of N = 373 Fugl-Meyer Assessment (FMA) upper extremity 

scores, we ran simulations to illustrate three considerations: (1) change scores can be 

problematic, especially when regressed onto baseline values; (2) the relative value of null-

hypothesis significance tests and alternative hypotheses; and (3) measurement issues can create 

the illusion of “proportionality”, while other steps augment this problem.  

Results. Our simulations highlight several limitations of common methods for analyzing 

recovery over time. Critically, we find that random recovery (in the population) leads to similar 

group-level statistics (regression slopes) and individual-level classifications (into fitters and non-

fitters) that have been claimed as evidence for the proportional recovery rule.  

Conclusions. Our results highlight that one cannot identify whether proportional recovery is true 

or not based on commonly used methods. We illustrate how these techniques (regressing change 

scores onto baseline values), measurement tools (bounded scales), and post-hoc classifications 

(e.g., “fitters” or “responders”) can create spurious results. Going forward the field needs to 

carefully consider the influence of these factors on how we measure, analyze, and conceptualize 

recovery.   
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Introduction 

Recently, much ink has been spilt on the topic of the proportional recovery rule in stroke 

rehabilitation1. In its broadest sense, the proportional recovery rule posits that the amount of recovery 

patients are likely to have is roughly 70% of the total possible recovery they could make, on average, after 

the exclusion of “non-fitters” to the rule2,3. This relationship is usually demonstrated by regressing change 

scores (a terminal assessment minus the baseline assessment) onto the initial amount of impairment. Not 

surprisingly, severely impaired individuals show the greatest variation in their potential for recovery, and 

severely impaired individuals who do not recover very much are classified as “non-fitters” to the general 

rule.1,4 Cumulative real data to this effect are shown in Figure 1 with non-fitters shown in red. 

Classification of non-fitters has been based on different methods4 that rely on either a statistical 

classification (e.g., outlier detection1) or based on physiologically relevant outside variables (e.g., cortico-

spinal tract integrity5). 

However, there are important statistical considerations we need to consider when 

recovery is quantified in this way (i.e., the calculation and use of change scores, the 

interpretation of the null-hypothesis significance test, and the validity of the non-responder 

classification). Past critiques of proportional recovery have focused especially on the problems 

with regressing change scores onto baseline impairment and concerns with the sub-group 

analysis of fitters and non-fitters in some statistical detail6,7. A very short summary of these 

critiques is that data showing proportional recovery are influenced by statistical artifacts and, at 

the very least, overstated.  

In response, Kundert et al4 authored a rebuttal in favor of the proportional recovery rule. 

Kundert and colleagues’ response incorporates some previous critiques and seeks to refute other 

criticisms in their discussion, ultimately concluding that proportional recovery is a real biological 

phenomenon and representative of spontaneous recovery. In their abstract, Kundert and 
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colleagues conclude that, “existing data in aggregate are largely consistent with the [Proportional 

Recovery Rule] as a population level model for upper limb motor recovery; recent reports of its 

demise are exaggerated, as these excessively focus on the less conclusive issue of individual 

subject level predictions.” Those authors also write, “new analytical approaches will be needed 

to confirm (or refute) a systematic character to spontaneous recovery […] which can be captured 

by a mathematical rule either at the population or at the subject level.” In this point of view, we 

argue that Kundert et al.’s4 first assertion is not correct, but we echo their second statement that 

new analytical approaches are needed to confirm (or refute) the systematic character of recovery 

following stroke.  

Below, we critique the evidence in favor of the proportional recovery rule based on three 

statistical considerations. Using simulations, we illustrate these problems visually, relying on as 

little formal mathematics as possible. This simulation-based approach makes the critique more 

intuitive and accessible to a general audience. Note that these considerations apply to recovery at 

the “population level”, but we will also discuss the issue of individual prediction and how 

individual/aggregate data relate. Our three statistical consideration are:  

1. The calculation of change scores is problematic, especially when regressed onto 

baseline values. Simple difference scores have long been regarded as a sub-optimal 

method for assessing change over time8,9. Although there are cases where change scores 

are valid, they are generally inferior to statistically “controlling for” baseline assessments 

as a covariate. In the case of proportional recovery, an additional hazard is created 

because change scores are being regressed onto baseline scores, which creates a 

mathematical coupling10-12.  
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2. It is important to reflect on what the null-hypothesis test of a regression slope really 

means, and to consider appropriate null and alternative hypotheses. To say that a 

regression slope is statistically significant (e.g., � � 0.7, � � 0.05), means that if we 

assume the null hypothesis is true (i.e., the true slope is 0 and sampling variability is the 

only factor affecting our data) we would expect to get a slope greater than or equal to the 

observed slope less than 5% of the time. However, demonstrating that a slope is 

statistically different from 0 is not the same as showing that recovery is proportional. We 

need to consider the appropriate null hypotheses against which to test and, if we reject the 

null, we need to consider which alternative hypotheses remain on the table.  

3. Measurement issues can create the illusion of proportionality (e.g., floor/ceiling 

effects) and other analytic steps may augment this problem (e.g., spurious 

identification of “non-responders”). Using simulations informed by empirical data, we 

can show what we would observe if the underlying change is random under a uniform 

distribution, rather than proportional. Using hierarchical cluster analysis to identify non-

fitters in our simulations, we can show that data from N=373 real stroke patients on the 

Fugl-Meyer Assessment is consistent with random recovery. As such, current data do not 

support the claim that recovery is proportional any more than that recovery is random. 

We stress that proportional recovery is the motivating example here, but these considerations 

apply to the study of recovery broadly. Recovery is a difficult problem and choices made in 

design, measurement, and statistical analysis can either make that problem clearer or can 

obfuscate the issue.  

In the Discussion, we focus on some of the positive evidence from the proportional recovery 

literature and suggest productive ways to move forward analytically. For instance, 
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neuroanatomical differences do have strong associations with the potential for recovery at 

different levels of impairment.5,13,14  However, regressing change scores onto baseline scores is 

rife with statistical problems. We recommend that if researchers want to explain individual 

differences in recovery over time, then we should be using formal conditional longitudinal 

models with more data points and avoiding the statistical confounds of change scores.15,16 

Indeed, a number of researchers have started making strides in this direction, using longitudinal 

methods to explore trajectories of stroke recovery.17,18 Understanding which factors explain, or 

better yet predict19-21 stroke trajectories is a very important area of research.  

Consideration 1: The use of change scores is problematic. 

 Difference scores have been critiqued for many years in the biomedical literature as a 

method for capturing change8,9,22. The reason for this is that difference scores implicitly assume a 

one-to-one relationship between pre-test scores and post-test scores. This implicit assumption 

can be seen more clearly if we contrast the formula for a linear regression controlling for 

baseline (Eq 1.) against a linear regression in which difference scores are the outcome (Eq 2.): 

Eq 1. ����� � �� � ��
��	
�

� � ��    

In Eq 1, the relationship between pre-test scores and post-test scores is weighted based on 

the correlation between time-points in the data (ultimately creating the regression coefficient 
�). 

 In contrast, if difference scores were our outcome, we would have a formula like Eq 2A: 

Eq 2A.  
���� � ������ � �	
�
� � �� � ��     

To see the correspondence between controlling for pre-test as a covariate (Eq 1) and 

treating difference scores as an outcome (Eq 2A), we can simply move our pretest scores to the 

other side of the equals sign (Eq 2B):  
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Eq 2B.  �����  � �� � �	
� � ��    

Note that there is not a slope coefficient next to the pre-test variable in Eq 2B, but the 

implied slope is 1. This slope is implied because in this equation every 1-unit change in pre-test 

scores, we will have a 1-unit change in post-test scores. (Equation 2B could be equivalently 

written as 1 � 
�	
��.) Thus, using difference scores as our outcome is equivalent to assuming 

that the relationship between pre-test and post-test scores is: 
� � 1.  

Assuming a one-to-one relationship between pre-test and post-test scores might be 

reasonable when the correlation between pre-test and post-test score is high, but in general it is 

much better practice to control for pre-test as a covariate22. Controlling for pre-test allows for 

regression to the mean whereas difference scores do not. That is, random error for lower scoring 

participants is likely to drive their scores upward on a second measurement, and vice versa for 

high scoring participants. Regression to the mean is less of a concern if we are dealing with 

clinical tests with high reliability (because measurement errors from test to test should be small). 

Even in that case, however, another benefit is that controlling for pretest allows for 
� to be 

weighted based on the correlation between pre-test and post-test, whereas taking a difference 

score does not. (Difference scores implicitly assume a one-to-one relationship, as shown above.) 

This is important because when the correlation between pre-test and post-test is low, taking 

difference scores will actually add noise to the data8. 

Using change scores is already suboptimal, but the additional step of regressing change 

scores onto baseline measures leads to the issue of mathematical coupling discussed by Hawe et 

al.6 and Hope et al.7. We illustrate the negative effects of mathematical coupling in Figure 2, 

using both a normal distribution (2A/B) and a uniform distribution with clear boundaries (2C/D). 

The point of this illustration is to show that mathematical coupling is a different effect from 
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“boundaries” on a scale, although the two can be related when floor/ceiling effects are present. In 

both simulations (N = 1000 data points), the variables � and � are totally independent (r=0.0). 

However, when we calculate a new variable � � � � �, we find that � and � have a strong 

negative relationship (r=-0.7). The reason for this is that � and � are mathematically “coupled”; 

that is, � contains � so they are intrinsically linked. This can be seen a little more clearly if we 

rearrange the terms for � in a regression equation: 

Eq. 3.  �� � ���� � ��� � �� � ��
���

� � ��  

 As our “Change Score” (�) is just our “Final Score” (�) minus our “Initial Score” (��), 

it is not surprising that �� and � are negatively related. In fact, the only thing distorting their 

relationship is �. As Hope et al.7 pointed out, this is why the relative variance in � and � matters. 

If the variance in � is vastly smaller than �, we are essentially regressing �� onto �. If the 

variance in � is vastly bigger than �, we are essentially regressing � onto �.  

As such, it is generally bad practice to regress change scores onto baseline scores; doing 

so will lead to relationships that are artifacts due to mathematical coupling, rather than genuine 

relationships (for other medical examples see23-25). Past critiques of proportional recovery have 

focused on the coupling that arises when change scores of the same variable are regressed onto 

baseline. However, it is important to point out this coupling also arises if we regress change 

scores onto other values that are correlated with our baseline assessment. For instance, if we 

regressed change in the FMA onto baseline Action Research Arm Test (ARAT) scores and found 

a significant relationship, that relationship might still be due to the fact that baseline FMA and 

ARAT scores are related, not that change in FMA is truly related to one’s baseline ARAT.   

Our comments thus far have focused on how mathematical coupling is a general concern 

anytime change scores are regressed onto baseline characteristics. Now, we want to focus 
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specifically on proportional recovery studies, where change in the FMA is regressed on baseline 

FMA scores. As shown in Figure 1, we have adapted the data gathered by Hawe et al.6 These 

data reflect several different available studies on proportional recovery using the Fugl-Meyer 

Assessment.2,13,26-29 Regressing the N = 373 change scores onto baseline levels of impairment 

shows an overall slope of 0.42 when the non-fitters (as identified in past studies) are included in 

the data. If these non-fitters are excluded, then the slope of the regression line is shifted upward, 

to 0.76 (as shown by a dashed black line in Figure 1). In either case, this slope is statistically 

different from zero, p’s < 0.001. However, due to mathematical coupling any relationship we 

find is either a statistical artifact or at least inflated by such an artifact. As such, we need to 

consider the adequacy of a traditional hypothesis test here.  

Consideration 2: Appropriate null and alternative hypotheses. 

A traditional null-hypothesis significance test for a regression slope assumes that the true 

value of the slope in the population is zero and that sampling variability is the only factor acting 

on the data. As we have shown in the previous section (and as past work has shown in detail6,7), 

it is not surprising to reject the null hypothesis in this situation due to an artifact created by 

mathematical coupling. This artifact means that random sampling is not the only factor at work, 

nor should one expect a “true” relationship of zero, making the traditional null-hypothesis 

significance test uninformative.  

It would, however, still be reasonable to ask if the observed relationship was greater than 

the mathematical artifact. This would require conducting a meaningful non-zero hypothesis test, 

and to do that the mathematical artifact needs to be estimated. We will turn our attention more to 

that issue in Consideration #3, but for now let’s consider two situations in which the traditional 

null-hypothesis is rejected. In one case (Figure 3A), we have simulated proportional recovery 
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that leads to an average level of recovery of about 50% (i.e., a regression slope of 0.50). In the 

other case (Figure 3B), we have simulated random uniform recovery that leads to an average 

level of recovery of about 50%.   

For the proportional recovery example, data were normally distributed (� � 6) around 

50% of initial impairment, truncated by the ceiling of the FMA. Proportional recovery could be 

simulated with different parameters (e.g., other means/standard deviations), but this is meant to 

be only one example of proportional recovery. For the random uniform example, data are 

uniformly distributed between a slight negative change (-6 points) and the maximum points 

allowed on the FMA (maximum possible recovery). Again, the uniform distribution could have 

different parameters, but this is meant to be only one example of random uniform recovery to 

illustrate our point. 

Random uniform recovery is a reasonable alternative hypothesis in this situation, because 

it allows for the fact that different levels of recovery exist,14,30,31 but that the overall distribution 

of recovery covers the entire available space. Patterns like uniform recovery have been shown in  

animal data32,33 and human data using the FMA for the upper extremity18, the FMA for the lower 

extremity3, and the Arm Activity Measure36. It is important to note that modeling recovery as 

random uniform change does not mean that recovery is an inherently random process. 

Consistent, distinct patterns of recovery almost certainly exist18 and are (at least) partially 

explained by physiological characteristics2. Random uniform recovery simply assumes that the 

full space of possible recovery is possible.  

As we have shown, a proportional looking relationship already exists at the group-level 

whether recovery is proportional or uniform. In both cases in Figure 3 the regression slopes 

would suggest recovery is about 50% proportional and we would reject the null hypothesis in 
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each case (proportional case: b=0.50, p<0.001; uniform case: b=0.49, p<0.001). Comparing the 

plots in Figure 3 helps to illustrate that rejecting the null hypothesis does not mean that a 

particular alternative hypothesis is correct; it merely means that the data were unlikely to have 

arisen if the null were true. Clearly in the case of proportional recovery, it is neither the 

magnitude nor the statistical significance of the regression slope that make recovery 

proportional.  

An important part of the proportionality argument is how individual changes are 

distributed around the group-level slope. If everyone is clustered around the group-level slope 

(Figure 3A), then the proportional argument seems very reasonable. Conversely, if everyone is 

randomly distributed across the entire space of recovery (Figure 3B), then we think this 

association is a statistical artifact (due to regressing bounded scales, change and initial 

impairment, onto each other). Contrasting the empirical data from Figure 1 against the simulated 

data in Figure 3, that conclusion crucially depends on whether or not “non-fitters” are included in 

the sample. We will deal with that issue in Consideration #3, but first it is important to clarify 

what we mean by group-level statistics and individual-level data.  

As Kundert et al4 write in their abstract, “existing data are largely consistent with the 

[proportional recovery rule] at the population-level, […] recent reports of its demise are 

exaggerated, as they excessively focus on the less conclusive issue of individual subject-level 

predictions.” When we are discussing individual-level data in this perspective, we mean how 

classification of individuals into fitters and non-fitters ultimately affects the group-/population-

level statistics we observe when the data are aggregated. The decision about proportionality 

depends on how individuals spread around the group-level slope. Thus, the validity of excluding 

“non-fitters” is a critical issue.  
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We do not mean making specific predictions about how an individual recovers. In all of 

the examples we have discussed so far, initial impairment is associated with/explains variance in 

change scores. We reserve the word “prediction” to refer specifically to the classification of 

individuals in independent samples (e.g., PREP34 or TWIST algorithms35). This sort of out-of-

sample individual prediction was not the original purpose of the proportional recovery rule, nor 

is it part of our critique.  

Consideration 3: Measurement issues can create the illusion of proportionality. 

 The fact that proportional recovery is apparent across many different scales of 

measurement has been argued as evidence for proportional recovery being a neurobiological 

phenomenon.4 First shown in the Fugl-Meyer Assessment (FMA1), proportional recovery has 

since been shown in the FIM6, the Western Aphasia Battery36 and the Letter Cancellation Test37, 

among other inventories. However, all these inventories possess lower bounds and upper bounds. 

Although the individual minima and maxima are all different, the presence of these boundaries 

creates a real problem for interpreting the relationship between baseline scores and change 

scores. The code provided in the supplemental materials can be revised to demonstrate this point, 

but one can also consider Figure 3B in a thought experiment. Regardless of what the individual 

minima and maxima of these different scales are, random recovery will always lead to the 

bottom triangle of the possible space being filled.  

 As shown in Figure 1, however, we can see that the story is more complicated than that 

because the distribution of initial impairments is not uniform. There are higher densities of very 

low and very high impairments on the Fugl-Meyer Assessment. Therefore, to make our 

simulations39 more realistic, we bootstrapped (i.e., repeatedly sampled) the initial impairment 

data from Hawe et al.6 (shown in Figure 1) to get a new “population” of 10,000 initial 
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impairments with a similar distribution of initial impairments, but uniformly distributed change 

scores.  

 Using this simulated population, we can repeatedly draw samples to see how the data 

look from one sample to the next. One such sample of n=30 participants is shown in Figure 4A. 

The regression slope in this sample happens to be β=0.62, as shown by the dashed red line. 

Taking repeated samples, however, leads to a distribution of sample slopes as shown in Figure 

4B. The dashed blue line shows the distribution of sample slopes from k=10,000 independent 

samples. As discussed above, these slopes vary around a population-level slope of β=0.50 purely 

due to the mathematical artifact of regressing change scores onto initial impairments. Thus, to 

decide if our single-sample slope of 0.62 is interesting, we need to take this mathematical artifact 

into account. As shown in Figure 4C, the slope of 0.62 is statistically surprising under the null-

hypothesis (p < 0.001; the dashed black line centered on 0), but is no longer statistically 

surprising under the alternative hypothesis of random uniform recovery (p = 0.337; the dashed 

blue line centered on 0.5). Large positive associations between change and initial impairment 

should be expected; not because of any inherent biological correspondence, but because of how 

we handled the data.  

 At this point it is critical to consider the exclusion of “non-fitters”, because that is how 

data are actually handled in proportional recovery studies. Our simulations so far illustrate our 

approach, but we need to take the non-fitter classification into account. Methods that have been 

used to establish fitters from non-fitters can be legitimate methods whether they are data-driven 

methods (like hierarchical cluster analysis) or theory driven methods (such as moderator analyses 

using physiological data2,14). We are not debating the fundamental accuracy of these approaches, 

but their use in the classification of “fitters” and “non-fitters” in this context.  
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To address the validity of hierarchical clustering as a method for classifying individuals 

as fitters or non-fitters, we will use our simulated population of individuals with random uniform 

change scores. In the first run of our simulations, we took k=10,000 samples of N=30 

individuals. In each sample, we used hierarchical cluster analysis39,40 to identify clusters of 

participants who could be classified as fitters and non-fitters. As shown in Figure 5A, the 

clustering algorithm still identifies clusters of participants as fitters (black dots) and non-fitters 

(red dots) when sampling from data with random uniform change scores. Obtaining clusters of 

fitters and non-fitters is obviously problematic in this case, because the underlying change is 

random. As such, we should be concerned that fitters and non-fitters may be (at least partially) an 

artifactual classification. 

Current procedures described in studies of proportional recovery are not entirely clear on 

how their clusters were ascertained. That is, a cluster analysis can work using either a bottom-up 

agglomerative procedure or a top-down divisive procedure, but in general authors have an 

objective criterion for where they stop in determining their clusters. Although it has been stated 

that a criterion has been used28 it is not clear what the numeric value of this criterion is.2,28,37 As 

such it is not clear by what criteria authors are making the decision to stop at two clusters in their 

analyses. We do know that authors are sometimes calculating Mahalanobis distances between 

points41 and that these distance values are being used as input into the agglomerative clustering 

algorithm advocated by Ward40,42. In the absence of a clear criterion by which we should stop 

clustering, we ran cluster analyses in our simulations that always stopped at two clusters. In 

order to determine which cluster was the “fitters”, we chose the cluster with a higher mean 

change score (consistent with the central argument of proportional recovery). Otherwise, our 
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simulations used identical methods to the published literature for the calculation of distances and 

determination of clusters. 

As shown in Figure 5A, our clustering procedure leads to an identification of fitters and 

non-fitters to the proportional recovery rule consistent with past literature. Despite coming from 

a population of random recovery, the clustering procedure spuriously identifies fitters (black 

dots) and non-fitters (red dots). This result is likely due to the asymmetry in the variable space. 

That is, when empirical and predicted change scores are fed into the algorithm, major deviations 

from the predicted change can only occur in the negative direction (lower right corner of Figure 

5A), because individuals cannot improve beyond the maximum score of the scale (represented by 

the solid black line in Figure 5A). Above, we showed the effects of this procedure (sampling, 

clustering, and estimating slopes for the fitters cluster) when the total size is N=30 (to illustrate a 

relatively small, but common sample size) and when the total N=373, matching the total sample 

size for the pooled data6. 

As shown in Figure 5B, when we simulated samples of size N=30, the distribution of 

sample slopes for the “fitters” had a mean of 0.770, a median of 0.781, and a negative skew. 

Thus, under this sampling distribution, we would not find it surprising to observe a large positive 

slope of 0.769 (as was observed in Hawe et al.6). Specifically, with a starting sample size of 

N=30, we’d expect a slope of ≥0.769 for the fitters about 54% of the time.  

We reach a similar conclusion if we take the pooled real data for the fitters. The slope for 

the n=254 fitters out of those initial N=373 subjects was 0.769.6 As shown in Figure 5C, 

simulating random uniform recovery, hierarchical cluster analysis with two clusters, and that 

fitters would be the group with higher mean change, the mean of this sampling distribution was 
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0.778 and the median was 0.771. Based on this simulated distribution we would expect to get a 

slope of ≥0.769 for the fitters about 54% of the time.  

Our simulated data (assuming random uniform recovery) led to similar a classification of 

“fitters” and “non-fitters” when fed into hierarchical clustering algorithms. This finding casts 

doubt on the validity of the fitters classification, because in the simulations there is no 

proportional recovery rule to which an individual can fit. This result suggests the fitters-

classification is (at least in part) artifactual, likely due to the asymmetrical variable space. This 

spurious classification is a new finding and has important implications for how we should 

interpret other results.  

 First, data invoked as evidence for the proportional recovery rule are relatively weak. 

These patterns are quite consistent with what one might expect if recovery was uniformly and 

randomly distributed. Kundert et al.4 are quite correct when they wrote, “The fact that one can 

generate data that reproduces some findings of the PRR does not mean that the [proportional 

recovery rule] is invalid or that the observed data does not represent biologically meaningful 

associations.” However, if we had a null-hypothesis test p-value of p=0.54, we would consider 

the data compatible with the null hypothesis. And proportional recovery is no different. We have 

shown that the group-level slope of b=0.769 carries a p=0.54 for fitters based on a sample of 

N=373. As such, we should not reject the hypothesis that recovery is uniformly distributed, nor 

we should accept the hypothesis that recovery is proportional at this time. Current data are 

compatible with both hypotheses, but the methods of measurement and analysis are rife with 

statistical limitations. Thus, we argue for abandoning current approaches to measuring 

proportional recovery, and we would generally caution against measuring recovery as the 

difference between two time points.    
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Second, studies showing that physiological characteristics map onto the fitters/non-fitters 

classification should instead be reframed as physiological characteristics explaining important 

variation in recovery. For instance, individuals with poor cortico-spinal tract integrity are not 

“non-fitters”, they are just more likely to have significant impairment and poor recovery2.  The 

integrity of specific brain regions clearly plays a role in the potential for recovery. There is, 

however, still substantial variability even among neuroanatomically similar individuals31.  

Recovery is a complex and multivariable problem and we still have work to do explaining 

individual differences in recovery trajectories. As these moderating factors are identified, they 

can then be used in truly predictive models that can aid clinical decision making.  

Discussion 

The proportional recovery rule has been an influential finding in the field of 

neurorehabilitation. Recent debates about its accuracy and validity are also a very useful case-

study, highlighting more general concerns for the study of recovery. Data argued to show 

proportional recovery in stroke rehabilitation have been found across a wide variety of 

assessments and replicated in many different samples. This pattern appeared so pervasive and the 

relationship so strong that it was compelling to think of this pattern as a neurological rule. As we 

have shown, however, current patterns claimed to be evidence for proportional recovery are 

generally consistent with uniform random recovery in these measures. This does not mean that 

proportional recovery has been disproven, but it does mean that we have no more evidence for 

proportional recovery than we have for uniform random recovery.  

There is very compelling evidence that physiological variables explain individual 

differences in recovery21, but this is a very different question from claiming that recovery is 

“proportional”. Thus, rather than concluding that individuals with lower cortico-spinal tract 
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integrity are more likely to be “non-fitters”, we think a more appropriate conclusion is that 

individuals with lower cortico-spinal tract integrity are likely to be severely impaired and to 

show minimal recovery. As we discuss above, uniformly distributed change scores do not mean 

that we are assuming that stroke recovery is an inherently random process. There are going to be 

individual differences in recovery and people with more similar neuroanatomy following stroke 

are likely to show more similar patterns of recovery, although there is still variation in recovery 

trajectories for neuroanatomically similar individuals.31  

Limitations in Our Simulations 

 Our simulations used an empirical distribution of initial impairment values, but they 

assumed a uniform distribution of change scores for any given level of impairment. One could 

question the appropriateness of assuming random uniform change at-all, but especially in the 

context of the FMA upper extremity subscale. Visually, there appears to be an “island” of 

severely impaired individuals in the empirical data shown in Figure 1. This island is likely 

created by nonlinearities in the FMA6,43. Specifically, mid-range scores are less likely to occur in 

the FMA upper extremity subscale. If these mid-level scores are less likely, it makes sense that 

moderately impaired individuals will progress out of this range, but severely impaired 

individuals will be more likely to either surpass it or struggle to get into it (creating the island of 

non-fitters). Hawe et al.6 took this bimodal distribution of change scores into account in their 

simulations, but in the current study we explicitly chose to model change uniformly for three 

reasons.  

 First, the artifacts that are generated by regressing bounded change scores onto baseline 

scores are not a product of this nonlinearity (as shown in our simulations). Nonlinearity is a 

special concern for certain scales, but the problems generated by ceiling/floor effects are more 
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general. Second, data from both animal and human studies suggest that more uniform patterns of 

recovery exist for a variety of scales.3,18,32,38 As such, uniform random recovery is a valid 

alternative hypothesis against which to test. Third, assuming uniform random recovery illustrates 

how using hierarchical cluster analysis with Mahalanobis distances can break down in this 

situation. When pairwise distances are calculated based on predicted change and actual change, 

these cluster analyses will spuriously identify fitters and non-fitters.i 

Beyond Proportional Recovery 

The debate around proportional recovery also highlights questions about design, 

measurement, and statistical analysis that are broadly important to clinicians/researchers:  

• First, when designing a study, it is important to decide if our focus is on end-

points or trajectories. If our focus is on endpoints, then endpoints should be our 

outcome and we should control for baseline measures as covariates. Conceptually 

this is more like Figure 6A, where we show the cumulative data from Hawe et al.6 

Rather than plotting change as a function of initial impairment, we are now 

showing final FMA upper extremity scores as a function of baseline scores. If our 

focus is on trajectories, however, then we need to model change over time, more 

like Figure 6B. As we have shown, however, the distinction between fitters and 

non-fitters is, at least in part, an artificial classification and there could be many 

                                                           

i
 In our simulations, we did sometimes identify other types of clusters, especially at small sample 
sizes. We explored different methods for excluding these poorly ascertained clusters to see how 
it would affect the distribution of sample slopes for the fitters (e.g., rejecting samples where a 
cluster was less than 5% of the total sample size; rejecting samples where clusters were separated 
based purely on initial impairment). These steps affected the tails of the sampling distribution, 
but in all cases the distribution was centered near 0.7. Thus, although other processing decisions 
could have been made, of all of the processing decisions we explored, obtaining a slope of 0.7 
for the fitters’ cluster was quite likely even when recovery was uniform and random.   
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more groups that make up the possible recovery space, as shown conceptually in 

Figure 6C. To reliably model these longitudinal trajectories, however (e.g., in 

latent growth curve models, multi-level models, etc), we need more than two data 

points. This is very much the technique adopted by van der Vliet et al.18 who used 

longitudinal mixture models to identify five subgroups of participants with a 

mean of 6.1 measurements per person. The insights gleaned from their 

longitudinal study show the power of these approaches, and we very much 

recommend these types of models (or similar17,44,45) as the field moves forward.   

• Second, it is important to remember that the null-hypothesis significance test 

answers a single, very specific question46,47: “assuming all our assumptions are 

correct (i.e., the true effect is zero, sampling variability is the only factor acting on 

our data, etc.), what is the probability of observing these data?” Rejecting the null 

hypothesis does not mean that a particular alternative hypothesis is correct and we 

need to carefully consider how to choose between alternative hypotheses when 

the null is rejected. This is a difficult task that often requires future research with 

adequate controls, Bayesian analyses with empirically justified assumptions, or 

some combination thereof. 

• Third, it is important to avoid subgrouping the data in an arbitrary manner. 

Post-hoc segregation of change scores into fitters and non-fitters echoes similar 

pursuits like classifying “responders” and “non-responders” based on distributions 

of change scores48 and is similarly confounded49. Classifying individual responses 

to treatment is a very difficult proposition and it must be done carefully. Indeed, 

in most clinical trials, it might not even be possible50.  
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• Fourth and finally, it is important to consider the properties (and limitations) 

of the scales that we are using to quantify recovery. Many clinical scales have 

strong ceiling/floor effects, because healthy (“normal”) performance is the 

maximum/minimum against which performance is being measured. While this is 

a reasonable choice for scale design, we need to be very cautious about the effects 

of these boundaries6,7. Additionally, many clinical scales produce ordinal data, but 

we often treat these data as interval/ratio data (especially when aggregated). For 

instance, a +2-point change on the FMA could be due to a single two-point 

change in elbow extension, or to two one-point changes in shoulder flexion and 

pronation-supination. Thus, higher FMA scores generally mean less impairment, 

but two people with the same FMA score do not necessarily have same 

impairment, nor do differences in FMA scores always mean the same change in 

impairment. Treating ordinal data as interval data is not always a problem51 and 

there are times we might actually transform ordinal data into interval data52, but 

we always need to carefully consider the pros and cons of how we choose to 

measure “recovery”. 

 Conclusions 

Our goal in this point of view was to provide a “check-list” of conceptual and analytical 

issues in longitudinal measures of stroke recovery. We used proportional recovery as an 

illustrative example, but these issues of design, measurement, and analysis are broadly important 

for neurorehabilitation researchers. Using simulations, we showed: (1) how change scores can be 

problematic, especially when regressed onto baseline values; (2) the relative value of null-

hypothesis significance tests and alternative hypotheses; and (3) how measurement issues can 
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create the illusion of “proportionality” (e.g., floor/ceiling effects), while other analytic steps 

augment this problem (e.g., spurious identification of “non-fitters” / “non-responders”). Moving 

forward, understanding of the recovery process will be enhanced by embracing alternative 

designs (e.g., with more data collections at critical time-points), using different methods of 

analysis (e.g., that model true longitudinal trajectories), and exploring new outcome measures 

(e.g., that avoid the ceiling effects or ordinal, criterion-based scales). 
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Figures 

 

Figure 1. Data adapted from Hawe et al. (2019).6 Change scores and initial impairments 
extracted from empirical studies have been combined to create an “overall” sense of the 
relationship across studies. The dashed line denotes the ordinary least squared regression line 
for all fitters (black points). Data-points that were identified as non-fitters in the original studies 
are shown as red points. 
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Figure 2. N = 1000 simulated data-points showing two uncorrelated variables, X and Y, and 
third variable Z, computed from their difference. In panels A and B, these variables are based on 
two normally distributed, but otherwise unbounded distributions. In panels C and D, these 
variables are based on two uniform distributions with bounds of ±5. In both cases, an artifactual 
negative relationship exists between X and Z, because those values are mathematically coupled. 
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Figure 3. (A) Simulated data in which the change in Fugl-Meyer Assessment (FMA) is normally 
distributed around proportional recovery. (B) Simulated data in which the change in Fugl-Meyer 
Assessment (FMA) follows a uniform distribution. In both cases there is an upper bound on 
recovery due to the nature of the FMA (solid black lines), but even when change is random, there 
is a positive slope of � 0.5 (dashed red lines). 
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Figure 4. (A) A single random sample of N=30 FMA scores drawn from our population. The 
regression line (dashed red) has a slope of 0.62, which might suggest proportional recovery 
were it not drawn from a sample of randomly generated data. A diagonal black line with a slope 
of 1 is shown for reference. (B) The sampling distribution of slopes when our simulated 
population was sampled 10,000 times, with replacement, at sample sizes of N=30. (C) 
Contrasting the distribution of sample slopes under the null-hypotheses (dashed black line) and 
the distribution of sample slopes from our simulated population (centered on 0.5; dashed blue 
line). Note that now our observed slope of 0.62 (shown as the vertical red line) is no longer 
statistically significant given the correct distribution (p<0.001 compared against zero; p=0.337 
compared against 0.5).   
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Figure 5. (A) A single random sample of N = 30 participants drawn from a population with 
random change scores. Note the clustering algorithm still classifies participants into what look 
like fitters and non-fitters even when there is no “rule” to which individuals can “fit”. (B) The 
distribution of sample slopes for fitters identified by our clustering procedure when the original 
sample size was N=30. (C) The distribution of sample slopes for fitters identified by our 
clustering procedure when the original sample size was N=373. 
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Figure 6. (A) Pooled empirical data from Hawe et al. shown as a function of baseline Fugl-
Meyer Assessment scores. (B) The same data shown as trajectories for individual participants 
over time. Note that block dots correspond to “fitters” and red dots correspond to “non-fitters” 
in their original classifications. (C) A conceptual model in which the same data are color-coded 
based on quintiles of the baseline scores. Dashed lines show best fitting regression slopes within 
the various subgroups.     
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