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Abstract:  

 

Objective: No diagnostic biomarkers are available for obsessive-compulsive disorder (OCD). Magnetic 

resonance imaging (MRI) studies have provided evidence for structural abnormalities in distinct brain 

regions, but effect sizes are small and have limited clinical relevance. To investigate whether individual 

patients can be distinguished from healthy controls, we performed multivariate analysis of structural 

neuroimaging data from the ENIGMA-OCD consortium. Method: We included 46 data sets with 

neuroimaging and clinical data from adult (≥18 years) and pediatric (<18 years) samples. T1 images from 

2,304 OCD patients and 2,068 healthy controls were analyzed using standardized processing to extract 

regional measures of cortical thickness, surface area and subcortical volume. Machine learning 

classification performance was tested using cross-validation, and possible effects of clinical variables 

were investigated by stratification. Results: Classification performance for OCD versus controls using the 

complete sample with different classifiers and cross-validation strategies was poor (AUC—0.57 

(standard deviation (SD)=0.02;Pcorr=0.19) to 0.62 (SD=0.03;Pcorr<.001)). When models were validated on 

completely new data from other sites, model performance did not exceed chance-level (AUC—0.51 

(SD=0.11;Pcorr>.99) to 0.54 (SD=0.08;Pcorr>.99)). In contrast, good classification performance (>0.8 AUC) 

was achieved within subgroups of patients split according to their medication status. Conclusions: 

Parcellated structural MRI data do not enable good distinction between patients with OCD and controls. 

However, classifying subgroups of patients based on medication status enables good identification at 

the individual subject level. This underlines the need for  longitudinal studies on the short- and long-

term effects of medication on brain structure. 
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Manuscript: 

 

Introduction  

Obsessive-compulsive disorder (OCD) is a severe and disabling condition that occurs in 2-3% of the 

population [1]. It is characterized by recurrent, intrusive, irrational and distressing thoughts (obsessions) 

and repetitive behaviors or mental acts (compulsions) [2]. So far, no biomarkers that may aid differential 

diagnosis are available, and diagnosis relies entirely on recognition of behavioral features assessed by 

clinical interview [3]. Many neuroimaging studies have provided evidence for abnormalities in cortico-

striato-thalamo-cortical (CSTC) circuits, as well as distributed changes in limbic, parietal and cerebellar 

regions [4, 5]. This has recently been confirmed by meta- and mega- analysis of neuroimaging studies 

within the Enhancing Neuro-Imaging and Genetics through Meta-Analysis (ENIGMA) consortium [6–8]. 

However, inference was done at the group-level, and the small effect sizes that were reported precludes 

clinical application.  

Analytic tools such as multivariate pattern analysis (MVPA) enable inference at the individual-

level, which may result in better discrimination [3, 9]. MVPA techniques can be used to develop 

predictive models that extract common patterns from neuroimaging data to classify individuals based on 

their diagnosis. A major advantage of MVPA is its ability to use inter-regional correlations to detect 

subtle and spatially distributed effects compared to traditional methods of analysis [4]. Therefore, 

MVPA seems particularly suited for neuroimaging analyses in OCD, as abnormalities are typically 

distributed across the brain [10, 11]. Previous MVPA studies have been able to distinguish OCD patients 

from controls with accuracies ranging from 66-100% (reviewed in [12]). Although these results are 

promising, sample sizes have typically been small, limiting model performance optimization and leading 

to high variance in estimated accuracy and overly optimistic classification rates [13]. Additionally, most 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted November 26, 2019. ; https://doi.org/10.1101/19012567doi: medRxiv preprint 

https://doi.org/10.1101/19012567
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

studies have been performed using data from one research center to minimize technical (e.g., scanner 

hardware, protocols and diagnostic assessment) and clinical (e.g., age, medication status, disease 

chronicity and severity) heterogeneity. It is therefore not clear whether these results generalize to other 

centers, which would be required for clinical application [14–16].  

Here, we used data from the ENIGMA-OCD consortium, including 4,372 participants recruited at 

36 research institutes around the world, with a full range of technical and clinical heterogeneity. We 

assessed the ability of MVPA to distinguish OCD patients from healthy controls based using structural 

neuroimaging data at the individual subject level. We investigated machine learning classification 

performance in both single-site and multi-site samples using different validation strategies to assess 

generalizability, as well as effects of clinical variables, such as medication use.  
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Materials and methods 

 

Study population 

The ENIGMA-OCD working group includes 46 data sets from 36 international research institutes, with 

neuroimaging and clinical data from adult (≥18 years) and pediatric (<18 years) samples. In total, we 

analyzed data from 4,372 participants, including 2,304 OCD patients (n=1,801 adult, n=503 child) and 

2,068 healthy controls (HC; i.e., free of psychopathology; n=1,629 adult, n=439 child), with 38 of 46 

datasets identical to those described in previous mega-analyses by this working group [6, 7, 17]. All 

participating sites obtained permission from their local institutional review boards or ethics committees 

to provide anonymized data for analysis, and all study participants provided written informed consent. 

Demographic and clinical characteristics of each cohort are detailed in supplementary Table S1. A 

complete overview of instruments used to obtain diagnosis and clinical information can be found 

elsewhere (Data Supplement 1, Supplementary Section S1) [7]. Diagnosis was determined in accordance 

with DSM [2]; MINI and SCID were used for adult samples and K-SADS, MINI-KIDS and ADIS were used 

for pediatric samples [18–22].  

 

 

MRI processing 

Structural T1-weighted brain MRI scans were acquired and processed locally at each site. Image 

acquisition parameters are listed elsewhere[7]. Parcellations were performed using FreeSurfer (FS) 

software version 5.3
 
(http://surfer.nmr.mgh.harvard.edu), following standardized ENIGMA protocols to 

harmonize analyses and quality control procedures across multiple sites (see 
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http://enigma.usc.edu/protocols/imaging-protocols/). Parcellations of 34 cortical (Desikan-Killiany atlas-

based [23]) and 7 subcortical gray matter structures per hemisphere, lateral ventricle volumes, two 

whole-hemisphere measures and total intracranial volume were extracted, visually inspected and 

statistically evaluated for outliers (quality assurance is reported elsewhere [7]). Brain regions (features) 

used for classification included cortical thickness (CT), surface area (SA) and subcortical volumes of ROIs, 

two lateral ventricular and intra-cranial volumes (ICV), and two whole-hemisphere measures for SA and 

CT.  

 

Multivariate classification and validation 

Participants with >10% missing entries were excluded (N=276), and median imputation was used for 

missing MRI data on the training set. Continuous features were centered around median zero and scaled 

according to their interquartile range. FS variables were combined with covariates age, sex, and site by 

concatenating individual feature vectors. All analyses were performed separately for pediatric and adult 

patients, and both groups combined. Common MVPA classifiers were applied: support vector machine 

(SVM) with linear and non-linear (radial-basis-function (RBF)) kernels, logistic regression (LR) with L1 and 

L2 regularization, Gaussian processes classification (GPC) with a linear kernel, and two decision-tree 

based ensemble methods, namely the random forest classifier (RFC) and the XGBoost algorithm [24–27]. 

A deep neural network was also implemented (fully connected; 3 layers with 60, 40 and 20 nodes 

respectively). SVM and LR classifiers were combined with and without automatic dimensionality 

reduction via principal component analysis (PCA), using the minimal number of components explaining 

90% of the variance. Hyper-parameters for SVM (linear and non-linear), LR and XGBoost were optimized 

using nested cross-validation; RFC and GPC were tuned following recommendations. Details on handling 

missing data, model implementation and hyper-parametrization can be found in Supplementary 
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Methods. The primary performance metric was area-under-the-receiver-operator-curve (AUC). Balanced 

accuracy, sensitivity and specificity are reported in supplement.   

Multi-site classification of OCD patients versus HCs was assessed using different cross-validation 

(CV) approaches. First, we assessed multi-site classification using 10-fold CV to obtain maximally 

homogeneous train-test splits, with approximately the same number of subjects and the same 

proportion of samples coming from each site (internal validation). Next, we addressed leave-one-site-

out (LOSO) CV, in which all but one site were used to train the models while the left out site was used to 

assess model performance (external validation). This may result in large between-sample heterogeneity 

of training and test sets, resulting in lower classification performance[28]. Because LOSO-CV has 

different fold sizes, we additionally performed 10-fold CV with LOSO-matched fold sizes, to evaluate 

whether differences in performance were due to differences in heterogeneity or fold size. Finally, we 

also performed single-site predictions using 10-fold CV to assess classification performance with 

reduced heterogeneity. Statistical significance of model performance was assessed directly through 

obtained AUC scores using the Mann-Whitney-U statistic for non-parametric testing (see supplement for 

details) [29]. Bonferroni-corrected level of significance was set at alpha=0.05 for the number of 

classifiers and comparisons. 

 

Clinical variables and sensitivity analysis 

To explore the effects of clinical heterogeneity on classification performance, we selected subgroups 

with particular demographic and clinical characteristics: medication use, OCD severity, age of onset (AO) 

and duration of illness. Classifications performed were HC vs low (YBOCS<=24; mild-moderate[30]) and 

high severity (YBOCS>24; moderate-severe) OCD; HC vs early (<18yrs) and late AO (>=18yrs) OCD; HC vs 

short (<=7yrs) and long duration (>7yrs) OCD; and HC vs unmedicated and medicated OCD. For disease 
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duration and severity, median splits were used to define groups; the 18 year threshold for AO was 

chosen in line with prior ENIGMA-OCD mega-analyses[6, 7]. Finally, as particular clinical variables can co-

occur, we performed a post-hoc sensitivity analysis to investigate the effects of potential clinical 

covariance for results with AUC≥0.8 (see Supplementary Methods). 

 

Feature importance 

To assess which brain regions and clinical variables contributed most to classification we used feature 

importance extracted from RFC combined with a permutation testing framework (see Supplementary 

Methods) [31]. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted November 26, 2019. ; https://doi.org/10.1101/19012567doi: medRxiv preprint 

https://doi.org/10.1101/19012567
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

Results  

 

 

Figure 1. Performance for multi-site classification using different algorithms and cross-validation schemes. Boxplots 

summarize AUC scores obtained across CV-iterations; the dashed line represents chance-level performance and asterisks 

indicate scores significantly different from chance (Mann-Whitney-U statistic; p<0.05 Bonferonni corrected (10 classifiers x 3 CV 

types), see eSupplement for details). SVM=Support Vector Machine, PCA=Principal Component Analysis, RBF=Radial Basis 

Function, LR=Logistic Regression, GPC=Gaussian Processes Classification, RFC=Random Forest Classifier, XGB=XGBoost, 

NN=Neural Network. 

 

 

Multi-site classification 

Three different CV approaches were used to assess the influence of sample heterogeneity. Results using 

various classification algorithms are summarized in Figure 1. Classification performance (AUC) using site-

stratified CV (with training on combined samples and equal fold sizes) ranged between 0.57 (standard 
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deviation (SD)=0.02;Pcorr=0.19) and 0.62 (SD=0.03;Pcorr<.001) across different classifiers. All models had 

statistically significant performance after multiple comparison corrections except for  PCA+LR, PCA+SVM 

and NN classifiers. LOSO-CV led to lower classification performance; 0.51 (SD=0.11;Pcorr>.99) to 0.54 

(SD=0.08;Pcorr>.99) AUC with relatively high variance across folds (SD=0.07-0.11) and no classifiers 

surviving multiple comparison corrections. AUC values obtained through site-stratified CV with different 

fold sizes were similar to site-stratified CV results with equal fold sizes, ranging between 0.57 

(SD=0.08;Pcorr>.99) and 0.62 (SD=0.07;Pcorr=.55). However, variance across CV-iterations was higher and 

comparable to that from LOSO-CV (SD; site-stratified fixed: 0.02–0.04; site-stratified variable: 0.05-0.08; 

LOSO: 0.07-0.11). A complete overview of classification results is provided in supplementary Table S2. 

Multi-site classification, performed separately on pediatric and adult samples yielded similar results, 

ranging from 0.56 (SD=0.03;Pcorr>.99) to 0.62 (SD=0.06;Pcorr=.71) and 0.56 (SD=0.03;Pcorr=.69) to 0.61 

(SD=0.02;Pcorr=.008) AUC, respectively (see supplementary Tables S3-4). As site-stratified CV with equal 

fold-sizes resulted in the best performances, we used this strategy for further evaluation of intra-site 

performance and the influence of clinical variables. Only RFC classification performance is reported 

here, as differences between classifiers were minimal and this model was also used to extract feature 

importance.  

 

Single-site classification 

Single-site classification performance with 10-fold CV varied greatly, with AUCs ranging between 0.17-

0.91 across different sites and classifiers (see supplementary Table S5). Figure 2 summarizes RFC 

performances for each individual site. We assessed the correlation between the number of participants 

and classification performance across sites, which showed a non-significant trend (rS=0.29, p=0.054). 
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Figure 2. Scatterplot illustrating relationship between number of participants and classification performance across sites. 

Only RFC classifier performance averaged across CV-iterations are plotted (Spearman correlation; rS=0.29, p=0.054). 

 

Clinical variables and sensitivity analysis 

To assess the influence of different clinical variables on classification performance, we repeated the 

analysis for specific subgroups split according to medication use, AO, disease duration, and severity. A 

complete overview is provided in supplementary Tables S6(a-d), and we report results using RFC on 

combined data with age, sex and site as covariates below. Medicated OCD vs HC classification resulted 

in 0.73 AUC (SD=0.03;Pcorr<.001), unmedicated OCD vs HC in 0.61 (SD=0.02;Pcorr=.03), and medicated vs 
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unmedicated OCD in 0.86 (SD=0.02;Pcorr<.001) (see Figure 3). Early AO OCD vs HC classification resulted 

in 0.68 AUC (SD=0.03;Pcorr<.001), late AO OCD vs HC in 0.73 (SD=0.02;Pcorr<.001), and early vs late AO in 

0.81 (SD=0.03;Pcorr<.001). As no late AO patients were present in pediatric samples, classifications were 

re-run on adult samples only, resulting in 0.65 AUC (SD=0.04;Pcorr=.01) for early AO vs HC, 0.70 

(SD=0.03;Pcorr<.001) for late AO vs HC, and 0.73 (SD=0.05;Pcorr<.001) for early vs late AO. Classification of 

short disease duration OCD vs HC resulted in 0.68 AUC (SD=0.04;Pcorr<.001), long disease duration vs HC 

in 0.71 (SD=0.02;Pcorr<.001), and short vs long duration in 0.78 (SD=0.04;Pcorr<.001). Finally, low severity 

OCD vs HC classification resulted in 0.60 AUC (SD=0.03;Pcorr=.15), high severity OCD vs HC in 0.61 

(SD=0.03;Pcorr=.04), and low vs high severity OCD in 0.58 (SD=0.04;Pcorr>.99). Medication status 

correlated significantly with disease duration (r=-0.094; p<10
-05

; Bonferroni corrected). We therefore 

performed additional classifications after further stratification (e.g., HC vs medicated + short duration 

OCD; HC vs unmedicated + short duration OCD, etc). Classifications with or without stratification for 

disease duration were comparable (see supplementary Tables S7(a-c) for full overview).  
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Figure 3. Performance for classification between subgroups of patients based on medication status. Only RFC classifier

performance for combined data (both pediatric and adult samples) is shown here;  Boxplots summarize AUC scores obtained

across CV-iterations; the dashed line represents chance-level performance and asterisks indicate scores significantly different

from chance (Mann-Whitney-U statistic; p<0.05 Bonferonni corrected (10 classifiers x 3 CV types), see eSupplement for details)

unmed=unmedicated, med=medicated. 

 

 

Feature importance 

We investigated which brain regions (features) contributed most to OCD vs HC classifications for site-

stratified CV only, using the feature importance values from RFC and permutation testing. No features

were selected consistently (survived false discovery rate (FDR) correction in >50% CV-iterations) for
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main analyses (OCD patients vs HC classification) in either pediatric, adult or combined samples. 

However, for HC vs medicated OCD and medicated vs unmedicated OCD classification in combined 

samples, 7 and 36 significant- and consistently selected features were found, respectively. Additionally, 

40 features were found for both HC vs late AO and early vs late AO patients classifications in combined 

samples. A complete overview of these findings (including features importance for classifications 

stratified for medication and AO in adult samples) can be found in supplementary Tables S8-11. 
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Discussion 

We found that MVPA of parcellated structural neuroimaging data is unable to provide accurate 

distinction between OCD cases and controls. Classification of the complete sample using site-stratified 

CV ranged between 0.58 and 0.62 AUC, which is not sufficient for clinical application. Differences in 

performance between classifiers were minimal. Similar results were obtained for classifications 

performed separately on pediatric or adult samples. When validated on completely new data from other 

sites using LOSO-CV, model performance hardly exceeded chance-level. Our findings highlight the 

impact of validation schemes on classification performance and suggest poor discrimination between 

OCD patients and controls when combining data from multiple sites. In contrast, discrimination between 

subgroups of patients based on medication status enabled good individual subject classification. 

Few diagnostic classifiers have been applied to OCD across multiple scanners and sites. Prior 

studies using structural MRI data to classify OCD using single-site samples yielded accuracies ranging 

from 0.72 up to 0.93 (reviewed in [12]). The wide range of performances observed in our individual site 

classification is in agreement with the published literature. Such a wide range may in part be explained 

by sample size, as larger samples tended to have higher AUC values [14, 28, 32]. However, this 

relationship does not necessarily hold true for large-scale multi-site studies, due to heterogeneity that 

arises from pooling samples with different scanning parameters, processing pipelines, inclusion criteria, 

demographic and clinical characteristics [12, 33]. All these factors can impact the data and obscure a 

pattern of abnormalities shared by all patients. Single-site studies that minimize heterogeneity may 

therefore yield higher classification performances, but limit the generalizability to new, unseen data and 

its use in clinical practice [14, 15]. LOSO-CV demonstrated that these structural MRI features do not 

provide a biomarker that enables generalization to new sites.  
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Classification within subgroups, split according to medication status, resulted in  good 

performance even after accounting for correlated clinical variables (i.e., disease duration) through 

additional stratification. Evidence from rodent studies suggests that serotonin reuptake inhibitors (SRIs) 

mediate neuroplasticity in various cortical and subcortical structures through glio- and neuro-genesis 

[34–36]. However, little is known about how these findings might translate to humans and what the 

effects of long-term medication use are [37]. A few longitudinal studies suggest that SRI treatment 

normalizes brain volumes. One study reported significantly larger thalamic volumes in treatment-naïve 

pediatric patients compared to controls and these differences decreased following paroxetine treatment 

[38]. Another study reported smaller gray matter volume of CSTC-related regions in treatment-naïve 

patients that were no longer detectable following fluoxetine treatment [39]. Nonetheless, it remains 

unclear whether these structural changes are related to medication use or to symptom improvement.  

Features that enabled multivariate classifications for medicated OCD vs HC included thickness of 

right medial orbitofrontal, right superior frontal, bilateral rostral middle frontal and right pars 

triangularis cortices in both adult and combined samples, and left palladic and right lateral ventricle 

volumes in adult samples only. Features for medicated vs unmedicated OCD in adult and combined 

samples included widespread cortical thickness in frontal, temporal, parietal and occipital regions. 

Although these multivariate features are important for the classifications as a whole, this appears 

consistent with previous univariate ENIGMA-OCD meta- and mega-analyses that also reported 

medication effects [6, 7]. Compared to HC, pediatric OCD patients had larger thalamic volumes and this 

finding was specific to unmedicated patients. This finding is in line with the normalizing effects of 

paroxetine on thalamic volume described previously. However, most findings have pointed towards 

more pronounced brain abnormalities in medicated patients than in unmedicated patients compared to 

controls. For example, medicated pediatric patients were found to have smaller cortical surface area 

(mainly in frontal regions) that was not detected in unmedicated patients. Medicated adult OCD patients 
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showed thinner frontal, temporal and parietal cortices, and smaller hippocampal and larger pallidum 

volumes, whereas no differences were found for unmedicated adult patients. These results fit with the 

finding that the classification performance between medicated vs. unmedicated patients was better 

than that between cases versus controls, and may reflect minimization of heterogeneity in stratified 

patient groups compared to HC. Although these findings suggest that antidepressants affect brain 

structure that enables good single-subject classification, causal evidence for medication effects warrants 

prospective longitudinal studies. Furthermore, it remains unclear whether these findings are specific to 

OCD, or whether it is also present in other psychiatric disorders. 

A number of limitations deserve emphasis. First, we used a sample pooled from existing data 

across the world, without harmonized protocols for scanning, inclusion criteria or demographic and 

clinical characteristics. These sources of heterogeneity may limit classification performance, but this also 

provides an opportunity for model development using independent data sets and the discovery of 

biomarkers that are reproducible across study sites. Second, limited information on medication use was 

available. We were therefore only able to distinguish patients on antidepressants with or without 

adjuvant antipsychotics versus those who had not received any medication. Medication history, 

medication dosage, and duration of use were unknown. Nonetheless, these coarsely defined medication 

groups enabled better case-control discrimination and good classification of medicated versus 

unmedicated cases. Third, there is a lack of information on comorbidity and OCD subtype in our dataset. 

Particular OCD subtypes may have different neural correlates, and this might limit the ability of MVPA 

models to find generalizable patterns in brain structure [12, 40]. Finally, it is possible that the brain 

features used for classification led to sub-optimal performance. OCD is thought to derive from 

abnormalities distributed at the network-level rather than focused on a single brain area, and FreeSurfer 

features might not be sufficiently sensitive to detect subtle alterations associated with OCD. 
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Taken together, this study provides a realistic estimate of the classification performance that 

can be achieved in a large, ecologically valid, multi-site sample of OCD participants using data on 

regional brain structure. Our findings show that parcellated structural MRI data does not enable a good 

overall distinction between patients with OCD and healthy controls. However, classifying subgroups of 

patients based on medication status enables good identification at the individual subject level. This 

underlines the need for longitudinal studies on the short- and long-term effects of medication on brain 

structure. 
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