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Summary boxes 

What is already known on this topic 

• Genetic risk stratification can identify men with greater predisposition for developing 

prostate cancer, but these risk models may worsen health disparities, as most have only 

been validated for men of European ancestry  

• A polygenic hazard score was previously associated with age at prostate cancer diagnosis 

and improved PCa screening accuracy in Europeans 

• Performance of the polygenic hazard score in multi-ethnic populations is unknown 

 

What this study adds 

• In a dataset from 80,491 men of various self-reported race/ethnicities, the polygenic 

hazard score was associated with age at prostate cancer diagnosis, aggressive prostate 

cancer diagnosis, and prostate cancer death. 

• PHS stratifies men of European, Asian, and African ancestry by genetic risk for any, 

aggressive, and fatal prostate cancer.  
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Abstract 

Objectives: A polygenic hazard score (PHS1)—weighted sum of 54 single-nucleotide 

polymorphism genotypes—was previously associated with age at prostate cancer (PCa) 

diagnosis and improved PCa screening accuracy in Europeans. Performance in more diverse 

populations is unknown. We evaluated PHS association with PCa in multi-ethnic populations. 

 

Design: PHS1 was adapted for compatibility with genotype data from the OncoArray project 

(PHS2) and tested for association with age at PCa diagnosis, at aggressive PCa diagnosis, and at 

PCa death.  

 

Setting: Multiple international institutions. 

 

Participants: Men with available OncoArray data from the PRACTICAL consortium who were 

not included in PHS1 development/validation. 

 

Main Outcomes and Measures: PHS2 was tested via Cox proportional hazards models for age 

at PCa diagnosis, age at aggressive PCa diagnosis (any of: Gleason score ≥7, stage T3-T4, 

PSA≥10 ng/mL, nodal/distant metastasis), and age at PCa-specific death. 

 

Results: 80,491 men of various self-reported race/ethnicities were included (30,575 controls, 

49,916 PCa cases; genetic ancestry groups: 71,856 European, 6,253 African, 2,382 Asian). 

Median age at last follow-up was 70 years (IQR 63-76); 3,983 PCa deaths, 5,806 other deaths, 

70,702 still alive. PHS2 had 46 polymorphisms: 24 directly genotyped and 22 acceptable proxies 
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(r2
≥0.94). PHS2 was associated with age at PCa diagnosis in the multi-ethnic dataset (z=54, 

p<10-16) and in each genetic ancestry group: European (z=56, p<10-16), Asian (z=47, p<10-16), 

African (z=29, p<10-16). PHS2 was also associated with age at aggressive PCa diagnosis in each 

genetic ancestry group (p<10-16) and with age of PCa death in the full dataset (p<10-16). 

Comparing the 80th and 20th percentiles of genetic risk, men with high PHS had hazard ratios of 

5.3 [95% CI: 5.0-5.7], 5.9 [5.5-6.3], and 5.7 [4.6-7.0] for PCa, aggressive PCa, and PCa-specific 

death, respectively. Within European, Asian, and African ancestries, analogous hazard ratios for 

PCa were 5.5 [5.2-5.9], 4.5 [3.2-6.3], and 2.5 [2.1-3.1], respectively.  

 

Conclusions: PHS2 is strongly associated with age at PCa diagnosis in a multi-ethnic dataset. 

PHS2 stratifies men of European, Asian, and African ancestry by genetic risk for any, aggressive, 

and fatal PCa.    
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Introduction 

 Prostate cancer (PCa) is the second most common cancer diagnosed in men worldwide, 

causing substantial morbidity and mortality1. PCa screening may reduce morbidity and 

mortality2–5, but to avoid overdiagnosis and overtreatment of indolent disease6–9, it should be 

targeted and personalized. PCa age at diagnosis is important for clinical decisions regarding 

if/when to initiate screening for an individual10,11. Survival is another key cancer endpoint 

recommended for risk models12.  

Genetic risk stratification is promising for identifying individuals with greater 

predisposition for developing cancer13–16, including PCa17. Polygenic models use common 

variants—identified in genome-wide association studies—whose combined effects can assess 

overall risk of disease development18,19. Recently, a polygenic hazard score (PHS) was 

developed as a weighted sum of 54 single-nucleotide polymorphisms (SNPs) that models a 

man’s genetic predisposition for developing PCa13. Validation testing was done using ProtecT 

trial data2 and demonstrated the PHS to be associated with age at PCa diagnosis, including 

aggressive PCa13. However, the development and validation datasets were limited to men of 

European ancestry. While genetic risk models might be important clinical tools for 

prognostication and risk stratification, using them may worsen health disparities20–24 because 

most models are constructed using European data and may underrepresent genetic variants 

important in persons of non-European ancestry20–24. Indeed, this is particularly concerning in 

PCa, as race/ethnicity is an important PCa risk factor; diagnostic, treatment, and outcomes 

disparities continue to exist between different races/ethnicities25,26. 
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Here, we assessed PHS performance in a multi-ethnic dataset that includes individuals of 

European, African, and Asian genetic ancestry. This dataset also includes long-term follow-up 

information, affording an opportunity to evaluate PHS for association with fatal PCa.  

 

Methods 

Participants 

 We obtained data from the OncoArray project27 that had undergone quality control steps 

described previously18. This dataset includes 91,480 men with genotype and phenotype data from 

64 studies (Supplemental Methods). Individuals whose data were used in the prior development 

or validation of the original PHS model (PHS1) were excluded (n=10,989)13, leaving 80,491 in 

the independent dataset used here. Table 1 describes available data. Individuals not meeting the 

endpoint for each analysis were censored at age of last follow-up. 

All contributing studies were approved by the relevant ethics committees; written 

informed consent was acquired from the study participants28. The present analyses used de-

identified data from the PRACTICAL consortium. 

 

Polygenic Hazard Score (PHS)  

 The original PHS1 was validated for association with age at PCa diagnosis in men of 

European ancestry, using a survival analysis13. To ensure the score was not simply identifying 

men at risk of indolent disease, PHS1 was also validated for association with age at aggressive 

PCa (defined as intermediate-risk disease, or above6) diagnosis13. PHS1 was calculated as the 

vector product of a patient’s genotype (Xi) for n selected SNPs and the corresponding parameter 

estimates (βi) from a Cox proportional hazards regression:  
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   PHS = ∑ ��β��

�
     (1) 

 The 54 SNPs in PHS1 were selected using PRACTICAL consortium data (n=31,747 men) 

genotyped with a custom array (iCOGS, Illumina, San Diego, CA)13.  

 

Genetic Ancestry Determination 

 Self-reported race/ethnicities27,29 included European, East Asian, African American, 

Hawaiian, Hispanic American, South Asian, Black African, Black Caribbean, and Other. Genetic 

ancestry (European, African, or Asian) for all individuals was used for the present analyses 

because it is objective and may be more informative than self-reported race/ethnicities30 

(Supplemental Methods).  

 

Adapting the PHS to OncoArray 

Genotyping for the present study was performed using a commercially-available, cancer-

specific array (OncoArray, Illumina, San Diego, CA)18. Twenty-four of the 54 SNPs in PHS1 

were directly genotyped on OncoArray. We identified proxy SNPs for those not directly 

genotyped and re-calculated the SNP weights in the same dataset used for the original 

development of PHS1
13 (Supplemental Methods).  

The performance of this new, adapted PHS (PHS2), was compared to that of PHS1 in the 

ProtecT dataset originally used to validate PHS1 (n=6,411). PHS2 was calculated for all patients 

in the ProtecT validation set and was tested as the sole predictive variable in a Cox proportional 

hazards regression model (R v.3.5.1, “survival” package31) for age at aggressive PCa diagnosis, 

the primary endpoint of that study. Performance was assessed by the metrics reported during the 

PHS1 development13: z-score and hazard ratio (HR98/50) for aggressive PCa between men in the 
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highest 2% of genetic risk (≥98th percentile) vs. those with average risk (30th-70th percentile). HR 

95% confidence intervals (CIs) were determined by bootstrapping 1,000 random samples from 

the ProtecT dataset32,33, while maintaining the same number of cases and controls. PHS2 

percentile thresholds are shown in the Supplement. 

 

Any PCa 

We tested PHS2 for association with age at diagnosis of any PCa in the multi-ethnic 

dataset (n=80,491, Table 1). 

PHS2 was calculated for all patients in the multi-ethnic dataset and used as the sole 

independent variable in Cox proportional hazards regressions for the endpoint of age at PCa 

diagnosis. Due to the potential for Cox proportional hazards results to be biased by a higher 

number of cases in our dataset than in the general population, sample-weight corrections were 

applied to all Cox models13,34 (Supplemental Methods). Significance was set at α=0.01, and p-

values reported were truncated at <10-16, if applicable13.  

These Cox proportional hazards regressions (with PHS2 as the sole independent variable 

and age at PCa diagnosis as the outcome) were then repeated for subsets of data, stratified by 

genetic ancestry: European, Asian, and African. Percentiles of genetic risk were calculated as 

done previously13, using data from the 9,728 men in the original (iCOGS) development set who 

were less than 70 years old and without PCa. Hazard ratios (HRs) and 95% CIs for each genetic 

ancestry group were calculated to make the following comparisons: HR98/50, men in the highest 

2% of genetic risk vs. those with average risk (30th-70th percentile); HR80/50, men in the highest 

20% vs. those with average risk, HR20/50, men in the lowest 20% vs. those with average risk; and 

HR80/20, men in the highest 20% vs. lowest 20%. CIs were determined by bootstrapping 1,000 
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random samples from each genetic ancestry group32,33, while maintaining the same number of 

cases and controls. HRs and CIs were calculated for age at PCa diagnosis separately for each 

genetic ancestry group. 

Given that the overall incidence of PCa in different populations varies, we performed a 

sensitivity analysis of the population case/control numbers, allowing the population incidence to 

vary from 25% to 400% of that reported in Sweden (as an example population; Supplemental 

Methods). 

 

Aggressive PCa  

Recognizing that not all PCa is clinically significant, we also tested PHS2 for association 

with age at aggressive PCa diagnosis in the multi-ethnic dataset. For these analyses, we included 

cases that had known tumor stage, Gleason score, and PSA at diagnosis (n=60,617 cases, Table 

1). Aggressive PCa cases were those that met any of the following previously defined criteria for 

aggressive disease6,13: Gleason score ≥7, PSA ≥10 ng/mL, T3-T4 stage, nodal metastases, or 

distant metastases (Supplemental Methods). As before, Cox proportional hazards models and 

sensitivity analysis were used to assess association.  

 

Fatal PCa 

Using an even stricter definition of clinical significance, we then evaluated association of 

PHS2 with age at PCa death in the multi-ethnic dataset. All cases (regardless of staging 

completeness) and controls were included, and the endpoint was age at death due to PCa. This 

analysis was not stratified by genetic ancestry due to low numbers of recorded PCa deaths in the 

non-European datasets. Cause of death was determined by the investigators of each contributing 
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study using cancer registries and/or medical records (Supplemental Methods). At last follow-

up, 3,983 men had died from PCa, 5,806 had died from non-PCa causes, and 70,702 were still 

alive. The median age at last follow-up was 70 years (IQR 63-76). As before, Cox proportional 

hazards models and sensitivity analysis were used to assess association.  

 

PHS and Family History  

Family history (presence/absence of a first-degree relative with a PCa diagnosis) was also 

tested for association with any, aggressive, or fatal PCa. There were 46,030 men with available 

PCa family history data.  

Cox proportional hazards models were used to assess family history for association with 

any, aggressive, or fatal PCa. To evaluate the relative importance of each, a multivariable model 

using both family history and PHS was compared to using family history alone (log-likelihood 

test; α=0.01). HRs were calculated for each variable. 

   

Results 

Adaption of PHS for OncoArray 

Of the 30 SNPs from PHS1 not directly genotyped on OncoArray, proxy SNPs were 

identified for 22 (linkage disequilibrium ≥0.94). Therefore, PHS2 included 46 SNPs, total 

(Supplemental Results). PHS2 association with age at aggressive PCa diagnosis in ProtecT was 

similar to that previously reported for PHS1 (z=22 for PHS1, z=21 for PHS2, each p<10-16). 

HR98/50 was 4.7 [95% CI: 3.6-6.1] for PHS2, compared to 4.6 [3.5-6.0] for PHS1.  

 

Any PCa  
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PHS2 was associated with age at PCa diagnosis in all three genetic ancestry groups 

(Table 2). Comparing the 80th and 20th percentiles of genetic risk, men with high PHS had a HR 

of 5.3 [5.0-5.7] for any PCa. Within each genetic ancestry group, men with high PHS had HRs of 

5.5 [5.2-5.9], 4.5 [3.2-6.3], and 2.5 [2.1-3.1] for men of European, Asian, and African ancestry, 

respectively. 

 

Aggressive PCa  

 PHS2 was associated with age at aggressive PCa diagnosis in all three genetic ancestry 

groups (Table 3). Comparing the 80th and 20th percentiles of genetic risk, men with high PHS 

had a HR of 5.9 [5.5-6.3] for aggressive PCa; within each genetic ancestry group, men with high 

PHS had HRs of 5.6 [5.2-6.0], 5.2 [4.8-5.6], and 2.4 [2.3-2.6] for men of European, Asian, and 

African ancestry, respectively.  

 

Fatal PCa  

PHS2 was associated with age at PCa death for all men in the multi-ethnic dataset (z=16, 

p<10-16). Table 4 shows z-scores and corresponding HRs for fatal PCa. Comparing the 80th and 

20th percentiles of genetic risk, men with high PHS had a HR of 5.7 [4.6-7.0] for PCa death.  

 

Sensitivity Analyses  

 Sensitivity analyses demonstrated that large changes in assumed population incidence 

had minimal effect on the calculated HRs for any, aggressive, or fatal PCa (Supplemental 

Results). 
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PHS and Family History 

Family history was also associated with any PCa (z=40, p<10-16; Table 5), aggressive 

PCa (z=32, p<10-16), and fatal PCa (z=16, p<10-16) in the multi-ethnic dataset. Among those with 

known family history, the combination of family history and PHS performed better than family 

history alone (log-likelihood p<10-16). This pattern held true when analyses were repeated on 

each genetic ancestry. Additional family history analyses are reported in the Supplemental 

Results.  

 

Discussion 

These results confirm the previously reported association of PHS with age at PCa 

diagnosis in Europeans and show that this finding generalizes to a multi-ethnic dataset, including 

men of European, Asian, and African genetic ancestry. PHS is also associated with age at 

aggressive PCa diagnosis and at PCa death. Comparing the highest and lowest quintiles of 

genetic risk, men with high PHS had HRs of 5.3, 5.9, and 5.7 for any PCa, aggressive PCa, and 

PCa death, respectively.  

We found that PHS is associated with PCa in men of European, Asian, and African 

genetic ancestry (and a wider range of self-reported race/ethnicities). Current PCa screening 

guidelines suggest possible initiation at earlier ages for men of African ancestry, given higher 

incidence rates and worse survival when compared to men of European ancestry26. Using the 

PHS to risk-stratify men might help with decisions regarding when to initiate PCa screening: 

perhaps a man with African genetic ancestry in the lowest percentiles of genetic risk by PHS 

could safely delay or forgo screening to decrease the possible harms associated with 

overdetection and overtreatment9, while a man in the highest risk percentiles might consider 
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screening at an earlier age. Similar reasoning applies to men of all genetic ancestries. Risk-

stratified screening should be prospectively evaluated.  

PHS performance was better in those with European and Asian genetic ancestry than in 

those with African ancestry. For example, comparing the highest and lowest quintiles of genetic 

risk, men with of European and Asian genetic ancestry with high PHS had HRs for any PCa of 

5.5 and 4.5 times, respectively, while the analogous HR for men of African genetic ancestry was 

2.5 (similar trends were seen for aggressive PCa). This suggests PHS can differentiate men of 

higher and lower risk in each ancestral group, but the range of risk levels may be narrower in 

those of African ancestry. Possible reasons for relatively diminished performance include 

increased genetic diversity with less linkage disequilibrium in those of African genetic 

ancestry35–37. Known health disparities may also contribute25, as the availability—and timing—of 

PSA results may depend on healthcare access. Alarmingly, there has historically been poor 

representation of African populations in clinical or genomic research studies20,21. This pattern is 

reflected in the present study, where most men of African genetic ancestry were missing clinical 

diagnosis information used to determine disease aggressiveness. That such clinical information is 

less available for men of African ancestry also leaves open the possibility of systematic 

differences in the diagnostic workup—and therefore age of diagnosis—across different ancestry 

populations. Notwithstanding these caveats, the present PHS is associated with age at PCa 

diagnosis in men of African ancestry, possibly paving the way for more personalized screening 

decisions for men of African descent.  

The first PHS validation study used data from ProtecT, a large PCa trial2,13. ProtecT’s 

screening design yielded biopsy results from both controls and cases with PSA ≥3 ng/mL, 

making it possible to demonstrate improved accuracy and efficiency of PCa screening with PSA 
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testing. Limitations of the ProtecT analysis, though, include few recorded PCa deaths in the 

available data, and the exclusion of advanced cancer from that trial2. The present study includes 

long-term observation, with both early and advanced disease18, allowing for evaluation of PHS 

association with any, aggressive, and fatal PCa; we found PHS to be associated with all 

outcomes. 

Age is critical in clinical decisions of whether men should be offered PCa screening38–40 

and in how to treat men diagnosed with PCa38,39. Age may also inform prognosis39,41. Age at 

diagnosis or death is therefore of clinical interest in inferring how likely a man is to develop 

cancer at an age when he may benefit from treatment. One important advantage of the survival 

analysis used here is that it permits men without cancer at time of last follow-up to be censored, 

while allowing for the possibility of them developing PCa (including aggressive or fatal PCa) 

later on. PCa death is a hard endpoint with less uncertainty than clinical diagnosis (which may 

vary with screening practices and delayed medical attention). PHS may help identify men with 

high (or low) genetic predisposition to develop lethal PCa and could assist physicians deciding 

when to initiate screening. 

Current guidelines suggest considering a man’s individual cancer risk factors, overall life 

expectancy, and medical comorbidities when deciding whether to screen6. The most prominent 

clinical risk factors used in practice are family history and race/ethnicity6,42,43. Combined PHS 

and family history performed better than either alone in this multi-ethnic dataset. This finding is 

consistent with a prior report that PHS adds considerable information over family history alone. 

The prior study did not find an association of family history with age at PCa diagnosis, perhaps 

because the universal screening approach of the ProtecT trial diluted the influence of family 

history on who is screened in typical practice13. In the present study, family history and PHS 
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appear complementary in assessing PCa genetic risk. Moreover, the HRs for PHS suggest 

clinical relevance similar or greater to predictive tools routinely used for cancer screening (e.g., 

breast cancer) and for other diseases (e.g., diabetes and cardiovascular disease). HRs reported for 

those tools are around 1-3 for disease development or other adverse outcome44–48; HRs reported 

here for PHS (for any, aggressive, or fatal PCa) are similar or greater.  

 Limitations to this work include that the dataset comes from multiple, heterogeneous 

studies, from various populations with variable screening rates. This allowed for a large, multi-

ethnic dataset that includes clinical and survival data, but comes with uncertainties avoided in the 

ProtecT dataset used for original validation. However, the heterogeneity would likely reduce the 

PHS performance, not systematically inflate the results. Second, we note that no germline SNP 

tool, including this PHS, has been shown to discriminate men at risk of aggressive PCa from 

those at risk of only indolent PCa. Third, while the genetic ancestry classifications used here may 

be more accurate than self-reported race/ethnicity alone30, possible admixed genetic ancestry 

within individuals was not assessed; future development will consider local ancestry. As noted 

above, clinical data availability was not uniform across contributing studies and was lower in 

men of African genetic ancestry. The PHS may not include all SNPs associated with PCa; in fact, 

more such SNPs have been reported since the development of the original PHS18, some 

specifically within non-European populations49–51. Further model optimization (possibly by 

incorporating additional SNPs) may improve PCa risk stratification. Future work could also 

evaluate the PHS performance in relation to epidemiological risk factors previously associated 

with PCa risk beyond those currently used in clinical practice (i.e., family history and 

race/ethnicity). Finally, various circumstances and disease-modifying treatments may have 

influenced post-diagnosis survival to unknown degree. Despite this possible source of variability 
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in survival among men with fatal PCa, PHS was still associated with age at death, an objective 

and meaningful endpoint. Future development and optimization hold promise for improving 

upon the encouraging risk stratification achieved here in men of different genetic ancestries, 

particularly African. 

 

Conclusion 

 In a multi-ethnic dataset comprising men of European, Asian and African ancestry, PHS 

was associated with age at PCa diagnosis, as well as age at aggressive PCa diagnosis, and at 

death from PCa. PHS performance was relatively diminished in men of African genetic ancestry, 

compared to performance in men of European or Asian genetic ancestry. PHS risk-stratifies men 

of European, Asian and African ancestry and should be prospectively studied as a means to 

individualize screening strategies seeking to reduce PCa morbidity and mortality.  
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Table 1. Participant characteristics, n=80,491. 

 Genetic Ancestry 
  All European Asian African 
Participants 
Controls 30,575 26,377 1,185 3,013 
Prostate cancer cases 49,916 45,479 1,197 3,240 
Aggressive prostate 
cancer cases a 

26,419 24,279 716 1,424 

Fatal prostate cancer 
cases 

3,983 3,908 57 18 

 

Number of Participants with Known First-Degree Family History Information 

Family history of 
prostate cancer 
available (prostate 
cancer cases; 
controls) 

46,030 
(28,204; 17,826) 

39,445 
(24,921; 14,524) 

1,028 
(519; 509) 

5,557 
(2,764; 2,793) 

   
Age Demographics 
Median age at 
diagnosis (IQR) 

65 [60-71] 66 [60-71] 68 [62-74] 62 [56-68] 

Median age at last 
follow up (IQR b) 

70 [63-76] 70 [64-77] 70 [63-76] 62 [56-68] 

 

a Aggressive prostate cancer defined as Gleason score ≥7, PSA ≥ 10 ng/mL, T3-T4 stage, nodal 
metastases, or distant metastases. 
b IQR: interquartile range 
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Table 2: Association of PHS with prostate cancer. Hazard ratios (HRs) are shown comparing 
men in the highest 2% of genetic risk (≥98th percentile of PHS), highest 20% of genetic risk 
(≥80th percentile), average risk (30th-70th percentile), and lowest 20% of genetic risk (≤20th 
percentile) across genetic ancestry. 
 

  Hazard ratios [95% CI] comparing percentiles of PHS2  

Genetic 
ancestry 

z (p-value) HR20/50: 
≤20th vs 30-70th 

HR80/50: 
≥80th vs 30-

70th 

HR98/50: 

≥98th vs 30-
70th 

HR80/20: 
≥80th vs ≤20th 

All 
(n=80,491) 

54 (p<10-16) 
0.4 

[0.4, 0.5] 
2.4 

[2.3, 2.5] 
4.2 

[4.0, 4.5] 
5.3 

[5.0, 5.7] 

European 
(n=71,856) 

56 (p<10-16) 
0.4 

[0.4, 0.5] 
2.4 

[2.4, 2.5] 
4.3 

[4.1, 4.6] 
5.5 

[5.2, 5.9] 

Asian 
(n=2,382) 

47 (p<10-16) 
0.5 

[0.4, 0.6] 
2.2 

[1.8, 2.6] 
3.8 

[2.8, 5.1] 
4.5 

[3.2, 6.3] 

African 
(n=6,253) 

29 (p<10-16) 
0.6 

[0.6, 0.7] 
1.6 

[1.4, 1.8] 
2.3 

[1.9, 2.7] 
2.5 

[2.1, 3.1] 
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Table 3: Association of PHS with aggressive prostate cancer. Hazard ratios (HRs) are shown 
comparing men in the highest 2% of genetic risk (≥98th percentile of PHS), highest 20% of 
genetic risk (≥80th percentile), average risk (30th-70th percentile), and lowest 20% of genetic risk 
(≤20th percentile) across genetic ancestry. 
 

  Hazard ratios [95% CI] comparing percentiles of PHS2  

Genetic ancestry z (p-value) HR20/50: 
≤20th vs 30-70th 

HR80/50: 
≥80th vs 30-

70th 

HR98/50: 

≥98th vs 30-
70th 

HR80/20: 
≥80th vs ≤20th 

All (n=58,600) 48 (p<10-16) 
0.4 

[0.4, 0.4] 
2.5 

[2.4, 2.6] 
4.6 

[4.3, 4.9] 
5.9 

[5.5, 6.3] 

European 
(n=53,608) 

46 (p<10-16) 
0.5 

[0.4, 0.5] 
2.5 

[2.4, 2.5] 
4.4 

[4.1, 4.7] 
5.6 

[5.2, 6.0] 

Asian (n=1,806) 44 (p<10-16) 
0.5 

[0.4, 0.5] 
2.3 

[2.2, 2.4] 
4.1 

[3.9, 4.4] 
5.2 

[4.8, 5.6] 

African 
(n=3,186) 

24 (p<10-16) 
0.6 

[0.6, 0.7] 
1.6 

[1.5, 1.6] 
2.2 

[2.0, 2.3] 
2.4 

[2.3, 2.6] 
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Table 4: Association of PHS with death from prostate cancer. Hazard ratios (HRs) are shown 
comparing men in the highest 2% of genetic risk (≥98th percentile of PHS), highest 20% of 
genetic risk (≥80th percentile), average risk (30th-70th percentile), and lowest 20% of genetic risk 
(≤20th percentile). 
 

  Hazard ratios [95% CI] comparing percentiles of PHS2  

Genetic ancestry z (p-value) HR20/50: 
≤20th vs 30-70th 

HR80/50: 
≥80th vs 30-

70th 

HR98/50: 

≥98th vs 30-
70th 

HR80/20: 
≥80th vs ≤20th 

All (n=78,221) 16 (p<10-16) 
0.4 

[0.4, 0.5] 
2.5 

[2.2, 2.8] 
4.5 

[3.7, 5.4] 
5.7 

[4.6, 7.0] 
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Table 5: Multivariable models with both PHS and family history of prostate cancer (≥1 first-
degree relative affected, binary) for association with any prostate cancer in the multi-ethnic 
dataset, and by genetic ancestry. This analysis is limited to individuals with known family 
history. Both family history and PHS were significantly associated with any prostate cancer in 
the combined models. Hazard ratios (HRs) for family history were calculated as the exponent of 
the beta from the multivariable Cox proportional hazards regression52. The HR for PHS in the 
multivariable models was estimated as the HR80/20 (men in the highest 20% vs. those in the 
lowest 20% of genetic risk by PHS2) in each cohort. The model with PHS performed better than 
family history alone (log-likelihood p<10-16). 
 

Genetic Ancestry Variable beta z-score p-value HR 

 
 

All (n=46,030) 
PHS 2.0 54 <10-16 4.5 

Family History 1.0 39 <10-16 2.5 

  

European (n=39,445) 
PHS 2.1 56 <10-16 4.8 

Family History 1.0 38 <10-16 2.5 

 
 

Asian (n=1,028) 
PHS 1.9 51 <10-16 4.2 

Family History 0.7 21 <10-16 2.1 

 
 

African (n=5,557) 
PHS 1.1 26 <10-16 2.2 

Family History 1.1 47 <10-16 3.1 
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