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ABSTRACT (<=100 words) 21 

Exome sequencing is now mainstream in clinical practice, however, identification of pathogenic 22 

Mendelian variants remains time consuming, partly because limited accuracy of current 23 

computational prediction methods leaves much manual classification. Here we introduce CAPICE, 24 

a new machine-learning based method for prioritizing pathogenic variants, including SNVs and 25 

short InDels, that outperforms best general (CADD, GAVIN) and consequence-type-specific 26 

(REVEL, ClinPred) computational prediction methods, for both rare and ultra-rare variants. 27 

CAPICE is easily integrated into diagnostic pipelines and is available as free and open source 28 

command-line software, file of pre-computed scores, and as a web application with web service 29 

API. 30 

 31 
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BACKGROUND 35 

The past decades have seen rapid advances in genetic testing and increasing numbers of trial 36 

studies aimed at using genetic testing to facilitate rare disease diagnostics, and many studies 37 

have demonstrated the unique role whole exome and genome sequencing can play in improving 38 

diagnostic yield [(1), (2), (3), (4), (5), (6), (7)]. However, the vast amount of genomic data that is 39 

now available has created large interpretation challenges that can be alleviated using 40 

computational tools. However, variant interpretation in particular still remains time-consuming, in 41 

part because of the limited accuracy of current computational prediction methods and the manual 42 

work required to identify large numbers of false positives produced by those methods [(8), (9), 43 

(10)].  44 

Existing prediction methods can be categorized into two groups. One group of methods 45 

[(11), (12)] focuses on specific types of variants, with the majority of these methods only 46 

classifying non-synonymous single nucleotide variants (nsSNVs) [(13), (14)]. Successful methods 47 

of this group include Clinpred (15), which has the best current performance validated in multiple 48 

datasets, and REVEL [(16)], which specifically targets rare variants. However, these methods 49 

miss the diagnosis when the causal variant is not an nsSNV, which is the case for 76% of reported 50 

pathogenic variants (17). The other category of prediction methods provides predictions of 51 

selective constraints for a broader range of variations [(18), (19), (20), (21)] that can also inform 52 

pathogenicity classification. A method that is widely used and acknowledged for performance is 53 

CADD [(22)], which estimates the deleteriousness of SNVs and short insertions and deletions 54 

(InDels). However, these tools are built for estimating evolutionary constraints and do not directly 55 

target pathogenicity. They can also introduce ascertainment bias for variants that are under high 56 

evolutionary pressure (such as nonsense and splicing variants) even though these can be 57 

observed in healthy populations, and they can neglect rare and recent variants that have not 58 

undergone purifying selection but are still found to contribute to diseases [(23)]. 59 
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New computational prediction methods need to be examined for their ability to reduce the 60 

number of variants that requires time-consuming expert evaluation as this is currently a bottleneck 61 

in the diagnostic pipeline. With hundreds to thousands of non-pathogenic variants identified in a 62 

typical patient with a rare genetic disorder, it is important to restrict the false positive rate of 63 

computational prediction methods, i.e. the number of neutral variants falsely reported as 64 

pathogenic. However, new methods are currently often not evaluated for their ability to recognize 65 

neutral variants. Indeed, a recent review (24) found that commonly used variant interpretation 66 

tools may incorrectly predict a third of the common variations found in the Exome Aggregation 67 

Consortium (ExAC) to be harmful. We speculate that this may be explained by the bias in training 68 

data selection because the neutral set used in different tools can be biased towards common 69 

neutral variants [(15), (25), (26)], which in practice means that the pathogenicity of rare and ultra-70 

rare variants cannot be accurately estimated. Therefore, it is important to avoid bias in data 71 

selection and evaluate false positive rate of the prediction methods in clinical setting where rare 72 

and ultra-rare neutral variants are frequently encountered using neutral benchmark datasets [(27), 73 

(28)] and clinical data.  74 

The challenge for rare disease research and diagnostics is thus to find robust classification 75 

algorithms that perform well for all the different types of variants and allele frequencies. To meet 76 

this challenge, we developed CAPICE, a new method for Consequence-Agnostic prediction of 77 

Pathogenicity Interpretation of Clinical Exome variations. CAPICE overcomes limitations common 78 

in current predictors by training a sophisticated machine learning model that targets 79 

(non-)pathogenicity, using a specifically prepared, high confidence and pathogenicity versus 80 

benign balanced training dataset, and using many existing genomic annotations across the entire 81 

genome (the same features that were used to produce CADD). In high quality benchmark sets 82 

CAPICE thus outperforms existing methods in distinguishing pathogenic variants from neutral 83 

variants, irrespective of their different molecular consequences and allele frequency and, to our 84 
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knowledge, CAPICE is the first and only variant prioritization method that targets pathogenicity 85 

prediction of all-types of SNVs and InDels, irrespective of consequence type.  86 

Below we will describe the results of our performance evaluations, discuss features and 87 

limitations of our methodology, provide extensive details on the materials and methods used, 88 

concluding that CAPICE thus offers high accuracy pathogenicity classification across all 89 

consequence types and allele frequencies, outperforming all next-best variant classification 90 

methods. To make CAPICE easy to access, we have developed CAPICE as both a command-91 

line tool and a web-app, and released it with pre-computed scores available as ready-to-use 92 

annotation files. 93 

 94 

RESULTS 95 

Below we report performance analysis of CAPICE compared to the best current prediction 96 

models using gold standard benchmark sets, analysis of the classification consistency of 97 

CAPICE across different allele frequency ranges and across different types of variants and a 98 

small practical evaluation where we applied CAPICE to a set of patient exomes.  99 

 100 

CAPICE outperforms the best current prediction methods 101 

CAPICE is a general prediction method that provides pathogenicity estimations for SNVs and 102 

InDels across different molecular consequences (Figure 1). In our performance comparison, we 103 

included recently published prediction methods and those that show best performance in 104 

benchmark studies. In case a tool was not able to provide a prediction we marked it as ‘No 105 

prediction returned’. Because most prediction methods are built specifically for non-synonymous 106 

variants, we performed the comparison for both the full dataset and the non-synonymous subset. 107 

In our benchmark datasets, CAPICE performs as well or better than other current prediction 108 

methods across all categories (Figure 1, Supplementary Figure 3, Supplementary Figure 4, 109 
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Supplementary Table 1, Supplementary Table 2). We also examined the robustness of CAPICE’s 110 

performance for rare and ultra-rare variants and variants that lead to different consequences. 111 

 For the full data, CAPICE outperformed CADD, the mostly used ‘general’ prediction 112 

method, and achieved an area under the receiver operating characteristic curve (AUC) of 0.89 as 113 

compared to 0.53 for CADD (shown in Supplementary Figure 3). For the non-synonymous subset, 114 

CAPICE outperformed all the other prediction methods and achieved an AUC of 0.97 (shown in 115 

Figure 1b). The majority of other methods we examined are built specifically for non-synonymous 116 

variants, with the exception of FATHMM-XF, which was developed for point mutations. For the 117 

non-synonymous subset, REVEL, which was built for rare variants, produced the second best 118 

result and achieved an AUC of 0.90. 119 

To asses impact of these difference in practice we assumed a clinical setting with the aim 120 

to recognize 95% of the pathogenic variants (which is a very high standard in current practice). 121 

When using a threshold of 0.02 on CAPICE classification score, CAPICE correctly recognized 95% 122 

of pathogenic variants in the full test dataset and wrongly classified 50% of the neutral variants 123 

as pathogenic – which was the lowest number of misclassified variants among all the predictors 124 

we tested. In contrast, CADD with a score threshold of 20 achieved a comparable recall of 94%, 125 

but wrongly classified 85% of neutral variants as pathogenic. When using gene-specific CADD 126 

score thresholds based on the GAVIN method (29), the performance of CADD was better but still 127 

much worse than CAPICE.  All other tested methods could give predictions less than 30% of the 128 

full dataset. 129 

We also examined how well the prediction methods can recognize neutral variants in two 130 

neutral benchmark datasets. For both datasets, CAPICE’s performance was comparable to or 131 

better than the current best prediction methods (Supplementary Table 2, Supplementary Table 132 

3). 133 
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Figure 1: CAPICE outperforms other predictors in discriminating pathogenic variants and neutral 

variants. a) True/false classification for all predictors tested against the full benchmark set that 

contains all types of variants. Top bar shows the breakdown of the test set. Other bars show the 

classification performance for each method. Purple blocks represent correct classification of 

pathogenic variants. Dark-blue blocks represent neutral variants. Pink and light-blue blocks 

denote false classifications. Gray blocks represent variants that were not classified by the 

predictor tested. Threshold-selection methods are in Method section. b) Receiver operating 

characteristic (ROC) curves of CAPICE with AUC values for a subset of the benchmark data that 

only contains non-synonymous  variants (ROC curve for the full dataset can be found in 

Supplementary Figure 3). Each ROC curve is for a subset of variants displaying a specific 

molecular consequence. AUC values for the different methods are listed in the figure legend. 

 134 

CAPICE outperforms other current predictors for rare and ultra-rare variants 135 

CAPICE performs consistently across different allele frequencies and especially well for rare and 136 

ultra-rare variants. Here we repeated the evaluation strategy for the same benchmark dataset 137 

grouped into five allele frequency bins (Figure 2). 138 

For the full benchmark dataset, CAPICE performed consistently above 0.85  of AUC for 139 

variants with an allele frequency <1%, while the performance of CADD version 1.4 (30), the 140 

current best method for indicating the pathogenicity of variants throughout the genome compared 141 

to LINSIGHT (31), EIGEN (32), DeepSEA (33) drops significantly in case of rare variants (Figure 142 

2a). For the non-synonymous subset, CAPICE consistently performed better than or comparably 143 

to the next-best method, REVEL, for variants within different allele frequency ranges, and better 144 

than all other methods (Figure 2b). 145 
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For common variants (defined here as having an allele frequency >1%), the number of 146 

available pathogenic variants was too small (14 pathogenic variants) to get an accurate and 147 

robust performance measurement. 148 

Figure 2 Performance comparison for rare and ultra-rare variants (a) for variants of different 

molecular consequences (b) in the missense subset. Each dot represents the mean AUC value 

with standard deviation. 

CAPICE shows consistent prediction performance for different types of variants 149 

CAPICE outperforms the current best computational prediction methods for variants that cause 150 

different molecular consequences (Figure 3 and Supplementary Figure 2). For variants displaying 151 

different molecular consequences, CAPICE has an AUC of 0.92 for canonical splicing variants 152 

and an AUC of 0.97 for non-synonymous variants in the independent test dataset. Compared to 153 

CADD, CAPICE performs significantly better for multiple types of variants, particularly canonical 154 

splicing, stop-gained and frame-shift variants. 155 

Figure 3 Performance comparison for variants of different molecular consequences of CAPICE 

and CADD. 

CAPICE performance in clinical setting 156 

In addition to the synthetic benchmark datasets, we also evaluated CAPICE’s performance in 157 

patients’ data.  158 

To have first assessment of clinical utility, we used whole exome sequencing data from 159 

54 solved patients from our diagnostics department and compared the ranking of the disease-160 

causing variant with scores from CADD and CAPICE. We did not compare to REVEL, the second 161 

best method from our previous evaluation because a specific method for non-synonymous 162 

variants can miss variants of other molecular effects.  A description of the solved patients’ can be 163 

found in (34). For each disease-causing variant discovered in that patient, we compared the 164 
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performance of CAPICE and CADD by comparing the ranking of the particular variant among all 165 

variants observed within that patient. For 83% of the cases, CAPICE can prioritize the disease-166 

causing variant within the 1% of the total variants observed in whole exome sequencing 167 

experiment, while CADD achieves the 1% performance for only 60% of the cases. Consistent with 168 

results described in previous sections that CAPICE achieves better AUC value for frameshift 169 

variants, CAPICE performed better for all cases with a disease-causing variant of frameshift effect.  170 

Figure 4 Performance comparison in real cases. In total, 54 patients and 58 variants were included. 

Each variant is reported as the diagnosis for that patient. Each dot in the plot shows a variant. 

The color of the dot represents the molecular effect predicted by VEP. 

DISCUSSION 171 

We have implemented a supervised machine learning approach called CAPICE to prioritize 172 

pathogenic SNVs and InDels for genomic diagnostics. CAPICE overcomes the limitations of 173 

existing methods, which either give predictions for a particular type of variants or showing 174 

moderate performance because they’re built for general purposes. We showed in multiple 175 

benchmark datasets, either derived from public databases or real patient cases that CAPICE 176 

outperforms the current best method for rare and ultra-rare variants with various molecular effects. 177 

In this study, we used the same set of features as CADD used for constructing their score 178 

but trained the model directly on pathogenicity. The features enabled CAPICE to make predictions 179 

for variants of various molecular effects. Its focus on pathogenicity helped CAPICE to overcome 180 

the challenges faced by CADD in predicting pathogenicity (35) in the clinic. As a result, CAPICE 181 

gives significantly better prediction for rare variants, and various types of variants, in particular, 182 

frameshift, splicing, and stop-gained variants. We also observed that most current predictors have 183 

problems classifying rare and ultra-rare variants, with the exception for REVEL, an ensemble 184 

method that targets rare variants. We thus adopted the same strategy as REVEL by including 185 

rare variants when training CAPICE, and thereby obtained a comparable performance to that of 186 
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REVEL for missense rare variants and significantly better results than all the other methods tested 187 

for ultra-rare variants. 188 

We made full use of the large amount of data generated by other researchers. The 189 

evidence for a variant’s clinical relevance reported in public databases such as ClinVar can be 190 

conflicting or outdated (36). The star system used in ClinVar review status (37) serves as a good 191 

quality check for estimating the trustworthiness of the reported pathogenicity, and this quality 192 

estimation is used by many researchers as a selection criteria for constructing or evaluating 193 

variant prioritization methods [(15), (38)]. However, this method of data selection can introduce 194 

biases and waste potentially important information. In particular, neutral variants can be enriched 195 

for common ones. These common variants can be easily filtered out in a diagnostic pipeline using 196 

a general cut-off or expected carrier prevalence for specific diseases (39). Using such a biased 197 

dataset could however lead to a biased model or an overly optimistic performance estimation. 198 

When training CAPICE, we did not exclude lower-quality data, and assigned it a lower sample 199 

weight during model training. This strategy overcome the data selection bias mentioned above 200 

and led to a model with equally good performance for rare and ultra-rare variants. When testing 201 

CAPICE, we only selected high-quality data for the pathogenic set. For the neutral set, we 202 

included rare and ultra-rare variants for all the types of variations found in general population 203 

studies (after filtering for known pathogenic variations and inheritance mode). This allowed us to 204 

avoid the bias discussed above. 205 

Current variant prioritization methods, including ours, often neglect context information 206 

about a patient such as phenotype information, family history and the cell types associated with 207 

specific diseases. Moreover, the methods developed are often evaluated in a stand-alone manner, 208 

and their associations with other steps in a genome diagnostic pipeline are not often investigated. 209 

In this study, we have only shown preliminary evaluation results using solved patient data. In 210 

future studies, we hope to include context information to further improve CAPICE’s predictive 211 
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power. We also believe that the model’s performance needs to be discussed in a broader context 212 

that includes gene prioritization and mutational burden-testing. 213 

 214 

CONCLUSION 215 

We have developed CAPICE, an ensemble method for prioritizing pathogenic variants in clinical 216 

exomes for Mendelian disorders, including SNVs and InDels, that outperforms all other existing 217 

methods and that we dream will greatly benefit rare disease research and patients worldwide. By 218 

re-using the CADD features, but training a machine-learning model on variants’ pathogenicity, 219 

CAPICE consistently outperforms other methods in our benchmark datasets for variants of 220 

various molecular effect and allele frequency. Additionally, we demonstrate that predictions made 221 

using CAPICE scores produce many fewer false positives than predictions made based on CADD 222 

scores. To enable its integration into automated and manual diagnostic pipelines, CAPICE is 223 

available as a free and open source software command-line tool from 224 

https://github.com/molgenis/capice and as a web-app at https://molgenis43.gcc.rug.nl/. Pre-225 

computed scores are available as a download at https://doi.org/10.5281/zenodo.3516248. 226 

 227 

MATERIALS AND METHODS 228 

The flowchart of this study is in Supplementary Figure 1. 229 

 230 

DATA 231 

Data collection and selection 232 

Training and benchmark data on neutral and pathogenic variants were derived from vcf files from 233 

the ClinVar database (17), dated 02 January 2019; from the VKGL data share consortium (40); 234 

from the GoNL data (41) and from data used in a previous study (29). From the ClinVar dataset, 235 

we collected variants reported by one or more submitters to have clear clinical significance, 236 
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including pathogenic and likely pathogenic variants and neutral and likely neutral variants. From 237 

the VKGL data consortium, we collected variants with clear classifications, either (Likely) 238 

Pathogenic or (Likely) Benign, with support from one or more laboratories. The neutral variants 239 

from previous research developing the GAVIN tool (29) were mainly collected from ExAC without 240 

posing a constraint on allele frequency. We also obtained a neutral benchmark dataset from a 241 

benchmark study by (24). 242 

In our data selection step, we removed duplicate variants located in unique chromosomal 243 

positions and those with inconsistent pathogenicity classification across the different databases. 244 

To reduce potential variants in general population datasets from carriers, we excluded variants 245 

observed in dominant genes using inheritance modes of each gene retrieved from the Clinical 246 

Genome Database dated 28 Feburary, 2019 (42). 247 

In total, we collected 80k pathogenic variants and 450k putative neutral variants, and the 248 

entire dataset can be found in the Supplementary Material. After the initial cleaning step described 249 

above, we built a training dataset for model construction and a benchmark dataset that we left out 250 

of the training procedures so it could be used for performance evaluation later on. 251 

 252 

Construction of the benchmark and training sets 253 

To build a benchmark dataset for performance evaluation that was fully independent of model 254 

construction procedures, we first selected the high-confidence pathogenic variants from the 255 

ClinVar and VKGL database. High-confidence variants are those with a review status of “two or 256 

more submitters providing assertion criteria provided the same interpretation (criteria provided, 257 

multiple submitters, no conflicts)”, “review by expert panel” and “practice guideline” in ClinVar 258 

database, and those are reported by one of more laboratories without conflicting interpretation in 259 

VKGL database. From the pathogenic variants that passed these criteria, we then randomly 260 

selected 50% to add into the benchmark dataset, which resulted in 6,937 pathogenic variants. To 261 
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enable unbiased comparison of neutral and pathogenic variants with different molecular 262 

consequences, we created benchmark datasets with equal proportions of pathogenic and neutral 263 

variants for each type of molecular consequences, with the additional requirement that the 264 

pathogenic and neutral variants share similar distributions in allele frequency. An overview of the 265 

allele frequency distribution of the pathogenic and neutral variants for each type of molecular 266 

effects is in Supplementary Figure 2. 267 

In total, our benchmark set contained 10,842 variants and our training set contained 268 

334,601 variants. The training set had 32,783 high confidence variants and 301,819 lower 269 

confidence variants. The high-confidence training variants were 12,646 pathogenic variants and 270 

20,137 neutral variants. The lower confidence variants were 28,035 pathogenic variants and 271 

273,784 neutral variants. 272 

The two neutral benchmark datasets are those taken from a previous benchmark study 273 

and the GoNL dataset. The previous benchmark study by [(24)] selected neutral variants from the 274 

ExAC dataset and only included common variants with allele frequencies between 1% and 25%. 275 

For this dataset, we removed variants seen in the training set. In total, there were 60,699 neutral 276 

variants in our benchmark dataset. To build the neutral benchmark dataset from GoNL data, we 277 

selected all the variants that passed our quality assessment, then calculated their allele frequency 278 

within the GoNL population. We then selected those variants with an allele frequency <1% and 279 

removed variants that had been included in the training set. In total, there were 14,426,914 280 

variants involved (Supplementary Table 2). 281 

 282 

Data annotation and preprocessing 283 

The collected variants in both the training and test datasets were annotated using CADD web 284 

service v1.4, which consists of 92 different features from VEP (version 90.5) (43) and epigenetic 285 

information from ENCODE (44) and the NIH RoadMap project (45). A detailed explanation of 286 

these features can be found in the (21) CADD paper. For each of the 11 categorical features, we 287 
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selected up to five top levels to avoid introducing excessive sparsity, which could be 288 

computationally expensive, and used one-hot encoding before feeding the data into the model 289 

training procedures (46). For the 81 numerical variables, we imputed each feature using the 290 

imputation value recommended by (21). The allele frequency in the population was annotated 291 

using the vcfTool (47) from GnomAD r2.0.1 (48). We assigned variants not found in the GnomAD 292 

database an allele frequency of 0. 293 

 294 

MODEL CONSTRUCTION 295 

Model construction and training procedures 296 

We trained a gradient-boosting tree model using the XGBoost (version 0.72) Python package. 297 

The hyper-parameters, n_estimators, max_depth and learning_rate were selected by 5-fold 298 

cross-validation using the RandomSearchCV function provided by the scikit-learn (version 0.19.1) 299 

Python package. Within each training fold, we used an early stopping criteria of 15 iterations. We 300 

then used the model trained with the best set of hyper-parameters (0.1 for learning_rate, 15 for 301 

max_depth and 422 for n_estimators) for performance measurement. For fitting the model, we 302 

also used the sample weight assigned to each variant. The sample weight is a score ranging from 303 

0 to 1 that reflects the confidence level of the trustworthiness of the pathogenicity status of that 304 

variant. High-confidence variant, as described previously, are given a sample weight of 1, and the 305 

low-confidence variants were given a lower sample weight of 0.8. A variant with a high sample 306 

weight will thus contribute more to the loss function used in the training procedure (46). To test 307 

the assigned sample weights, we used the best set of parameters returned from the previous fine-308 

tuning process and tried three different conditions in which we set the sample weights of the lower 309 

confidence variants to 0, 0.8 and 1. We then selected the model with the highest AUC value for 310 

the cross-validation dataset. 311 

 312 
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Threshold-selection Strategies 313 

For comparing the false positive rate in the neutral benchmark dataset and comparing the 314 

classification results, we tested different threshold-selection strategies for both CAPICE and 315 

CADD. For CAPICE, we obtained the threshold from the training dataset that results in a recall 316 

value within 0.94-0.96. To calculate the threshold, we searched for all possible threshold value 317 

from 0 to 1 and selected the first threshold for which the resulting recall value fall between 0.94 318 

and 0.96. This method resulted in a general threshold of 0.02. For CADD, we tested two different 319 

threshold-selection methods. The first threshold was a default value of 20. The second method 320 

used GAVIN (29) to provide gene-specific thresholds. For other machine learning methods that 321 

returned a pathogenicity score ranging from 0 to 1, and no recommended threshold was given in 322 

the original paper, we selected a default value of 0.5. This includes the following methods: REVEL, 323 

ClinPred, SIFT and FATHMM-XF.  For PROVEAN, we used a default score of -2.5 as the 324 

threshold. 325 

 326 

EVALUATION METRICS 327 

For model performance comparison, we used Receiver Operating Characteristic (ROC) curve, 328 

AUC value (49), and measurements in the confusion matrix together with the threshold-selection 329 

strategies mentioned above. For measuring model performance in the neutral benchmark dataset, 330 

we examined the false positive rate. The false positive rate is the number of true neutral variants 331 

but predicted as pathogenic divided by the number of true neutral variants. To evaluate the 332 

robustness of the model predictions, we performed bootstrap on the benchmark dataset for 333 

standard deviation measurement for 100 repetitions, with the same sample size of the benchmark 334 

dataset for each repetition (50). 335 

For evaluating performance in solved patients, we used the previously diagnosed patients 336 

with clear record of the disease-causing variant from University Medical Center in Groningen. A 337 
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description of the solved patients’ can be found in (34). For examining CAPICEs performance, we 338 

first eliminated all variants with an allele frequency above 10% and then predicted the 339 

pathogenicity for the remaining variants. Subsequently, we sorted the variants of each individual 340 

by their pathogenicity score assigned by the respective predictors, and used the ranking of the 341 

disease-causing variant found within that individual as the measurement. 342 

The data and pathogenicity predictions are provided in Web resources. 343 

 344 

WEB RESOURCE 345 

CAPICE’s Precomputed Scores: https://doi.org/10.5281/zenodo.3516248  346 

CAPICE: https://github.com/molgenis/capice and web application https://molgenis43.gcc.rug.nl 347 

CADD: https://cadd.gs.washington.edu/score  348 

REVEL: https://sites.google.com/site/revelgenomics/ 349 

PON-P2: http://structure.bmc.lu.se/PON-P2/ 350 

ClinPred: https://sites.google.com/site/clinpred/ 351 

PROVEAN and SIFT: http://provean.jcvi.org/genome_submit_2.php?species=human 352 

GAVIN: https://molgenis.org/gavin  353 

FATHMM-XF: http://fathmm.biocompute.org.uk/fathmm-xf/ 354 
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Training and testing data with label and predictions from CAPICE and tested predictors and 363 
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SUPPLEMENTARY MATERIALS 577 

Additional Figures and Tables 578 

Supplementary Figure 1 Flowchart of this study 

Supplementary Figure 2 For benchmarking, we created a balanced test dataset that is equally 

distributed in terms of a) the number of pathogenic and putatively neutral variants and b) allele 

frequency distribution for different molecular consequences. 

Supplementary Figure 3 ROC curves and AUC values from CAPICE and CADD for variants with 

different molecular functions. 

Supplementary Figure 4 AUC and ROC curves for the a) full dataset and b) missense subset for 

rare and ultra-rare variants defined as variants with allele frequency between 0.01% and 0.1% 

and variants with allele frequency <0.01% 

Supplementary Table 1 Description of all methods tested in the study 

Method 

name Application Link for web resources 

CADD 

Estimating the relative 

pathogenicity of SNVs 

and InDels https://cadd.gs.washington.edu/  

REVEL 

Predicting the 

pathogenicity of rare 

missense variants https://sites.google.com/site/revelgenomics/  

ClinPred 

Predicting the 

pathogenicity of 

missense variants https://sites.google.com/site/clinpred/  

PON-P2 

Predicting the 

pathogenicity of 

missense variants http://structure.bmc.lu.se/PON-P2/ 

SIFT 

Predicting missense 

variants effects on 

protein function http://provean.jcvi.org/genome_submit_2.php?species=human  

PROVEAN 

Predicting missense 

variants and InDels' 

effects on protein 

function http://provean.jcvi.org/genome_submit_2.php?species=human  
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FATHMM-

XF 

Predicting 

pathogenicity of point 

mutations http://fathmm.biocompute.org.uk/fathmm-xf/ 
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Supplementary Table 2 CAPICE and CADD false positive rates in the neutral benchmark 

dataset 

Molecular Consequence CADD 
(20) 

CAPICE 
(General Threshold) 

Number of 
Variants 

NON_SYNONYMOUS 0.37 0.07 50181 

DOWNSTREAM 0.36 0.11 12121 

REGULATORY 0.35 0.12 11317 

UPSTREAM 0.35 0.1 10959 

INTRONIC 0.25 0.06 10910 

NONCODING_CHANGE 0.34 0.06 1202 

3PRIME_UTR 0.23 0.03 902 

SYNONYMOUS 0.07 0.08 456 

5PRIME_UTR 0.19 0.03 295 

SPLICE_SITE 0.15 0.08 137 

CANONICAL_SPLICE 0.6 0.4 10 

STOP_GAINED 1 0.22 9 

 580 

Supplementary Table 3 CAPICE and CADD false positive rates in the GoNL dataset 

 CADD (20) CAPICE Number of Variants 

INTRONIC 0.00 0.00 6483483 

INTERGENIC 0.00 0.00 4399474 
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DOWNSTREAM 0.01 0.00 1205398 

UPSTREAM 0.01 0.00 1174342 

REGULATORY 0.01 0.01 808360 

NONCODING_CHANGE 0.01 0.00 115099 

3PRIME_UTR 0.02 0.00 108194 

NON_SYNONYMOUS 0.57 0.19 67013 

SYNONYMOUS 0.02 0.08 36177 

5PRIME_UTR 0.03 0.01 14526 

SPLICE_SITE 0.05 0.08 10352 

CANONICAL_SPLICE 0.58 0.54 1545 

STOP_GAINED 1.00 0.74 1647 

FRAME_SHIFT 0.88 0.9 821 

INFRAME 0.37 0.63 415 

STOP_LOST 0.06 0.37 68 
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