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ABSTRACT 

Background: The association between mitochondrial DNA-copy number (mtDNA-CN) and 

incident heart failure (HF) in the general population is unclear. 

Methods: We examined the association between mtDNA-CN and the risk of incident HF among 

10,802 participants free of HF at baseline from the Atherosclerosis Risk in Communities (ARIC) 

study, a large bi-racial population-based cohort. mtDNA-CN was estimated using probe 

intensities on the Affymetrix Genome-Wide Human single nucleotide polymorphisms Array 6.0. 

Incident HF events were identified through hospital discharge codes from 1987 until 2005 and 

through adjudication by the ARIC HF Classification Committee since 2005. 

Results: During a median follow-up of 23.1 years, there were 2,227 incident HF events 

(incidence rate 10.3 per 1000 person-years). In fully adjusted models, the hazard ratios (95% 

confidence intervals) for HF comparing the 2nd through 5th quintiles of mtDNA-CN to the 1st 

quintile were 0.91 (0.80–1.04), 0.82 (0.72–0.93), 0.81 (0.71–0.92), and 0.74 (0.65–0.85), 

respectively (P for trend < 0.001). In stratified analyses, the associations between mtDNA-CN 

and HF were similar across examined subgroups. The inverse association between mtDNA-CN 

and incident HF was stronger in HF with reduced ejection fraction (HFrEF) than in HF with 

preserved ejection fraction (HFpEF).  

Conclusions: In this prospective cohort, mtDNA-CN was inversely associated with the risk of 

incident HF suggesting that reduced levels of mtDNA-CN, a biomarker of mitochondrial 

dysfunction, could reflect early susceptibility to HF. 

 

Keywords: cohort study; heart failure; mitochondrial DNA; mitochondrial DNA copy number; 

mitochondrial dysfunction. 
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INTRODUCTION 1 

Heart failure (HF) is a leading clinical and public health concern affecting 23 million 2 

people globally and 6.2 million adults in the United States alone.1,2 The lifetime risk of 3 

developing HF is 20% and the prevalence of HF in the US is expected to increase by nearly 50% 4 

by the year 2030.3,4 Despite recent improvements, the prognosis of HF is still poor, with 5-year 5 

mortality >40%.5-8 Thus, it is critical to identify novel pathways that can help design new 6 

preventive strategies and characterize subjects at high risk of developing HF. 7 

 Mitochondria generate nearly all energy used by the cell as adenosine triphosphate 8 

(ATP).9 Each mitochondrion has 2 to 10 copies of mitochondrial DNA (mtDNA), for a total of 9 

103 to 104 copies of mtDNA per cell. mtDNA copy number (mtDNA-CN) changes with energy 10 

demands and with oxidative stress, and has been established as an indirect biomarker of 11 

mitochondrial dysfunction.10,11 Reduced mtDNA-CN measured in peripheral blood is associated 12 

with cardiovascular disease (CVD), all-cause mortality, hypertension, diabetes, chronic kidney 13 

disease, and sudden cardiac death.12-18  14 

 In a case-control study, hospitalized patients with HF had lower mtDNA-CN in 15 

peripheral blood compared to controls without HF, and when HF cases were followed up, those 16 

with lower mtDNA-CN had a higher risk of cardiovascular death and rehospitalization compared 17 

to those with higher mtDNA-CN.19 In small case-control studies, depletion of mtDNA in heart 18 

tissue samples was associated with HF.20,21 The association between mtDNA-CN and incident 19 

HF in the general population, however, is unknown. In the present study, we examined the 20 

association between baseline mtDNA-CN and the risk of incident HF in the Atherosclerosis Risk 21 

in Communities (ARIC) study, a large bi-racial population-based cohort.  22 

 23 
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MATERIALS AND METHODS 1 

Study population 2 

 The ARIC study is a population-based prospective cohort of 15,792 individuals 45–65 3 

years of age at the time of recruitment (1987–1989; Visit 1). ARIC participants were recruited 4 

from 4 US communities: Forsyth County, NC; Jackson, MS; suburban Minneapolis, MN; and 5 

Washington County, MD.22 Since the first study visit, there have been 6 subsequent in-person 6 

visits (visits 2–7, with visit 7 currently underway) and regular telephone interviews (annually and 7 

then semiannually since 2012). Our analysis was restricted to 11,453 White or Black participants 8 

who had DNA collected in one of the visits to generate mtDNA-CN measurements 9 

(Supplementary Figure 1). We then excluded Black participants recruited from Minnesota or 10 

Maryland (n = 1), participants without follow-up information (n = 1), and participants with 11 

prevalent HF at the time of DNA collection (n = 596). We further excluded participants missing 12 

information on body mass index (n = 17) and high-density lipoprotein (HDL) cholesterol (n = 13 

14). The final sample included 10,802 participants (4,918 men and 5,904 women without HF at 14 

the time of DNA sampling). All centers obtained approval from their respective institutional 15 

review boards and all participants provided written informed consent. 16 

  17 

Measurements 18 

 ARIC participants underwent a comprehensive cardiovascular examination and interview 19 

by trained clinical staff members during each clinic visit. Age, sex, race/ethnicity, smoking 20 

status, alcohol intake, and medication history were self-reported. Smoking and alcohol intake 21 

were categorized as never, former, and current. Body mass index (BMI) was calculated from 22 

measured height and weight and categorized as underweight/normal (<25 kg/m2), overweight 23 
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(≥25 to <30 kg/m2), or obese (≥30 kg/m2). Blood samples were collected for glucose, total 1 

cholesterol, and HDL-cholesterol measurements.  2 

Hypertension was defined as systolic blood pressure ≥140 mmHg, diastolic blood 3 

pressure ≥90 mmHg, or current use of anti-hypertensive medication. Diabetes was defined as 4 

self-reported physician diagnosis of diabetes, fasting glucose ≥126 mg/dL, non-fasting glucose 5 

≥200 mg/dL, or use of hypoglycemic medication. Prevalent coronary heart disease (CHD) was 6 

defined as the presence of a myocardial infarction based on self-report or electrocardiogram in 7 

visit 1, or the development of an adjudicated definite or probable myocardial infarction prior to 8 

the time of DNA collection for mtDNA-CN measurement.  9 

 10 

Measurement of mtDNA copy number 11 

 The methods for measuring mtDNA-CN have been described previously.17,23 Briefly, 12 

DNA was extracted using the Gentra Puregene Blood Kit (Qiagen N.V., Venlo, The 13 

Netherlands) from buffy coat of whole blood samples collected in visits 1–4. mtDNA-CN was 14 

calculated from probe intensities of mitochondrial single nucleotide polymorphisms (SNP) on 15 

the Affymetrix Genome-Wide Human SNP Array 6.0 using the Genvisis software package 16 

(www.genvisis.org), which uses the median mitochondrial probe intensity of 25 high-quality 17 

mitochondrial probes as initial raw measure of mtDNA-CN. Batch effects, DNA quality, and 18 

starting DNA quantity were corrected for by using surrogate variable analysis applied to probe 19 

intensities of 43,316 autosomal SNPs.24 The mtDNA-CN metric used in this analysis was 20 

obtained as the standardized residuals (mean 0 and standard deviation 1) in a linear regression in 21 

which initial raw estimates of mtDNA-CN were regressed against age, sex, enrollment center, 22 

surrogate variables used in the surrogate variable analysis, and white blood cell count. White 23 
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blood cell count was not available in 14.9% of individuals and we imputed the mean for the 1 

missing values.23 DNA for mtDNA-CN for this analysis was obtained from ARIC visit 1 (1987–2 

1989) in 429 participants, visit 2 (1990–1992) in 8,655 participants, visit 3 (1993–1995) in 1,654 3 

participants, and visit 4 (1996–1998) in 64 participants. For each participant, we used the visit in 4 

which DNA for mtDNA-CN assays was obtained as the baseline visit.  5 

 6 

Outcome definition and adjudication 7 

 Incident HF was defined as the first hospitalization for HF or death related to HF after the 8 

visit in which DNA was obtained for mtDNA-CN assays. Hospitalizations and deaths related to 9 

HF were identified as International Classification of Disease, 9th Revision code 428, and 10 

International Classification of Diseases, 10th Revision code I50 in discharge codes or in 11 

underlying cause of death, respectively. Since 2005, ARIC began adjudication of HF events by 12 

the ARIC HF Classification Committee.25 In addition, when available, adjudicated incident HF 13 

was further classified as HF with reduced ejection fraction (HFrEF, most recent left ventricular 14 

ejection fraction [LVEF] <50%), HF with preserved ejection fraction (HFpEF, LVEF ≥50%), or 15 

HF with unknown LVEF.  16 

  17 

Statistical analysis 18 

 Study participants were followed from the visit of DNA collection for mtDNA-CN assay 19 

until the development of HF, death, loss to follow-up, or December 31, 2017, whichever came 20 

first. We used a Cox proportional hazards model to estimate hazard ratios (HR) and 95% 21 

confidence intervals (CI) for the association between mtDNA-CN and incident HF. mtDNA-CN 22 

was first categorized into quintiles based on the overall sample distribution. In secondary 23 
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analysis, mtDNA-CN was modeled as a continuous variable to estimate the HR for incident HF 1 

comparing the 90th to the 10th percentile of mtDNA-CN. In addition, mtDNA-CN was modeled 2 

as restricted quadratic splines with knots at the 5th, 50th, and 95th percentiles to provide a smooth 3 

and flexible description of the dose-response relationship between mtDNA-CN and HF. We 4 

tested for the proportional hazards assumption using Schoenfeld residuals but the assumption 5 

was not met (P < 0.001). Therefore, to allow the effect of mtDNA-CN on incident HF to vary by 6 

time, we used a parametric survival models with spline variables created separately for baseline 7 

hazard and for time-dependent effects.26  8 

To control for potential confounders, we used 4 models with progressive degrees of 9 

adjustment using covariates measured at the time of mtDNA-CN measurement: Model 1 was 10 

adjusted for age, sex, race, and enrollment center; Model 2 was further adjusted for BMI, 11 

smoking, and alcohol intake; Model 3 was further adjusted for total and HDL-cholesterol, 12 

cholesterol medication, hypertension, and diabetes; and Model 4 was further adjusted for 13 

prevalent CHD.  14 

 We performed stratified analyses by pre-specified subgroups defined by age (<60 or ≥60 15 

years), sex, race (White or Black), smoking status (never, former, or current), alcohol intake 16 

(never, former, current), BMI (underweight/normal, overweight, or obese), and prevalent CHD 17 

status. We also performed several sensitivity analyses. First, we repeated the main analyses 18 

treating non-HF related deaths as a competing event using a proportional sub-distribution 19 

hazards model. Second, we used alternative definitions for incident HF: 1) discharge codes for 20 

HF for the entire follow-up period, regardless of adjudication; 2) HF events restricted to 21 

adjudicated cases that occurred since January 1, 2005, and 3) discharge codes for HF restricted to 22 

cases that occurred since January 1, 2005. For the two analyses restricted to events since 2005, 23 
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we used late entries to address the issue of immortal person time prior to 2005. Third, also using 1 

HF events adjudicated after 2005 and late entries, we estimated the HRs for HFrEF and HFpEF 2 

separately using a proportional sub-distribution hazards model with non-HF related deaths and 3 

unknown type of HF as competing events. All statistical analyses were performed using Stata 4 

version 15.0 (StataCorp LP, College Station, TX, USA).  5 

 6 

RESULTS 7 

 The mean age (standard deviation) of study participants at baseline was 57.3 (5.9) years 8 

(Table 1). Participants with lower mtDNA-CN levels were more likely to be current smokers, to 9 

have a higher prevalence of hypertension, diabetes, and CHD, and to have lower HDL-10 

cholesterol levels than those with higher mtDNA-CN levels.  11 

 During a median follow-up of 23.1 years, we identified 2,227 new cases of HF (incidence 12 

rate of 10.3 per 1000 person-years). In fully adjusted models, the HRs (95% CI) for HF 13 

comparing the 2nd through 5th quintiles of mtDNA-CN to the 1st quintile were 0.91 (0.80–1.04), 14 

0.82 (0.72–0.93), 0.81 (0.71–0.92), and 0.74 (0.65–0.85), respectively (P for trend < 0.001; 15 

Table 2). The fully adjusted HR for HF comparing the 90th to the 10th percentile of mtDNA-CN 16 

was 0.76 (0.69–0.84). In spline regression analysis, mtDNA-CN was inversely associated with 17 

the risk of incident HF with an approximately linear dose-response relationship (P-value for non-18 

linear spline terms 0.74; Figure 1). The results were similar when we used hospital discharge 19 

codes for HF, adjudicated HF cases since 2005, or hospital discharge codes for HF since 2005, or 20 

when non-HF related deaths were treated as a competing event (Supplementary Tables 1–4).   21 

 In stratified analyses, the associations between mtDNA-CN and HF were similar across 22 

subgroups defined by age, sex, race, smoking status, and history of CHD (Figure 2). The 23 
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associations were weaker in participants who currently drink alcohol compared to those who did 1 

not drink (P for interaction = 0.01), and in participants who were overweight compared to those 2 

who were underweight or normal weight (P for interaction = 0.05).  3 

 When we tested the proportional hazards assumption, the association between mtDNA-4 

CN and HF was progressively attenuated from the time of mtDNA-CN measurement (Table 3 5 

and Figure 3). The fully adjusted HRs for HF comparing the 90th to the 10th percentile of 6 

mtDNA-CN at 10, 20, and 30 years since mtDNA-CN measurement were 0.65 (0.54–0.79), 0.89 7 

(0.76–1.04), and 0.99 (0.72–1.37), respectively.  8 

 Finally, when we separated HF events into HFpEF and HFrEF using data since 2005, the 9 

inverse association between mtDNA-CN and incident HF was stronger in HFrEF than in HFpEF 10 

(Table 4), although the trend was not statistically significant in either type of HF (P for trend 11 

0.73 and 0.12 in HFpEF and HFrEF, respectively).  12 

 13 

DISCUSSION 14 

 In this large community-based prospective cohort, mtDNA-CN was inversely associated 15 

with the risk of incident HF. The association was approximately linear and consistent across 16 

population subgroups. The association, however, was strongest early after measurement of 17 

mtDNA-CN and was progressively attenuated over 30 years of follow-up. These findings 18 

suggest a potential role of mtDNA-CN as an early indicator for HF, particularly for events in the 19 

near future.  20 

Decreased mtDNA-CN is associated with CVD events, including sudden cardiac death, 21 

all-cause mortality, hypertension, diabetes, and chronic kidney disease.12-18 However, the 22 

association between mtDNA-CN and incident HF is largely unknown. In animal studies, mtDNA 23 

damage and depletion were associated with the development of dilated cardiomyopathy and 24 
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impaired left ventricular remodeling after ischemic injury.27-30 In small case-control studies, 1 

patients with HF had decreased mtDNA-CN levels in heart tissue samples compared to controls 2 

without HF.21,31 In another case-control study, hospitalized patients with HF had lower mtDNA-3 

CN in peripheral blood compared to those without HF.19 When patients with HF were followed 4 

up for a median of 17 months, those with peripheral blood mtDNA-CN levels below the median 5 

were more likely to experience cardiovascular death and rehospitalization compared to those 6 

with mtDNA-CN levels above the median.19  7 

The mechanisms underlying the association between mtDNA-CN and HF are unclear. 8 

Established risk factors for HF include hypertension, diabetes, metabolic syndrome, ischemic 9 

heart disease, and non-ischemic cardiomyopathies,32,33 and oxidative stress is assumed to play a 10 

major role in the development and progression of HF.34-38 Endogenous mtDNA damage is 11 

mainly caused by reactive oxygen species (ROS) as a by-product of oxidative phosphorylation. 12 

High levels of ROS trigger further increases in ROS generation, a process known as 13 

mitochondrial ROS-induced ROS release.39 Exogeneous agents, such as cigarette smoke, 14 

industrial by-products, ultraviolet and ionizing radiation, environmental toxins and chemicals, 15 

and chemotherapeutic drugs may also damage mtDNA.40 mtDNA is particularly susceptible to 16 

damage and mutations due to its close proximity to mitochondrial ROS production sites, lack of 17 

protective histones, and limited repair activity.34 Moreover, damage caused by ROS is more 18 

extensive and persists longer in mtDNA than in nuclear DNA.41  19 

Mitochondrial ROS generation and mtDNA damage in cardiomyocytes lead to impaired 20 

electron chain transport and ATP synthesis, modifications to proteins involved in excitation-21 

contraction coupling, and activation of hypertrophy signaling kinases and transcription factors, 22 

apoptotic pathways, inflammatory mediators, and matrix metalloproteinases.34,42,43 This process 23 
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leads to a reduction in the number of mitochondria, hypertrophy, apoptosis, and necrosis of 1 

cardiomyocytes, impairment of contractile function, and fibrosis, which, in combination, lead to 2 

the initiation and progression of cardiac remodeling and ultimately to HF. Systemic oxidative 3 

stress is also closely linked to the development of vascular diseases, such as hypertension, which 4 

are major risk factors for HF.34,38,44,45 Finally, treatment with chemotherapeutic agents that 5 

inhibit DNA replication, such as nucleoside reverse transcriptase inhibitors or anthracycline, is 6 

also associated with both mtDNA depletion and cardiomyopathy.46-48  7 

In our study, mtDNA-CN measurements were derived from the buffy coat of peripheral 8 

blood and were not a direct measurement of mtDNA-CN in cardiomyocytes. Leukocyte mtDNA-9 

CN was correlated with mtDNA-CN in cardiomyocytes in one study.19 In another study of non-10 

ischemic cardiomyopathy patients, there was a moderate correlation between whole blood 11 

mtDNA-CN and myocardial mtDNA-CN.49  Additional research is needed to understand the 12 

association between mtDNA-CN in peripheral blood and in target tissues, and to elucidate the 13 

mechanisms linking mtDNA-CN in peripheral blood with incident HF. 14 

Other limitations also need to be considered in the interpretation of our findings. First, 15 

mtDNA-CN was measured only once and we could not evaluate changes in mtDNA-CN after the 16 

baseline visit. In fact, the association between mtDNA-CN and incident HF decreased 17 

progressively over follow-up, although mtDNA-CN was inversely associated with HF for at least 18 

two decades after measurement. Second, systematic adjudication of HF events only occurred 19 

after 2005. However, the sensitivity and positive predictive value of ICD-9 codes for HF 20 

compared to adjudicated acute decompensated HF and chronic HF in ARIC were relatively high 21 

at 0.95 and 0.77, respectively, and the results from our sensitivity analyses were consistent for 22 

analyses based on discharge codes and for those based on adjudicated events.25 Third, our 23 
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analysis of the specific association of mtDNA-CN levels and subtypes of HF was restricted to 1 

events occurring after 2005, and we had limited power to identify differences between HFpEF 2 

and HFrEF. Finally, we were not able to evaluate the association between mtDNA-CN level and 3 

the severity of HF symptoms as such information was not available for all participants.  4 

The major strengths of this study include the prospective design with a long duration of 5 

follow-up to capture HF events, the large sample size, the high quality of field and laboratory 6 

methods of the ARIC study, and the ability to account for multiple potential confounders for the 7 

association between mtDNA-CN and incident HF. In addition, we used state-of-the art tools to 8 

measure mtDNA-CN.23  9 

 10 

CONCLUSIONS 11 

 In this large community-based prospective cohort, mtDNA-CN was inversely associated 12 

with the risk of incident HF suggesting that reduced levels of mtDNA-CN, a biomarker of 13 

mitochondrial dysfunction, could reflect early susceptibility to HF. Further studies are needed to 14 

better understand the underlying mechanisms and to characterize the association of mtDNA-CN 15 

with different types of HF and their severity.  16 

  17 
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FIGURE LEGENDS 1 

Figure 1. Hazard ratios for incident heart failure by levels of mitochondrial DNA copy number. 2 

The curves represent adjusted hazard ratios (solid line) and their 95% confidence intervals 3 

(dotted lines) based on restricted quadratic splines of mtDNA copy number with knots at 5th, 4 

50th, and 95th percentiles of its distribution. The reference value (diamond dot) was set at the 10th 5 

percentile of the distribution. Results were obtained from a Cox model adjusted for age, sex, 6 

race/ethnicity, body mass index, smoking, alcohol intake, total and HDL cholesterol, cholesterol 7 

medication, hypertension, diabetes, and prevalent coronary heart disease. Histograms represent 8 

the frequency distribution of mtDNA copy number at baseline. 9 

 10 

Figure 2. Hazard ratios for incident heart failure comparing the 90th to the 10th percentile of 11 

mitochondrial DNA copy number in selected subgroups. 12 

The figure includes hazard ratios for comparing the 90th to the 10th percentile (reference) of 13 

mtDNA copy number. Pre-specified subgroups were age (<60 or ≥60 years), sex, race (White or 14 

Black), smoking status (never, former, or current), alcohol intake (never, former, current), BMI 15 

(underweight/normal, overweight, or obese), and prevalent CHD. Models were adjusted for age, 16 

sex, race/ethnicity, body mass index, smoking, alcohol intake, total and HDL cholesterol, 17 

cholesterol medication, hypertension, diabetes, and prevalent coronary heart disease. 18 

 19 

Figure 3. Time-dependent hazard ratios for incident heart failure comparing the 90th to the 10th 20 

percentile of mitochondrial DNA copy number. 21 

The curve represents time-dependent adjusted hazard ratios (solid line) and the gray band 22 

represents its corresponding 95% confidence interval comparing the 90th to the 10th percentile of 23 
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mtDNA copy number. The dashed line represents the time-fixed adjusted hazard ratio comparing 1 

the 90th to the 10th percentile of mtDNA copy number. Models were adjusted for age, sex, 2 

race/ethnicity, body mass index, smoking, alcohol intake, total and HDL cholesterol, cholesterol 3 

medication, hypertension, diabetes, and prevalent coronary heart disease.  4 
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Table 1. Baseline characteristics of study participants by quintile of mitochondrial DNA copy number. 

 

 Overall 

(n = 10,802) 

Quintile 1 

(n = 2,161) 

Quintile 2 

(n = 2,160) 

Quintile 3  

(n = 2,161) 

Quintile 4 

(n = 2,160) 

Quintile 5 

(n = 2,160) 

P-values† 

mtDNA-CN range  -5.16, 4.84 -5.16, -0.72 -0.72, -0.16 -0.16, 0.29 0.29, 0.78 0.78, 4.84  

Age (year) 57.3 (5.9) 57.3 (6.0) 57.3 (6.1) 57.3 (5.9) 57.2 (5.9) 57.3 (5.8) 0.78 

BMI (kg/m2) 27.8 (5.3) 27.8 (5.4) 27.6 (5.1) 28.1 (5.4) 27.7 (5.3) 27.9 (5.3) 0.78 

Male (%) 45.4 45.2 44.9 46.3 44.5 46.2 0.71 

Race (%)       0.61 

 White 79.2 80.3 79.1 78.9 78.3 79.3  

 Black 20.8 19.7 20.9 21.2 21.7 20.7  

Smoking (%)       0.02 

 Never 38.6 36.6 40.2 39.0 38.8 38.5  

 Former 38.5 37.7 36.8 38.8 39.7 40.0  

 Current 22.7 25.6 23.1 22.2 21.5 21.5  

Current drinker (%) 58.0 55.3 59.0 57.5 61.1 57.9 0.003 

TC (mg/dl) 209.7 (39.4) 209.5 (41.7) 208.8 (39.3) 209.3 (37.3) 209.5 (38.0) 211.6 (40.7) 0.07 

HDL-C (mg/dl) 49.8 (17.1) 48.4 (16.8) 49.5 (17.1) 49.8 (16.7) 51.2 (17.7) 49.9 (17.2) < 0.001 

TG (mg/dl)* 115 (83–162) 117 (84–164.5) 116 (83–162) 115 (82–165) 109 (81–158) 118 (85–162) 0.003 

SBP (mmHg) 122.0 (19.1) 122.7 (19.6) 122.0 (19.9) 122.0 (18.4) 121.6 (18.9) 121.6 (18.6) 0.05 

Prevalent CHD (%) 4.8 6.5 5.0 4.8 3.9 4.0 0.001 

Hypertension (%) 34.6 37.0 35.1 33.6 33.2 34.5 0.08 

Diabetes (%) 14.0 17.3 14.2 13.5 12.1 12.9 < 0.001 

Abbreviations: BMI, body mass index; CHD, coronary heart disease; HDL-C, high-density lipoprotein-cholesterol; mtDNA-CN, mitochondrial DNA copy 

number; SBP, systolic blood pressure; TC, total cholesterol; and TG, triglyceride.  
* Median (interquartile range). 
† P for trend for continuous variables; P values from 2 tests for categorical variables. 
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Table 2. Hazard ratios for incident heart failure by levels of mitochondrial DNA copy number.  

 

mtDNA-CN  N events / N 

total 

Incidence 

rate per 1,000 

Model 1 Model 2 Model 3 Model 4 

Overall 2,227 / 10,802 10.3     

Quintile 1 526 / 2,161 12.7 1 (reference) 1 (reference) 1 (reference) 1 (reference) 

Quintile 2 455 / 2,160 10.6 0.82 (0.73–0.93) 0.89 (0.78–1.01) 0.90 (0.80–1.03) 0.91 (0.80–1.04) 

Quintile 3 427 / 2,161 9.9 0.77 (0.68–0.87) 0.79 (0.69–0.89) 0.81 (0.71–0.93) 0.82 (0.72–0.93) 

Quintile 4 416 / 2,160 9.3 0.71 (0.63–0.81) 0.77 (0.68–0.88) 0.80 (0.70–0.91) 0.81 (0.71–0.92) 

Quintile 5 403 / 2,160 9.2 0.70 (0.62–0.80) 0.74 (0.65–0.84) 0.73 (0.64–0.84) 0.74 (0.65–0.85) 

P for trend   < 0.001 < 0.001 < 0.001 < 0.001 

90th vs. 10th 

percentile 

  0.71 (0.65–0.78) 0.73 (0.66–0.81) 0.75 (0.68–0.82) 0.76 (0.69–0.84) 

Abbreviations: mtDNA-CN, mitochondrial DNA copy number.  

Model 1: Adjusted for age, sex, race, and enrollment center; Model 2: Model 1 + body mass index, smoking, and alcohol intake; Model 3: Model 2 + total 

cholesterol, HDL-cholesterol, cholesterol medication, hypertension, and diabetes; and Model 4: Model 3 + prevalent coronary heart disease.  
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Table 3. Hazard ratios for incident heart failure at 10, 20, and 30 years since mtDNA copy 

number measurement. 

 Year 10 Year 20 Year 30 

Quintile 1 1 (reference) 1 (reference) 1 (reference) 

Quintile 2 0.90 (0.78–1.03) 0.94 (0.83–1.08) 0.97 (0.82–1.14) 

Quintile 3 0.78 (0.66–0.93) 0.87 (0.75–1.02) 0.91 (0.72–1.16) 

Quintile 4 0.76 (0.61–0.93) 0.89 (0.74–1.06) 0.95 (0.69–1.32) 

Quintile 5 0.68 (0.53–0.88) 0.84 (0.69–1.02) 0.92 (0.61–1.39) 

90th vs. 10th 

percentile 

0.65 (0.54–0.79) 0.89 (0.76–1.04) 0.99 (0.72–1.37) 

Time-dependent model adjusted for age, sex, race, enrollment center, body mass index, smoking, alcohol intake, 

total cholesterol, HDL-cholesterol, cholesterol medication, hypertension, diabetes, and prevalent coronary heart 

disease.  
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Table 4. Hazard ratios for incident heart failure with preserved ejection fraction (HFpEF) and heart failure with reduced ejection 

fraction (HFrEF) by quintiles of mitochondrial DNA copy number.   

mtDNA-CN  N events / N 

total 

Incidence 

rate per 1,000 

Model 1 Model 2 Model 3 Model 4 

HFpEF       

Overall 564 / 8,892 6.2     

Quintile 1 103 / 1,701 6.0 1 (reference) 1 (reference) 1 (reference) 1 (reference) 

Quintile 2 111 / 1,776 6.1 1.05 (0.80–1.37) 1.09 (0.83–1.43) 1.10 (0.94–1.45) 1.12 (0.85–1.47) 

Quintile 3 120 / 1,762 6.6 1.16 (0.89–1.51) 1.16 (0.89–1.51) 1.17 (0.90–1.53) 1.17 (0.90–1.53) 

Quintile 4 122 / 1,846 6.2 1.12 (0.86–1.45) 1.15 (0.88–1.49) 1.17 (0.89–1.52) 1.13 (0.86–1.48) 

Quintile 5 108 / 1,807 5.8 1.01 (0.77–1.32) 1.02 (0.78–1.34) 1.02 (0.77–1.34) 0.97 (0.74–1.29) 

P for trend   0.80 0.76 0.77 0.89 

       

HFrEF       

Overall 504 / 8,892 5.5     

Quintile 1 114 / 1,701 6.7 1 (reference) 1 (reference) 1 (reference) 1 (reference) 

Quintile 2 103 / 1,776 5.7 0.87 (0.66–1.13) 0.88 (0.68–1.16) 0.88 (0.67–1.15) 0.88 (0.67–1.16) 

Quintile 3 94 / 1,762 5.1 0.80 (0.64–1.05) 0.81 (0.62–1.07) 0.81 (0.62–1.07) 0.79 (0.59–1.04) 

Quintile 4 100 / 1,846 5.1 0.82 (0.63–1.07) 0.85 (0.64–1.11) 0.85 (0.65–1.12) 0.87 (0.66–1.15) 

Quintile 5 93 / 1,807 5.0 0.76 (0.58–1.00) 0.77 (0.58–1.02) 0.77 (0.58–1.02) 0.80 (0.60–1.05) 

P for trend   0.06 0.07 0.08 0.14 

Abbreviations: HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; and mtDNA-CN, mitochondrial DNA 

copy number.  

Model 1: Adjusted for age, sex, and race/enrollment center; Model 2: Model 1 + body mass index, smoking, alcohol intake, and physical activity; Model 3: 

Model 2 + total cholesterol, HDL-cholesterol, cholesterol medication, hypertension, diabetes; Model 4: Model 3 + prevalent coronary heart disease.  
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Figure 1. Hazard ratios for incident heart failure by levels of mitochondrial DNA copy number. 
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Figure 2. Hazard ratios for incident heart failure comparing the 90th to the 10th percentile of 

mitochondrial DNA copy number in selected subgroups. 
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Figure 3. Time-dependent hazard ratios for incident heart failure comparing the 90th to the 10th 

percentile of mitochondrial DNA copy number. 
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