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Abstract  

Immuno-oncology (IO) therapies have transformed the therapeutic landscape of 

non-small cell lung cancer (NSCLC). However, patient responses to IO are variable and 

influenced by a heterogeneous combination of health, immune and tumor factors. There is 

a pressing need to discover the distinct NSCLC subgroups that influence response. We 

have developed a deep patient graph convolutional network, we call “DeePaN”, to discover 

NSCLC complexity across data modalities impacting IO benefit. DeePaN employs high-

dimensional data derived from both real world evidence (RWE) based electronic health 

records (EHRs) and genomics across 1,937 IO treated NSCLC patients. DeePaN 

demonstrated effectiveness to stratify patients into subgroups with significantly different 

(p-value of 2.2 × 10!""  ) overall survival of 20.35 months and 9.42 months post-IO 

therapy.  Significant differences in IO outcome were not seen from multiple non-graph 

based unsupervised methods. Furthermore, we demonstrate that patient stratification from 

DeePaN has the potential to augment the emerging IO biomarker of tumor mutation burden 

(TMB). Characterization of the subgroups discovered by DeePaN indicates potential to 

inform IO therapeutic insight, including the enrichment of  mutated KRAS and high blood 

monocyte count in the IO beneficial and IO non-beneficial subgroups, respectively. To the 

best of our knowledge, our work for the first time has proven the concept that graph based 

AI is feasible and can effectively integrate high-dimensional genomic and EHR data to 

meaningfully stratify cancer patients on distinct clinical outcomes, with potential to inform 

precision oncology.   

Keywords: artificial intelligence, machine learning, graph convolutional neural network, 

electronic health records (EHRs), real world evidence (RWE), cancer genomics, immuno-
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oncology, precision oncology, non-small cell lung cancer, disease subtyping, high-

dimensional data integration 

Introduction 

Recently immuno-oncology (IO) therapies including checkpoint inhibitors have 

transformed the therapeutic landscape of non-small cell lung cancer (NSCLC)1-3. However, 

responses to IO in NSCLC are highly variable.  Recent findings suggest a heterogeneous 

collection of genomic alterations and clinical phenotypes can influence IO response4-6. 

Thus, there is a pressing need to discover and characterize NSCLC subgroups across both 

clinical and genomic landscapes to advance precision immuno-oncology. 

 Real-world-evidence (RWE) based clinical phenotype data such as electronic 

health records (EHRs), which include patient exposures, lab data, diagnosis, medications, 

and clinical outcomes, represent a promising resource for precision oncology.  EHR 

derived data has been used to identify patient subgroups to inform cancer therapeutics7-12.  

Distinct molecular subtypes13-18 derived from rich genomic resources, including high 

tumor mutational burden (TMB) and high PDL1 protein expression, have also been 

associated with beneficial responses to checkpoint inhibitor therapies in NSCLC1,19-21. The 

integration of both genomic and EHR evidence is expected to reveal a fuller description of 

tumor and patient characteristics impacting drug response.  Whilst there have been many 

comparative studies between these high dimensional data modalities22-24, few studies to 

date integrate both genomics and EHRs for patient stratification due to all types of 

challenges.  For instance, the study cohort can be too small to investigate this 

heterogeneous disease;  the datasets used in subtyping studies may not be comprehensive 

enough to incorporate both genomic data and diverse clinical-phenotype data with long-
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term follow-ups; and the subtyping algorithms and models may not be effective  enough to 

integrate high-dimensional data from both genomic and clinical domains. 

Recently artificial intelligence (AI) and deep learning methods have demonstrated 

great potential for discovery of cancer subtypes25-28, stemming from effective high-

dimensional data integration and capture of complex nonlinear relationships29-31. However, 

most AI studies use a grid-based model28,32,33 for patient data representation which 

overlook patient-patient relationships and are sub-optimal for inclusion of multiple data 

modalities. Graph based patient similarity networks (PSNs) have shown promise for patient 

subtyping34,35. PSNs effectively model patient-patient relationships to intuitively enable 

heterogeneous data integration and to cluster patients into subtypes based on their feature 

similarities. Addition of deep convolutional neural networks (CNNs) based learning of 

patient-data embeddings to the PSN framework holds great potential to augment patient 

subtype discovery through integrative usage of both genomic and EHR data. 

Graph convolutional networks (GCN)36 are  such an efficient variant of CNNs 

operated on a network (i.e. graph) like PSN’s. GCNs offer fast and scalable classification 

of nodes in a graph through graph embedding and convolutional operations.  GCN has 

demonstrated promise in multiple biomedical applications such as protein interface 

prediction and side effects prediction37. We sought to explore a novel application of GCN 

on its feasibility and effectiveness for patient subtype discovery through integrative usage 

of EHR and genomic data. 

 We developed a data-driven, unsupervised, graph based AI representation we call 

"DeePaN” (i.e. deep patient graph convolutional network) to stratify NSCLC patients, 

integrating 100 EHR and genomic data features from the Flatiron Health and Foundation 
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Medicine NSCLC “clinico-genomic” database38 across a cohort of 1,937 IO treated 

NSCLC patients. Our “DeePaN” framework employs a graph convolutional network 

autoencoder to learn a patient-similarity-graph based feature representation, followed by 

graph spectral clustering for patient subgrouping.    

The “DeePaN” framework stratified patients into subgroups with distinct outcomes 

post-IO therapy, and this stratification was most significant when both genomic and EHR 

data modalities were integrated.  Median survival was 9.42 months from sub-groups with 

poor survival vs. 20.35 months for the subgroup with better survival (p-value of 

2.2 × 10!"" ).  Comparatively, patient sub-groupings derived through well-established 

methods such as autoencoder, uniform manifold approximation and projection (UMAP), 

and t-Distributed Stochastic Neighbor Embedding (t-SNE), showed no significant 

difference on IO therapy outcome.  Furthermore, we demonstrated the potential to use this 

DeePaN grouping to augment the clinical utility of an emerging IO biomarker, tumor 

mutation burden (TMB). Characterization of the subgroups discovered by DeePaN 

indicates potential to inform IO therapeutic insight, including the enrichment of KRAS 

mutations and high blood monocyte count in the IO beneficial subgroup and IO non-

beneficial subgroup, respectively. 

“DeePaN” represents a novel graph-based AI framework with advances of 

effectively integrating heterogeneous clinico-genomic data modalities, leveraging graph 

embedding to intuitively model patient-patient relationships, and incorporating the high-

performance of AI to capture nonlinear and complex relationships of patient data. To the 

best of our knowledge, this is the first study to demonstrate the feasibility and effectiveness 

of employing a graph-based AI approach to integrate RWE based high-dimensional EHRs 
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and genomics to stratify NSCLC patients by IO benefit.  The new subtypes discovered in 

this work may cast new light on understanding the heterogeneity of IO treatment responses, 

and pave ways to inform clinical decision making and therapeutics insight for precision 

oncology.   

Results 

Identification of an IO treated NSCLC cohort with linked clinico-genomic data 

The aim of this study is to explore the feasibility and effectiveness to develop a 

data-driven, unsupervised, graph AI based “Deep patient graph” (DeePaN) framework 

integrating genomics and EHRs to stratify NSCLC patients into subgroups useful for 

precision immunotherapy. Using Flatiron NSCLC clinic-genomic database, we identified 

an IO treated cohort of 1,937 patients characterized by 100 clinico-genomic features to 

develop and test this framework (Methods and Figure 1). The cohort’ overall clinical and 

demographic characteristics are shown in Table 1 and tumor genomic characteristics are 

shown at Supplemental Figure 1C in Supplemental material I. 

Construction of a deep patient graph convolutional network (DeePaN) integrating 

electronic health records and genomics to discover NSCLC subgroups with 

differential IO-treatment benefit 

Figure 1 illustrates the overall conceptual DeePaN framework. DeePaN employs a 

graph representation to summarize patient data in an unsupervised autoencoder (AE), 

hereon referred to as the graph autoencoder (GAE). Specifically, each node in the graph 

represents a patient with node contents composed of “clinico-genomic” (combined 

genomic and EHR derived clinical) features; linked neighbor patient nodes share similar 
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clinico-genomic features. The GAE employs a “denoising process” to learn a graph 

embedding by allowing node content to interact with network features (Methods). The 

addition of denoising with the GAE is referred as the marginalized graph autoencoder 

(MGAE)39. After application of MGAE based graph embedding, a graph based spectral 

clustering was then applied to discover patient subgroups with differential IO-treatment 

benefit.  

DeePaN-identified patient subgroups show distinct IO treatment benefit 

Five distinct patient subgroups were identified (Figure 2A) by DeePaN.  Overall 

survival post IO treatments were compared across patient subgroups. The five subgroups 

showed significant overall survival(OS) differences (log rank test p-value of 2.9 × 10!#, 

median survival ranging from 9.32 to 20.35 months, Figure 2B).  This demonstrated 

DeePaN can effectively discover subgroups with distinct immunotherapy outcomes.  Using 

the overall cohort (1,937 patients) as the control, comparison of survival of each subgroup 

with the overall cohort identified two subgroups with poor survival, and one subgroup with 

better survival (Figure 2C). Since the two poor-survival subgroups have similar post-IO 

OS outcomes (Figure 2B, 2C),  we combined them as one single IO non-beneficial 

subgroup (n=897, 46.3% of the cohort), for comparison to the better survival group as the 

IO beneficial subgroup (n=400, 20.7% of the cohort).  We found significantly different 

survival post IO between the two groups (log-rank p-value of 2.2 × 10!"", median survival 

of 9.42 vs. 20.35 months, Figure 2D). The demographic and pathologic characteristics of 

the IO beneficial and non-beneficial subgroups were shown at Supplemental Table 1 in 

Supplemental material I.  
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Graphical integration of EHR and genomics data is essential towards identifying 

patient sub-groups with differential IO-treatment benefits 

To evaluate whether integration of both EHR and genomics features are essential 

for effective identification of patient sub-groups with differential IO-treatment benefits, we 

compared patient grouping using both types of features versus using EHR or genomics 

features alone. To make a robust comparison, we explored patient grouping with different 

number of resulting subgroups, including three, five and ten subgroups respectively (Figure 

3A).  The results demonstrated that integration of both resources was essential to identify 

patient sub-groups. This highlighted that integration of genomics and real-world clinical 

phenotype evidence can represent and reveal more of the determinants of cancer patient 

survival than using genomics or phenotype data alone. Regarding selection of the number 

of patient subgroups, we selected five subgroups considering both effective subgroup 

differentiation on IO-treatment benefits and reasonable patient count in each subgroup. 

Additionally, to investigate how 1) the patient-patient relationship based graph 

topology and 2) denoising process contribute to the effectiveness to stratify patients into 

subgroups with differential immunotherapy outcomes,  we compared four frameworks, our 

current MGAE which employed both the patient-patient graph topology and the denoising 

process, 2) the GAE which employed only the patient-patient graph topology but not the 

denoising process, 3) the denoised Autoencoder which employed only denoising process, 

and 4) the Autoencoder which employed neither. The results indicate the graph 

representation of patient-patient relationship is essential since only the MGAE and the 

GAE are capable to identify sub-groups with differential IO treatment benefits (Figure 3B).  
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Many unsupervised techniques now exist that can accept multi-modal data as input.  To 

further assess the performance of the DeePaN framework we compared it with the 

commonly used tSNE 40 and UMAP 41 methods.  The results showed that only the DeePaN 

framework identifies subgroups with differential survival post IO therapy (Figure 3B).  

The clinico-genomic “DeePaN” framework can identify patients with non-high TMB 

but with beneficial post-IO outcomes 

High tumor mutation burden (TMB) is an emerging biomarker utilized to enrich for 

patients likely to benefit from IO therapy42,43, as observed in our flatiron IO cohort (log-

rank p-value of  6 × 10!$, median survival of 13.3 vs. 24.3 months for TMB non-high vs. 

TMB high groups respectively, Figure 4A). Many TMB non-high patients, however, may 

still benefit from IO therapy. We found that subtypes discovered by “DeePaN” were able 

to further strategy  TMB non-high  patients into subgroups with significantly differencial 

survival post-IO therapy (Figure 4B, p-value of  3.8	 × 10!%	from log-rank test, median 

survival of 20.8 months and 10.8 months respectively), with about 10 months’ median 

survival difference between the IO-beneficial vs non-beneficial group. This shows that 

DeePaN can identify patients with non-high TMB but with beneficial post-IO outcomes 

with a median survival of over 20 months. 

Characterization of the IO beneficial vs non-beneficial subgroups discovered by 

DeePaN indicates potential to inform therapeutic insight for IO outcome stratification 

in NSCLC 

To inform biological insight of patient stratification with DeePaN, we characterized 

the IO beneficial vs non-beneficial subgroups identified by DeePaN and identified 21 

significantly enriched clinico-genomic features (Supplemental Table 2 in Supplemental 
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material I). Many features have literature evidence indicating relevance to NSCLC 

prognosis (Supplemental Material II). To explore the potential of DeePaN to real novel and 

complementary insight in comparison with classical approaches, we further explored the 

differences in biological insight revealed by DeePaN compared to the classical log-rank 

test (Supplemental Material II). The log-rank test identified 14 significant features 

associated with IO outcomes with 8 features in common with DeePaN.  13 out of 21 

features enriched between DeePaN defined subgroups did not show a statistically 

significant relationship to post-IO survival by log-rank, indicating the potential of DeePaN 

to inform novel insight on IO stratification complementary to the classical approach. For 

instance, among these 13 features uniquely enriched by DeePaN, features relevant to 

peripheral immune status such as high blood monocyte count and low blood lymphocyte 

count are associated with poor post-IO prognosis in NSCLC with supporting literatures 44-

46; KRAS mutations are enriched with the IO-beneficial subgroup.47 There are recent 

literatures indicating PD-1/PD-L1 blockade monotherapy may be the optimal therapeutic 

schedule in NSCLC patients harboring KRAS mutations, with KRAS mutations correlating 

with an inflammatory tumor microenvironment and tumor immunogenicity and thus 

resulting in superior patient response to PD-1/PD-L1 inhibitors 47,48 .Taken together, these 

enriched clinico-genomic features derived from DeePaN discovered subtypes may have 

potential to inform novel therapeutic insight on  IO outcome stratification in NSCLC.  

Discussion 
 

In this study, we explored the feasibility and effectiveness of a graph AI based 

unsupervised framework, “Deep patient graph” (DeePaN), to stratify IO-treated NSCLC 
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patients from integrating rich genomics and EHR derived clinical data. To the best of our 

knowledge, our work for the first time has proven the concept that graphical-data-

representation based AI can effectively integrate high-dimensional genomic and EHR data 

to stratify cancer patients relevant to distinct clinical outcomes.  This establishes a novel 

opportunity to use graph AI modeling for precision oncology. 

Genomic and EHR data are two major domains of real-world evidence generated 

in clinical care. Integrative modeling of these data remains challenging but holds great 

promise to inform precision oncology. Our work demonstrated a graph AI framework can 

effectively achieve clinico-genomic data integration to inform patient stratification with 

relevance to outcomes post-IO therapy, and is superior to either data type alone and other 

stratification methods (Figure 3). For instance, enrichment analysis on patient subgroups 

identified by DeePaN indicates both clinical features such as blood monocyte count, blood 

lymphocyte count, and genomic features such as mutated KRAS are potentially associated 

with differential IO-treatment benefits (supplemental table II in Supplemental material I).  

Importantly, the results demonstrate that graph representations of EHR and 

genomic patient data are important to discover patient sub-groups with differential IO-

treatment benefits (Figure 3B). Since our graph representation explicitly constrains patient-

patient relationships based on their heterogeneous clinico-genomic feature similarly, the 

algorithm in turn uses the full heterogeneous feature set when clustering patients rather 

than over-relying on any one data type.  This process is conceptually analogous to clinical 

diagnosis where a physician relates a patient to a record of similar patients they have seen. 

Furthermore, leveraging the patient-graph structure, the graph convolutional operation in 

our framework can iteratively include the information of neighboring nodes for integrating 
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the clinic-genomic data of similar patients. This process propagates to the entire graph, 

which enables effective patient subtyping from graph clustering at the global scale. 

Characterization of the IO beneficial vs non-beneficial subgroups identified by 

DeePaN indicates potential to inform novel and complementary therapeutic insight for IO 

stratification in NSCLC in comparison with classical approaches such as the logrank test 

approach (Supplemental material II). Mechanistic insight on IO outcomes in NSCLC was 

indicated by features significantly enriched by DeePaN discovered patient subgroups but 

not reaching statistical significance by logrank test. For instance, the enrichment of high 

blood monocyte count and low lymphocyte count in the IO non-beneficial group  identified 

by DeePaN indicates host peripheral immune status may contribute to IO outcomes; the 

enrichment of mutated KRAS in the IO beneficial subgroup was supported by literature 

evidence that KRAS mutations correlating with an inflammatory tumor microenvironment 

and tumor immunogenicity and thus resulting in superior patient response to PD-1/PD-L1 

inhibitors in NSCLC.47 Another DeePaN unique finding is the enrichment of mutated 

NKX2.1 gene in the IO-beneficial subgroup. NKX2.1 is a proto-oncogene contributing to 

lung cancer development, literature evidences are debating the role NKX2.1 in lung cancer 

prognosis, our finding supports to continue to explore its role on post-IO prognosis.49 

There are opportunities for future work. First, in EHRs, the existence of an assay 

result or the design of the treatment plan for a patient can be the result of comprehensive 

factors including economic stabilities, educations, community and social context, et al.  

One aspect of future work is to include more features such as social economic conditions 

et al to into modeling. Second,  as a graph based AI framework, DeePaN utilized both the 

non-linear combination of clinico-genomic features and the patient graph structure for 
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effective  subtype identification, it remains challenging to biologically interpret this 

process50.  We utilized enriched clinico-genomic features derived from DeePaN discovered 

patient subtypes to inform therapeutic insight, which can be improved by future work of 

developing more interpretable graph-AI models such as graph attention networks51 to 

understand what drives the patient stratification to inform biomarker and therapeutic 

insight discovery. To validate “DeePaN” discovered patients’ subtypes to inform clinical 

insight, we suggest that, as many researchers have argued50,52,53 and the U.S. Food and 

Drug Administration has been advocating54,55 and practicing56, artificial intelligence 

models should be considered as medical devices or drugs and thus the effectiveness and 

safety should be evaluated through randomized clinical trials, including EHR-based 

pragmatic trials. A future direction will be to use multi-site randomized pragmatic trials to 

examine the effectiveness of the identified subtypes in augmenting clinical decisions on 

immunotherapies.  

Our work thus provides the first evidence that integrative modeling using genomics 

and EHR data in a graph AI framework has clinical utility in precision oncology. As a case 

study, we show that as an emerging IO biomarker, although TMB-high vs TMB-non-high 

groups are associated better and worse post-IO outcomes respectively, the TMB-non-high 

group may contain heterogeneous patient population with distinct post-IO outcomes 

(Figure 4A, 4B). Importantly, patient subgrouping discovered from our DeePaN 

framework can effectively stratify the heterogeneous TMB-non-high group to identify 

patient subtypes with non-high TMB but beneficial IO outcomes. This highlights the 

potential clinical utility of our framework on augmentation of the TMB IO biomarker. 

Characterization of the IO beneficial vs non-beneficial subgroups discovered by DeePaN 
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indicates potential to inform therapeutic insight to stratify NSCLC patients on IO outcomes.  

The “deep patient graph convolutional network” approach can be potentially applied in a 

wide range of clinical applications. For example, by incorporating other types of treatment 

regimens such as targeted therapies, chemotherapies, radiotherapies et al, this methodology 

can be used for recommending therapies for NSCLC patients. Similarly, this approach can 

be applied in other cancer types or non-cancer diseases to inform precision medicine. 

Besides unsupervised subtyping, representation of the original clinic-genomic data in latent 

space from a graph embedding can also be used for supervised learning to predict disease 

diagnosis or prognosis, for health trajectory projection, and so on. Our approach thus paves 

new ways in effectively using clinico-genomic graph AI modeling for diverse applications 

in precision medicine. 

In summary, our work serves as a proof-of-concept study to demonstrate that a 

patient-graph based AI framework is feasible and effective to integrate EHR and genomic 

data to inform precision oncology. With the continuous advancement of various graph-

building tools and graph AI methods, we will expand our work to incorporate them to 

continue to inform more precision-medicine questions. 

Materials and Methods  

Study Design 

The aim of this study is to explore the feasibility and effectiveness of a data-driven, 

graph AI based unsupervised framework to strategy IO-treated NSCLC patients into 

subgroups with distinct immunotherapy outcomes by integrating rich genomics and EHR 

data.  To define immunotherapy outcomes, we focused on the overall survival of the 
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NSCLC population since the start date of the first IO treatment. The clinical and genomic 

features were defined as baseline features measured before the start of the IO therapies.  

This is a secondary analysis of pre-existing, de-identified, retrospective electronic 

medical record data and therefore IRB review is not required. 

Patient cohort and endpoint 

The NSCLC IO study cohort and dataset were established from the Flatiron Health 

longitudinal EHR-derived database including RWE genomics and clinical data curated 

from the EHR data of over 270 cancer clinics representing more than 2 million active 

patients across the United States. The Foundation Medicine genomic testing data in this 

database was from January 2010 to October 2018. The inclusion criteria of the cohort were 

(See Supplemental Figure 1A in Supplemental material I): NSCLC patients identified with 

International Classification of Diseases (ICD) code for lung cancer (ICD-9: 162.x; ICD-

10: C34.x or C39.9)38, evidence of administration of checkpoint inhibitors anti-PD-1/PD-

L1 agents either as monotherapy or as part of a combination regimen38, and with the 

Foundation Medicine genomic testing data available.  

The endpoint is defined as the overall survival of post-IO treatment. The overall 

survival time was defined as the length of time from the first use of IO therapies to the 

event of deceased patients, or to last follow-up date.38 

Clinical features and genomic features  

The clinical and genomic features were defined as baseline features measured 

within 6 months before the start of the IO therapies. Clinical and genomic features were 
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screened according to prior knowledge and data availability. Totally 52 clinical features 

and 48 genomics features were used in our work.  

Clinical features included: 1) demographics: race, gender; 2) behavioral: smoking 

status; 3) vitals: body weight, body height, oxygen saturation in arterial blood by pulse 

oximetry; 4) medical history: lines of IO therapy; 5) pathological features:  eastern 

cooperative oncology group (ECOG) performance status, cancer stage, 6) pathological 

staining of biomarkers: ALK, BRAF, EGFR, KRAS, ROS1, PDL1 in tumor cells, and 

PDL1 in tumor infiltrated lymphocytes (TIL); 7) laboratory measurements available in 

more than 800 patients: leukocytes, hemoglobin, platelets, hematocrit, erythrocytes, serum 

creatinine, urea nitrogen, alanine aminotransferase, serum sodium, serum potassium, 

aspartate aminotransferase, alkaline phosphatase, serum albumin, bilirubin, serum protein, 

lymphocytes per 100 leukocytes, calcium, lymphocytes, monocytes per 100 leukocytes, 

serum glucose, serum chloride, monocytes, neutrophils, basophils per 100 leukocytes, 

glomerular filtration rate, basophils, eosinophils per 100 leukocytes, eosinophils, serum 

magnesium, granulocytes per 100 leukocytes, neutrophils, lactate dehydrogenase, and 

serum ferritin. (See Supplemental material I, Supplemental Figure 1B is the visualization 

of clinical features); 8) Foundation Medicine derived features: PDL1 expression levels in 

tumor cells, PDL1 expression levels in TIL, tumor mutation burden (TMB)38 (High if 

TMB >= 20 mutations/MB; non-high if TMB < 20 mutations/MB)38, and microsatellite 

instability (MSI).  

Genomic features are based on tumor sequencing of FoundationOne platform, 

which includes full exonic coverage of 395 genes and intronic analysis for rearrangements 

at a depth of 500-1000x38. Genomic features include known and likely genomic alterations 
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occurring in at least 50 patients at the gene level, including the following genes (sorted by 

frequency, see Supplemental Figure 1C in Supplemental material I): “TP53”, “KRAS”, 

“CDKN2A”, “STK11”, “CDKN2B”, “EGFR”,  “PIK3CA”, “LRP1B”,  “MYC”, “KEAP1”,  

“NF1”,  “NKX2.1”,  “PTEN”, “SMARCA4”, “ARID1A”, “RBM10”, “RB1”, “SOX2”, 

“NFKBIA”, “CCND1”, “FGF3”, “FGF4”, “FGF19”, “BRAF”,  “MLL2”, “ATM”, 

“MDM2”, “ERBB2”, “TERC”, “MET”, “SPTA1”,  “FGFR1”, “RICTOR”, “MCL1”,  

“DNMT3A”, “ARID2”, “PRKCI”, “FAT1”, “ZNF703”, “TERT”, “APC”, “NFE2L2”, 

“FGF12”, “MYST3”, “FRS2”, “TET2”, “PTPRD”, and “CCNE1”.  

Problem formulation 

Given the NSCLC patient data with clinico-genomic features, we formulate the task 

of patient subgrouping as a graph clustering problem on an undirected graph encoding 

patient-patient relationships. Specifically, patients are represented as nodes in the graph, 

and patients with similar clinico-genomic features are linked by edges. 

It is beneficial to formulate the patient-patient relationship into a graph since both 

the node content (patient clinical and genomic features) and structure interaction (patient-

patient connectivity based on feature similarity) will be used and integrated. We model the 

patient-patient relationship using a graph 𝐺  with node content as 𝐺 = (𝑉, 𝐸, 𝑋) with N 

nodes (patients) 𝑣& ∈ 𝑉, 𝑖 ∈ [0, 𝑁]  , edges connectivity (𝑣& , 𝑣' ) 	∈ 𝐸 , where the edge 

connectivity can be either 0 (disconnected) or 1 (connected), and 𝑥& ∈ 𝑋, 𝑖 ∈ [0, 𝑁]  is the 

attribute vector associated with vertex  𝑣&. Each patient has an attribute vector of clinico-

genomic features of length 𝑑 (e.g. age; gender; LDH lactate dehydrogenase measurement, 

gene mutation status et al) as node features. The patients’ clinico-genomic features are 

encoded by categorical vectors X (see Supplemental material I for details) and two nodes 
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(patients) are linked if node feature vectors are similar (see Supplemental Material I for 

details).  So formally, the graph can be represented by two types of information, the patient 

content information 𝑋 ∈ 𝑅(×* and the structure information 𝐴 ∈ 𝑅(×( , where 𝐴  is an 

adjacent matrix of  𝐺 and  𝐴&,' = 1 if 𝑒&,' ∈ 𝐸 otherwise, 0. 

Given a patient-patient graph 𝐺, patient subtyping is then to partition the patient 

nodes from G into k disjoint subgroups  {𝐺", 𝐺,, … , 𝐺-}	so that different patient subgroups 

may have differentiable clinical outcomes (here we use overall survival post-IO treatment). 

Implementation 

To achieve above-mentioned goal, we need to solve two main tasks: 1) to learn 

informative patient feature representation for downstream graph clustering method to work 

properly; 2) to discover new patient clusters (subgroups) on the graph that have 

differentiable clinical meaning.  

1) Learn patient deep feature graph representation 

To fully extract and have deep feature representation, we apply the marginalized 

graph autoencoder (MGAE) method 39 to exploit the patient network information. The 

MGAE is based on graph convolutional network (GCN) 36 and to learn the convolution 

feature representation on the structure information with node content in the spectral domain. 

MGAE can exploit the interplay between node content and graph structure information by 

using a marginalization process, which is to encode content features of the graph into the 

deep learning framework. The reconstructed feature representation can be achieved by 

training an MGAE39 on this patient network using the objective function as following: 

1
𝑚BC𝑋 − 𝐷𝑋.F𝑊C,

/

&0"

+ 𝜆‖𝑊‖1,  
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where  𝑋 = {𝑥", … , 𝑥(} ∈ 𝑅(×* 	is the input,  𝐷 is the degree matrix, 𝑊 is trainable 

weights, and 𝑚  is the number of corruption times. (Please refer to Methods in 

Supplemental Material I for more details) 

To learn a deep feature representation of patients’ network, we built up the network 

in a deep layer fashion by stacking multiple layers of autoencoders (Figure 1). The patients’ 

representation from the output (𝑙 − 1)-th layer 𝑍(3!") can be then used as input of the l-th 

layer. Our framework was constructed in three layers; more layers for a graph network are 

unnecessary since all neighboring information can be fully explored and integrated after 

three layers for  a specific node (See experiments of exploration number of layers for a 

graph network in  Kipf et al36). We used the reconstructed output from the last layer as the 

high-level patients’ representation for downstream analysis, i.e. detection of new patient 

subgroups. 

2) Discovery of patient subgroups 

The learned representation 𝑍5 for the patients’ graph, which is reconstructed from 

MGAE’s representation (integration of both content and structure information), can then 

be used to discover patient subgroups. Before directly applying spectral clustering, we 

refine the reconstructed representation 𝑍5	as following:  

1) apply a linear kernel function to achieve 𝑍" = 𝑍5𝑍56 to learn the pairwise 

relationship for the patient node.  

2) ensure the representation is symmetric and nonnegative, we achieved normalized 

Laplacian 𝑍, =
"
,
(|𝑍"| + |𝑍"6|). 

New clusters (i.e. patient subgroups) were identified using a spectral clustering 

algorithm, which was done by running k-means on the top number of clusters eigenvectors 
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of the normalized Laplacian 𝑍,. Those clusters are identified as new patient subgroups. We 

used the Kaplan-Meier (KM) estimate57 to assess if discovered subgroups have 

differentiable post-IO survival outcomes to inform patient stratification benefiting from IO 

therapies.  

Data availability 

The data source is from the Flatiron NSCLC clinico-genomic Database. Since the 

data resource is patient data from EHRs, it is not available for public share. 

Our implementation is based upon MGAE’s open-source code: 

https://github.com/FakeTibbers/MGAE.  
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Figures 
 

  

Figure 1. The conceptual “DeePaN” framework as a deep patient graph convolutional 

network integrating electronic health records and genomics to strategy NSCLC 

patients benefiting from immunotherapy. A) An IO treated NSCLC cohort (N=1,937) 

was identified from Flatiron clinico-genomic database with linked EHRs and genomics 

data. The clinical and genomic features are preprocessed (See Material and Method part 

for details) and concatenated as raw patient-data representations. B) The raw patient-data 

representations are modeled by a deep patient graph convolutional network (GCN) 

implemented as the Marginalized graph autoencoder (MGAE) to learn latent patient 

representations. In GCN modeling, patients are represented as nodes, and patients with 

similar clinico-genomic features are linked by edges. Multiple layers of graph 

convolutional network are stacked to learn latent patient representations, with each layer 

of the graph neural network being trained to produce a high-level patient data 

representation from the output of the previous layer. C) The graph-based deep patient 

representations are then subjective to spectral clustering to discover patient subgroups with 

distinct immunotherapy outcomes to inform precision-oncology including patient 

stratification by IO benefit.  
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Figure 2. Clinico-genomic “DeePaN” framework discovered NSCLC subgroups with 

distinct overall survival outcomes of post-IO treatment. (A) Five distinct patient 

subgroups were discovered by DeePaN, visualized by the 2D UMAP projection of the deep 

patient graph representation in the latent space. Each data point denotes a patient and colors 

denote distinct subgroup memberships. (B) The five subgroups discovered by DeePaN 

showed significant post-IO overall survival difference by the Kaplan-Meier survival plots 

(same subgroup color encoding as in A). (C) Using the overall cohort (1,937 patients) as 
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the control, comparison of survival of each subgroup with the overall cohort identified 

distinct IO beneficial and IO non-beneficial subgroups, demonstrated by a volcano plot. 

Each bubble represents a patient subgroup, same subgroup color encoding was used as in 

A and B, and bubble sizes are proportional to corresponding subgroup patient counts.  The 

X axis represents the difference of the estimated median survival times between a subgroup 

and the overall cohort, and the Y axis is the –log10(p-value) of the corresponding log-rank 

test between a subgroup vs the overall cohort, representing the statistical significance of 

the observed survival difference. The horizontal dashed line marked the statistical 

significance cutoff of p-value of 0.05.  Two IO non-beneficial subgroups (red and orange) 

and one IO beneficial subgroup (green) were identified with significantly different post-IO 

overall survival from the overall cohort. We combined the two IO non-beneficial subgroups 

(red and orange) into one subgroup since they have similar post-IO survival outcomes.  (D) 

The IO beneficial and the combined IO non-beneficial subgroup showed significant (p-

value of  2.2 × 10!"") post-IO survival difference with estimated median survival of 20.35 

months and 9.42 months respectively, by the Kaplan-Meier survival plots. 
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Figure 3.  Graph representation of patient data and integration of both EHR and 

genomics data are essential towards identifying patient subgroups with differential 

IO-treatment benefits. In both volcano bubble plots, each bubble represents a patient 

subgroup, the X axis represents the difference of the estimated median survival times 

between a patient subgroup and the overall cohort as control, and the Y is the –log10(p-

value) of the corresponding log-rank test between a patient subgroup vs the overall cohort, 

representing the statistical significance of the observed survival difference. The horizontal 

dashed line marked the statistical significance cutoff of p-value of 0.05 (A) Integrating both 

EHRs and genomics is important for effective patient subgroup discovery on IO treatment 

benefits. We compared patient subgrouping using both types of features versus using EHR 

or genomics features alone. To make a robust comparison, we explored different number 

of resulting subgroups, including three, five and ten subgroups respectively.  Integrating 

both types of features discovers patient subgroups with significantly different post-IO 

survival, while using EHR or genomic features alone does not identify any subgroups with 

significantly different post-IO survival. (B) Graph representation of patient clinico-

genomic data is important for effective patient subgroup discovery on IO treatment benefits. 

Subgrouping results compared with other methods demonstrates that graph representation 

of patient data (MGAE and GAE) discovers patient subgroups with significantly different 

post-IO survival, while non-graph-based approaches (T-SNE, UMAP, autoencoder, and 

denoise autoencoder) did not identify any subgroups with significantly different post-IO 

survival.  
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Figure 4: DeePaN can identify patients with non-high TMB but with beneficial post-

IO outcomes. (A) High tumor mutation burden (TMB) is associated with beneficial post-

IO outcomes, as observed in the overall IO cohort (logrank p-value of 6 × 10!$, median 

survival of 13.3 vs. 24.3 months for TMB non-high vs. high groups respectively.) (B) 

DeePaN can identify patients with non-high TMB but with beneficial post-IO outcomes. 

Subgroups discovered by “DeePaN” are able to strategy TMB-non-high patients into 

subgroups with significantly differentiated survival post IO therapy (p-value of 3.8 × 10!%  

from logrank test, median survival of 20.8 months and 10.8 months respectively), with 

about 10 months’ median survival difference between the IO-beneficial vs non-beneficial 

group.  
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Table 1 Baseline demographic and pathologic characteristics 

Characteristics  All 
number of patients 1,937 
Age (year)  
  Median, MAD 67.0, 10.4 
  Range 26.0-85.0 
Sex: no., %  
  Male 984 (50.8) 
  Female 953 (49.2) 
Race  
  African American 144 (7.4) 
  White 1,428 (73.7) 
  Asian 46 (2.4) 
  Other Race 143 (7.4) 
Histology  
  Non-squamous cell carcinoma 1,433 (73.9) 
  Squamous cell carcinoma 419 (21.6) 
  NSCLC histology NOS 75 (3.8) 
Stage: no., %  
  Stage I 164 (8.5) 
  Stage II 122 (6.3) 
  Stage III 372 (19.2) 
  Stage IV 1,241 (64.1) 
ECOG Score: no., %  
  0 375 (19.4) 
  1 856 (44.2) 
  2 273 (14.1) 
  3 50 (2.6) 
  4 2 (0.1) 
Smoking Status: no., %  
  History of smoking 1,657 (85.5) 
  No history of smoking 276 (14.2) 
Previous Treatment: no., %  
  No 718 (37.1) 
  Yes 1,219 (62.9) 
Eastern Cooperative Oncology Group (ECOG) 
MAD: Median Absolute Deviation.  
(·) represents percentage of patients 
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