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Abstract (100 words) 
 
Multiple sclerosis (MS) is subdivided into four phenotypes on the basis of medical history 

and clinical symptoms. These phenotypes are defined retrospectively and lack clear 

pathobiological underpinning. Since Magnetic Resonance Imaging (MRI) better reflects 

disease pathology than clinical symptoms, we aimed to explore MRI-driven subtypes of MS 

based on pathological changes visible on MRI using unsupervised machine learning. In 

separate train and external validation sets we looked at a total of 21,170 patient-years of 

data from 15 randomised controlled trials and three observational cohorts to explore MRI-

driven subtypes and test whether these subtypes had differential clinical outcomes. We 

processed MRI data to obtain measures of brain volumes, lesion volumes, and normal 

appearing white matter T1/T2.  We identified three MRI-driven subtypes who were similar in 

how they accumulated MRI abnormality. Based on the earliest abnormalities suggested by 

our model they were called: cortex-led, normal appearing white matter-led, and lesion-led 

subtypes. In the external validation datasets, the lesion-led subtype showed a faster 

disability progression and higher disease activity than the cortex-led subtype. In all datasets, 

MRI-driven subtypes were associated with disability progression (�Subtype=0.04, p=0.02; 

�Stage=-0.06, p<0.001), whilst clinical phenotypes and baseline disability were not. Only the 

lesion-led subtype showed a significant treatment response in three progressive multiple 

sclerosis randomised controlled trials (-66%, p=0.009) and in three relapsing remitting 

multiple sclerosis trials (-89%, p=0.04). Our results show that MRI-driven subtyping using 

machine learning can prospectively enrich clinical trials with patients who are most likely to 

respond to treatments.  
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Introduction 
 
More than 2.5 million people in the world live with multiple sclerosis (MS). Current thinking 

subdivides MS into four clinical phenotypes: clinically isolated syndrome (CIS), relapsing-

remitting MS (RRMS), primary-progressive MS (PPMS) and secondary progressive MS 

(SPMS)1. These are categorised as relapsing (CIS and RRMS) or progressive (PPMS and 

SPMS) based on the current patient status and medical history. Two modifiers can be added 

to these categories: disease activity–as evidenced by relapses or new activity on magnetic 

resonance imaging (MRI)–and progression of disability1. Clinical phenotypes and their 

additional modifiers are routinely used in the clinical setting and in the selection of patients in 

clinical trials.  

 

When examining the clinical, imaging, immunologic, or pathologic characteristics of the four 

MS phenotypes, the differences between the MS phenotypes are relative rather than 

absolute, because they are based on clinical descriptors, rather than on well-defined 

pathological mechanisms. A CIS phenotype may evolve into RRMS, and a RRMS 

phenotype may transition into SPMS.1,2 The precise timing of  these transitions is 

challenging to ascertain, because they are often based on the subjective recollection of 

symptoms and their evolution. SPMS and PPMS share more similarities than differences in 

MRI features and pathogenic mechanisms.3 While most trials aim to recruit people with 

specific MS phenotypes, cohorts are still likely to contain people whose MS classification is 

not certain. Additionally, subgroup analyses of clinical trials have detected treatment effects 

for specific subgroups within phenotypes which are not seen when all patients were 

analysed together4,5. The lack of well-defined boundaries between MS phenotypes has also 

introduced a misalignment between regulatory bodies6. Overall, there is a need for a greater 

sophistication and clarity in how MS phenotypes are defined. 

 

In defining the phenotypes of MS more objective indicators of a patient's biological status are 

urgently needed. MRI features are closer to the biology of MS than clinical symptoms, and 
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better reflect the MS pathogenic mechanisms than purely clinical descriptions7. Therefore, 

we aimed to create a new framework, which defines the subtypes of MS based on the 

pathological changes visible on MRI scans, rather than clinical symptoms and course of 

disability over time. This objective subtyping framework will complement or modify the purely 

clinical course descriptors and represent an essential step towards personalised medicine, 

because it will lead to the use of therapies to target subpopulations who share the same 

pathogenic mechanisms of the disease and are most likely to benefit from these therapies8. 

  

To explore whether it is possible to define MS subtypes on the basis of MRI abnormalities, 

we analysed a large number of MRI scans in patients with RRMS, SPMS and PPMS, using 

an unsupervised machine learning algorithm, called Subtype and Staging Inference 

(SuStaIn)9. Temporal change is a key barrier to identifying distinct subtypes of progressive 

diseases as “appearance of abnormality”, according to MRI, changes substantially over time; 

simply grouping individuals with similar data separates identical phenotypes at different time 

points. What makes SuStaIn different from all other unsupervised clustering algorithms is 

that it disentangles temporal change from phenotypic difference. SuStaIn identifies a set of 

subtypes each defined by a trajectory of change in various variables on a common time axis. 

SuStaIn extends the “event-based” models, previously used to identify single trajectories of 

change in MS10 and other neurodegenerative disorders11,12. After training, SuStaIn 

determines how closely information from a given patient matches ‘learned’ data-driven 

subtypes, and what stage the given patient has reached at a particular time. The ability to 

cluster patients using cross-sectional data makes SuStaIn a strong candidate for patient 

selection in clinical trials.  

 

Here, we used SuStaIn to define a model that optimally explained the baseline MRI 

heterogeneity in 12 randomised controlled trials (RCTs) and two observational cohorts and 

identify subtypes. We then tested the trained model in three RCTs and one observational 

cohort, which were unseen (independent) datasets, thereby confirming its external 
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generalisability. We aimed to: (1) to define MS subtypes on the basis of MRI-derived 

patterns, and stage a person’s progress within a subtype based on the trajectory of MRI 

changes; (2) Determine whether these MRI-driven subtypes–defined at baseline–and the 

standard clinical phenotypes predicted disease progression overt time; (3) Test whether 

there are differences in treatment response between these newly defined subtypes.  
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Results 

We present our results on training, internal and external validation of SuStaIn in the following 

sections (Figure 1):  

1) defining a priori internal and external validation datasets,  

2) processing MRI data and selecting MRI variables, 

3) training SuStaIn and internal validation on baseline MRI,  

4) externally validating SuStaIn on independent, unseen datasets.  

In this manuscript, we use “phenotype” when referring to standard clinical phenotypes, and 

“subtype” when referring to MRI-driven subtypes.  

Defining, a priori, training, internal, and external validation datasets 

We retrospectively analysed data sets from 8,968 people with MS who had a total of 32,602 

MRI visits from 18 datasets, which were 15 double-blind randomised controlled trials (RCTs) 

and three observational cohorts (Table 1 and Figure 1). We split a priori these datasets into 

6,322 patients (2,884 with RRMS, 1,837 with SPMS, and 1,601 with PPMS) in the train and 

internal validation set, which was used for model training and cross-validation, and 2,646 

patients (1,512 RRMS, 711 PPMS and 423 SPMS) in the external validation set, which was 

used for model testing. Table 1 shows included participants from these RCTs and 

observational cohorts. When we compared the train and internal validation set with the 

external validation set, patients in the external validation set were younger (average 

difference of 3.1 years, p<0.001), had shorter disease duration (average difference of 6 

months, p=0.001), and were less disabled (0.5 difference in Expanded Disability Status 

Scale (EDSS), p<0.001) than those in the train and internal validation set.  

MRI Processing: calculating normal ageing and gender effects using datasets of 

healthy volunteers 

We obtained 18 MRI variables which were volumes of grey matter lobes and deep grey 

matter, white matter lesion load, and normal-appearing WM T1/T2 for all patients and 

healthy volunteers.  
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To estimate and adjust for demographic variables and ageing effects in MRI, we used two 

data sets from 14,928 healthy volunteers which covered a wide range of age (23.5 to 70 

years, 13,823 from the UK Biobank and 1,105 from the Human Connectome Project; 7,965 

women and 6,963 men) (Table 1). The mean age was 28.9 years (standard deviation=3.62) 

for the Human Connectome Project and 54.9 years (standard deviation=7.49) for the UK 

Biobank. We used healthy controls’ datasets to calculate linear and non-linear effects of age, 

gender, and total intracranial volume and adjusted MRI variables in patients for these 

effects. Of the 18 adjusted MRI variables, 13 were associated with a moderate to large effect 

size when patients at baseline visits were compared with healthy controls, and, therefore, 

were selected and entered into SuStaIn (Figure 2a). Selected variables were volumes of the 

occipital, parietal, temporal, limbic and frontal grey matter, and deep grey matter; total white 

matter lesion volume; T1/T2 ratio in the corpus callosum, frontal, temporal, parietal, 

cingulate bundle and cerebellar normal-appearing white matter (NAWM) regions.  

 

Training and internal validation: defining MRI-driven subtypes and the sequence of 

accumulation of MRI abnormality for each subtype 

We used “leave-one-dataset-out” cross-validation on the baseline MRI data–which were 

acquired before administering experimental treatments–of the train and internal validation 

set to train our model and select the most optimal number of subtypes. The most optimal 

model in explaining heterogeneity in MRI variables had three subtypes (see Supplemental 

Results for details on model selection). Sequences of accumulation of MRI abnormalities in 

each of these three subtypes are shown in Figure 2b and Supplementary Figure 1. We 

called these three subtypes based on the variables that our model suggested to have 

earliest abnormality: the cortex-led, the normal-appearing white matter (NAWM)-led, and the 

lesion-led subtypes. The cortex-led subtype was characterised by an early cortical atrophy in 

the occipital, parietal, and frontal cortex, which was followed by atrophy in the other grey 

matter regions and T2 lesion accrual and, in the late stage, by a reduction in the T1/T2 ratio 

of the NAWM regions. The NAWM-led subtype was characterised by an early reduction in 
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the T1/T2 ratio in the NAWM of the cingulate bundle and corpus callosum, which was then 

followed by a reduction in T1/T2 ratio in the cerebellar, temporal and parietal NAWM, 

atrophy of the occipital cortex, T2 lesion accrual, and, in the late stage, by atrophy of other 

cortical regions and deep grey matter. The lesion-led subtype was characterised by an early 

and extensive accrual of T2 lesions, which was followed by early severe deep grey matter 

atrophy, atrophy of the occipital, parietal and temporal cortex, and, in the late stage, by a 

reduction in NAWM T1/T2 ratio.  

 

SuStaIn provided probabilistic assignment to three subtypes for each subject at baseline 

(upper section Figure 3). We assigned the subtype with the highest probability to each 

subject. Table 2 shows the demographic, clinical and radiological characteristics of the three 

MRI-driven subtypes defined at baseline. The most frequent subtype was the cortex-led 

(43%). The lesion-led subtype had a slightly higher EDSS at baseline (median=4.5) 

compared to the other two subtypes (median EDSS for cortex-led 4.0, and NAWM-led=3.5, 

p<0.01). The lesion-led subtype had a longer disease duration (mean: 9.09 years) compared 

to the other two subtypes (6.27 years for the cortex-led and 5.56 years for the NAWM-led, 

p<0.01). When looking at MRI measures of each subtype, the lesion-led subtype showed the 

highest lesion load and the lowest cortical volume at baseline (p<0.001). Over time in the 

placebo arms, the lesion-led subtype had the fastest rate of cortical atrophy compared to the 

cortex-led and NAWM-led subtypes (p<0.001) and fastest rate of lesion accrual (p<0.001). 

The mean SuStaIn stage was slightly higher in the lesion-led subtype (average stage=17.9) 

compared to the cortex-led (average stage=15.9) and the NAWM-led subtype (average 

stage=13.7, p<0.01). There was a significant annual increase in stages within each subtype 

on RCT placebo arms (p<0.001 for all tests) and no changes between subtypes (Table 2).  

 

When examining the standard MS phenotypes in the train and internal validation set (Table 

2), most patients were RRMS. As expected, SPMS and PPMS were older and had higher 

EDSS than RRMS patients; additionally, SPMS patients had longer disease duration (time 
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since diagnosis), higher T2 lesion load, and lower cortical volume than the other two 

phenotypes, and the fastest development of cortical atrophy (Table 2).  

 

When exploring the distribution of MRI-driven subtypes across the standard MS phenotypes 

in the train and internal validation set (Figure 3b), the cortex-led subtype was the most 

common subtype in RRMS (46.9%) and the second most common subtype in both SPMS 

(39.7%) and PPMS (38.2%). The most common subtype in SPMS was the lesion-led 

subtype (41.7%), and in PPMS was the NAWM-led subtype (52.9%).  

 

“Dataset” and “centre” effects 

We found that the subtypes were highly consistent across datasets in the train and internal 

validation set, despite different RCTs and trial protocols. In particular, the average measure 

of agreement (or Bhattacharyya coefficient) of the posterior distribution of the estimated 

sequences for each subtype across all cross-validation folds were as follows: 0.94 (standard 

deviation±0.03) for the cortex-led subtype, 0.94 (standard deviation ±0.02) for the NAWM-

led subtype, and 0.96 (standard deviation ±0.02) for the lesion-led subtype, suggesting 

excellent agreement across trials. When we looked at the effects of centre inside each 

dataset on MRI-driven subtypes, the EDSS and MRI measures were significantly more 

strongly associated to “subtype” effect than the “centre effect” (see Supplemental Results).  

 

Generalisation ability of the model in the external validation set  

When we tested the trained model the external validation set similarly to the train and 

internal validation set, the cortex-led was the most common subtype (42%), and the second 

most common subtype was the lesion-led subtype (37%), followed by the NAWM-led (20%) 

(see the lower section in Figure 3). The lesion-led subtype showed the longest disease 

duration, which was 1.4 years longer than cortex-led and 1.92 years longer than the NAWM-

led subtype. The lesion-led subtype showed the largest lesion volume at baseline but lesion 

accrual over time was not significantly different across these subtypes. The cortex led and 
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lesion led had lower cortical volumes at baseline than the NAWM-led, but this was not 

different between lesion-led and cortex-led. The cortex-led subtype had the fastest cortical 

atrophy over time. Similar to the train and internal validation set, the cortex-led subtype had 

the youngest age at baseline (1.7 years younger than the lesion-led and 2.75 younger that 

the NAWM-led subtype) and the lowest percentage of female patients (61%).The EDSS was 

similar across the three subtypes in the external validation set. Table 3 shows the 

demographic, clinical and radiological characteristics of these subtypes. 

 

When exploring the standard MS phenotypes in the external validation set (Table 3), as 

expected SP and PP MS patients were older and had higher EDSS than RRMS. SPMS had 

the highest lesion load at baseline, but a numerically lower cortical volume than RRMS and 

PPMS, though the difference in cortical volume was not statistically significant. The rate of 

cortical atrophy was significantly faster in SPMS than RRMS and PPMS (Table 3). 

 

When exploring the distribution of MRI-driven subtypes across the MS phenotypes, the 

cortex-led was the most common subtype in RRMS (46.7%), and PPMS (50%) but the least 

common subtype in SPMS (11.1 %). The lesion-led was the most common subtype in SPMS 

(60.5%) and the second most common subtype in RRMS (33%) and PPMS (32.9%). The 

NAWM-led was the second most common subtype in SPMS (28.3%), but the least-common 

in PPMS (16.6%) and RRMS (19.8%).  

 

Differences in the risk of disability progression between the MRI-driven subtypes in 

the external validation set 

When we investigated the differences in the risk of developing 24-week-confirmed disability 

progression (CDP) across the three subtypes–which were detected at baseline–within each 

dataset of the external validation set, we found that the lesion-led subtype was consistently 

associated with the highest risk of CDP, except for the MS-SMART RCT.  In the BRAVO 

trial, there was a statistically significant difference in reaching 24-week-CDP among the 
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three subtypes (log-rank test for three-group comparison, p=0.003) (Figure 4a). The lesion-

led subtype had 82% (95% confidence interval: 48.6% to 115%, p<0.001) higher risk of 

reaching the 24-week CDP than the cortex-led subtype (Figure 4a). There were no 

differences between lesion-led and NAWM-led subtypes, and between cortex-led and 

NAWM-led subtypes.  

 

Similarly, to the BRAVO results, in the ORATORIO trial, there was a significant difference in 

reaching 24-week-CDP across the three subtypes (log-rank test for three-group comparison, 

p=0.015) on the placebo arm. The lesion-led subtype had 99% higher risk of developing a 

20% deterioration on the 9-Hole Peg Test (95% confidence intervals=19% to 231%, 

p=0.007) than the cortex-led subtype (Figure 4b); there were no differences between lesion-

led and NAWM-led subtypes, and between cortex-led and NAWM-led subtypes.  

 

In the MS-SMART trial, the lesion-led subtype had on average 3.35 lower PASAT score at 

baseline than the cortex-led subtype, though this was not statistically significant. Over time 

the lesion-led subtype had the fastest average decline in the Paced Auditory Serial Addition 

Test or PASAT, which was significantly faster than the cortex-led subtype (difference in 

rate= -2.10, 95% CI= -0.26 to -3.93, p=0.03) but this rate was not significantly different from 

NAWM-led subtype. There were no statistically significant differences across three subtypes 

in the CDP, 9-hole peg and timed walk tests performance.  

 

In the CLIMB observational cohort, patients with the lesion-led subtype had a significantly 

shorter time to reach 24-week CDP than the other two subtypes (log-rank test for three 

group comparison, p=0.035) (Supplementary Figure 3). The lesion-led subtype had 75% 

higher risk of reaching 24-week-CDP than the NAWM-led subtype (95% confidence 

intervals=14% to 170% higher risk, p=0.01). There were no significant differences between 

lesion-led and cortex-led subtypes and between NAWM-led and cortex-led subtypes.  
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Differences in disease activity between the three MRI-driven subtypes in the external 

validation set 

When we investigated the differences disease activity (i.e., relapse rate for BRAVO and MS-

SMART and enhancing lesions for BRAVO and ORATORIO, chosen according to data 

availability) between subtypes within each dataset of the external validation set, we found 

that the lesion-led subtype consistently showed the highest disease activity. In MS-SMART 

there were no statistically significant differences in relapse rate across the subtypes. In the 

BRAVO trial, the lesion-led subtype had a higher annualised relapse rate (average=0.43, 

95% confidence intervals=0.35 to 0.51) than the cortex-led subtype (average=0.33, 95% 

confidence intervals=0.29 to 0.37; p=0.04) (Figure 4c).  

 

When looking at gadolinium-enhancing lesion counts in the placebo and treatment arms of 

the BRAVO at baseline, the lesion-led subtype had more gadolinium-enhancing lesions 

(average=3.44 lesions, interquartile range=3) than the cortex-led subtype (average=1.2, 

interquartile range=1, Poisson model-estimated difference=146%, standard error=20.5%, 

p<0.001) (Figure 4c). The NAWM-led (average=0.72, interquartile range=1) and the cortex-

led subtypes did not show different numbers of gadolinium-enhancing lesions (p=0.1) 

(Figure 4c). Similarly, when looking at gadolinium-enhancing lesions in both the placebo 

and treatment arms of the ORATORIO trial at baseline, the lesion-led subtype showed more 

lesions (average=2.25, interquartile range=2) than the cortex-led subtype (average=0.42, 

interquartile range=0, Poisson model-estimated difference between two groups=486%, 

standard error = 109%, p<0.001). Similarly, the lesion-led subtype had more gadolinium-

enhancing lesions than the NAWM-led subtype (average lesion in the NAWM-led=0.21, 

interquartile range=0, Poisson model-estimated difference= 479%, p=0.001) (Figure 4c). 

The NAWM-led subtype (average=0.42) and the cortex-led subtype (average=0.21) showed 

similar (p=0.3) numbers of gadolinium-enhancing lesions (Figure 4c).  
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Relationship between the MRI-driven subtypes and stages and both disability 

progression and treatment response  

When looking at stages of the MS subtypes in all the available datasets together, patients 

who had the highest tertile of SuStaIn stage at baseline (from 17 to 39) had the shortest time 

to 24-week-CDP (independent of subtype, log-rank p<0.0001) (Figure 4d). Average (95% 

confidence interval) risk of developing 24-week-CDP at any particular time was 37% (22-

53%) higher in this group with respect to the group with the lowest tertile of stage (from 1 to 

9) (p<0.0001) and 30% (17 to 46%) higher (p<0.0001) in this group with respect to the 

middle tertile group (from stage 10 to 17) (Figure 4d).  

 

Additionally, there were significant associations (standardised �) between MRI-driven 

subtypes (overall subtype effect, �= 0.04, standard error= 0.01, p=0.02) and stages at 

baseline (�= -0.06, standard error= 0.02, p<0.001) with the time-to-24-week-confirmed 

EDSS progression. There were no significant associations between the standard clinical 

phenotypes (overall effect across RRMS, SPMS and PPMS �= 0.18, standard error= 0.15, 

p=0.22) or baseline EDSS (�=0.02, standard error = 0.03, p=0.26) with the time-to-24-week-

CDP.  

 

Consistency of the subtype membership over time  

Presented results so far have been on subtypes detected using the baseline MRI scans. We 

looked at longitudinal stability of subtype membership, too, to examine the reliability of 

SuStaIn. When we looked at the first and last visit of 4,741 patients who were assigned to 

one of the three MRI-driven subtypes with probability of more than 99% at baseline, 95.9% 

stayed in the same subtype over time (277 patients changed subtype: 37 from cortex-led to 

NAWM-led, 59 from cortex-led to lesion-led, 64 from NAWM-led to cortex-led, 4 from 

NAWM-led to lesion-led, and 32 from lesion-led to cortex-led, and 1 from lesion-led to 
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NAWM-led). When including all subjects without a threshold of probability, 75% remained in 

the same subtype.   

 

Difference in treatment response between the three MRI-driven subtypes  

When we tested whether there were differences in treatment responses–defined as the 

difference for each subtype in EDSS worsening on treatment vs placebo–we found that that 

the lesion-led subtype was the only subtype showing a significant treatment response in 

three phase 3 RCTs in SPMS and PPMS trials together (ORATORIO, ASCEND, and 

OLYMPUS5,13,14) (Figure 4e). Patients with the lesion-led subtype on treatment showed a 

significantly slower worsening of EDSS than the same subtype on placebo (percentage 

average difference ± standard error: -66% ± 25.6%, p=0.009). The NAWM-led and cortex-

led subtypes did not show a slower worsening on treatment than the same subtype on 

placebo (-22% ± 25%, p=0.06; 27.6%, ± 20.17%, p=0.7, respectively) (Figure 4e). 

 

Similarly, in the pooled analysis of RRMS (OPERA1, 2, and DEFINE/CONFIRM/ENDORSE) 

the lesion-led subtype on treatment showed a significant reduction in the rate of EDSS 

worsening compared to the same subtype on placebo, or active comparator arms (-89% ± 

44%, p=0.04). There was no significant reduction for the NAWM-led (-75% ±198%, p=0.74) 

or the cortex-led subtype (63%, ±164%, p=0.70) when compared to the same subtype on 

comparator arms.  
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Discussion 

The MRI-driven subtyping of MS, based on a recent innovation in unsupervised machine 

learning (SuStaIn), demonstrated distinct patterns of accumulation of abnormality on MRI 

over time in the train and internal validation set and in the external, independent validation 

set. We identified three MRI-driven subtypes: 1) Cortex-led, 2) Normal-appearing white 

matter (NAWM)-led, and 3) Lesion-led. The cortex-led subtype was the most common 

subtype in both the internal and external validation sets; it showed early cortical atrophy, 

with slower accrual of lesions over time than the lesion-led subtype in the external validation 

set. The lesion-led subtype was the most common subtype in the SPMS phenotype in the 

train and internal validation set (no SPMS patients were in the test set) and showed a longer 

disease duration than the other two subtypes; additionally, it showed an early accumulation 

of lesions. The NAWM-led showed early reduction in T1/T2 ratio with slower accrual of 

lesions than the lesion-led subtype, and slower cortical atrophy than the other two subtypes. 

These MRI-driven subtypes showed high consistency (Bhattacharyya coefficient range=0.94 

to 0.96) across 14 datasets (and MRI protocols) and, over time, patients who were assigned 

to a subtype with high (99%) certainty, rarely (4.1%) transitioned into a different subtype.  

We tested our model in external datasets and with variables that we did not use in training, 

such as relapses, gadolinium-enhancing lesions, EDSS progression, 9 Hole Peg Test 

performance, and PASAT; We found that MRI-driven subtypes predicted disability 

progression, treatment response, disease activity (relapse rate and gadolinium-enhancing 

lesions) and cognitive decline. When we stratified patients according to the SuStaIn stage, 

we found that higher stages at baseline could predict faster disability progression.  

 

The lesion-led subtype was the least common (25% of patients) in the train and internal 

validation set and the second most common (31% of patients) in the external validation set. 

In both sets, the most common subtype overall was the cortex-led. In the RRMS phenotype 

of both sets, a cortex-led subtype was more common than a lesion-led subtype. In SPMS of 

both internal and external sets, more patients were classified as having a lesion-led subtype 
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than a cortex-led one. A faster EDSS progression in the lesion-led subtype explains why 

there were more lesion-led patients with the SPMS phenotype. Given that not all those with 

RRMS will develop SPMS, RRMS patients are a combination of those less likely (cortex-led) 

and more likely (lesion-led) to eventually develop SPMS. SuStaIn is a probabilistic model; so 

it enabled us to group patients across a spectrum of three subtypes (Figure 3). Although 

when we applied SuStaIn to follow-up scans the majority of patients remained in the same 

subtype, further studies with longer follow-ups are required to clarify whether these subtypes 

are distinct entities. Our modelling nonetheless provides a powerful tool to stratify patients in 

clinical trials using baseline scans.  

Our findings provide insights into the sequence and focus of pathology, albeit with the 

caveat that MRI measures are not pathologically specific. The cortex-led had early cortical 

atrophy and lower lesion volumes than the lesion-led subtype. Cortical atrophy in the cortex-

led subtype started posteriorly and spread forward, increasingly involving deep grey matter, 

with abnormalities in NAWM occurring late and with slower lesion accumulation. Our findings 

suggest a pathological process that is predominantly in the cortex rather than WM-based, 

dominated by posterior and then more extensive neurodegeneration (as reflected by 

atrophy)15,16.  In contrast, the lesion-led subtype starts with marked accumulation of lesions, 

severe early atrophy in the deep grey matter structures, and then cortical atrophy, with 

NAWM abnormalities as a late feature. The ongoing cortical atrophy in the placebo arms 

was faster in the lesion-led subtype than the cortex-led or NAWM-led subtypes. This finding 

suggests a process more closely linked with WM lesion accrual. These findings are 

consistent with neurodegeneration in deep grey matter secondary to lesion 

accumulation15,16.  Similarly, faster cortical atrophy in this subtype may be secondary to 

white matter lesion effects on tracts, or concomitant inflammatory processes in white matter 

and grey matter17,18. The sequence of the NAWM-led subtype suggests a more diffuse 

process, with limited WM lesion formation even by the late stages, and subsequent GM 

abnormalities detectable anteriorly and then posteriorly.  
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Associations between MRI-driven subtypes and clinical outcomes  

MRI-driven subtyping has the potential to predict treatment response and disability 

progression irrespective of clinical phenotypes. Patients with the lesion-led subtype had 

worse disability outcomes and a more active disease (clinical and radiological) than the 

other two subtypes. The MRI-driven subtypes and stages were more strongly associated 

with EDSS worsening than the baseline EDSS or clinical phenotypes. We confirmed these 

results in the external validation set, where the baseline EDSS ranged from 3.5 to 4.0 for all 

the three MRI-driven subtypes; however, the MRI-driven subtypes still predicted disability 

progression and cognitive decline (EDSS, 9HPT performance, and PASAT across different 

data sets). These findings suggest that our newly identified subtypes may have a better 

prognostic value than the clinical phenotypes of MS. The lesion-led subtype was the only 

subtype that showed a significant treatment response in both RR and progressive (PP and 

SP) MS trials. Our work confirms previous observations that current clinical MS phenotypes 

do not have clear underpinning biological basis2,3,6 but also provides new subtypes which are 

likely to share pathogenic mechanisms. Our results in the lesion-led subtype suggests that 

the inflammatory pathological processes are likely to be the dominant driver of cortical 

atrophy, lesion accumulation, and disability worsening because the lesion-led subtype had a 

greater reduction in EDSS worsening (treatment response) than the other two subtypes after 

treatment exposure. Since our MRI-driven subtyping can work also using MRI from a single 

time-point, it has the potential to prospectively enrich trials with those most likely to respond 

to treatment. 

 

Limitations and future directions 

Changes in normal appearing white matter relate to diffuse pathological processes in MS 

and have important clinical implications19. Yet it is not feasible to measure such changes 

with more advanced modalities such as the diffusion tensor and magnetisation transfer 

indexes in phase 3 clinical trials which involve tens of countries and sites. T1/T2 ratio 

measures in the normal appearing white matter is considered a “crude” measure but is the 
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only (semi) quantitative measure that is both universally available and is informed by the 

microstructural changes. Since this measure can be affected by the choice of MRI protocol 

and scanner, we paid special attention to “trial” and “centre” effects separately. To mitigate 

potential differences across scanners we used an internal reference (ventricles) to normalise 

values (see Supplementary Methods). There were 728 centres in this study; when we looked 

at the “centre” or “site” effects and compared it with the “subtype” effect across MRI 

variables (including T1/T2), the MRI measures were more strongly related to subtype than 

centre. To measure and examine trial effects, we used leave-one-dataset out cross-

validation and found excellent consistency across cross-validation folds. Our model could 

predict clinical and cognitive outcomes (EDSS progression, 9-hole peg test, PASAT) when 

applied to new centres in unseen data sets, which confirms that the centre effects are 

unlikely to significantly affect the predictive performance.  

 We have identified MRI-driven subtypes using clinical trials whose image quality is high. 

Further work is required to demonstrate MRI-driven subtyping in real-world clinical data. 

Additionally, the analysis pipeline that identifies the subtype requires imaging expertise and 

is not yet feasible for use outside research centres, although its implementation in treatment 

trials is achievable because MRI in being  used in  screening of  recent clinical trials20. Spinal 

cord is affected from early stages in MS and its atrophy is associated with disability21. 

However, spinal cord data is not routinely acquired in MS trials and was not available in our 

study. Future studies with spinal cord data should investigate whether spinal cord measures 

can contribute to SuStaIn subtyping and staging, and whether they do so independently or 

concurrently with brain atrophy. Another aspect for future studies will be to investigate 

pathological underpinnings of these MRI-driven subtypes.  

 

Conclusion 

We used SuStaIn to obtain MS subtypes and stages based on distinct patterns of 

accumulation of MRI abnormalities, thereby reflecting the pathogenic mechanisms of MS 

better than phenotypes based on purely clinical descriptions. MRI-driven staging can predict 
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disability and MRI-driven subtyping has the potential to be used prospectively to enrich 

clinical trials with patients who are more likely to respond to treatments.  

 

 
Methods 

Participants 

We collected clinical and MRI data from 15 MS randomised-controlled trials (RCTs): five 

trials of PPMS5,13,22,23, six trials of SPMS14,24–28, and four trials of RRMS29–31; we also 

included three observational cohorts with mixed MS subtypes5,13,14,22–27,29–36 (Table 1).  

 

Each RCT and observational study had received ethical approval and participants had given 

written, informed consents at the time of data-acquisition. The Institutional Review Board at 

the Montreal Neurological Institute (MNI), Quebec, Canada approved this study (Reference 

number: IRB00010120). The pharmaceutical companies who provided the fully anonymised, 

individual patient raw data, agreed to pooling data but not re-testing treatment response in 

individual RCTs. 

 

We also included two datasets of healthy controls by downloading unprocessed MRI data 

from: (1) The S1200 Open Access release of the Human Connectome Project, and (2) The 

UK Biobank data, which were available for download on 1st of February 2019. This project 

was approved by the UK Biobank (Reference number: 47233).  

 

Clinical outcomes 

The Expanded Disability Status Scale (EDSS)37, which rates neurological impairment, was 

scored as per individual study protocol. The EDSS was obtained at least one month after a 

protocol-defined relapse. We defined disability progression confirmed at 24 weeks (or 

confirmed disability progression (CDP)) as a worsening of EDSS that was sustained on 

subsequent visits for at least 24 weeks. EDSS progression was defined as a ≥1.5-point 
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increase from a baseline EDSS of 0, a ≥1-point increase from a baseline score of 0.5 to 5.5, 

and a ≥0.5-point increase from a baseline score greater than 5.5. 

 

Brain MRI Protocol 

We collected the following brain MRI sequences: T1-weighted, T2-weighted, and Fluid 

Attenuated Inversion Recovery (FLAIR) MRI in all except three datasets (see Supplemental 

Material for details). We used brain 2D or 3D T1-weighted scans to segment grey and white 

matter tissues, FLAIR and T1-weighted scans to segment lesions, and T2-weighted scans, 

together with T1-weighted scans, to obtain T1/T2 ratio. Details of MRI protocols are 

explained in publications associated with each dataset5,13,14,22–27,29–33,35,36,38.  

 

Image processing  

We processed MRI scans from MS and healthy volunteers to obtain the following 18 

variables according to the Neuromorphometrics atlas (http://www.neuromorphometrics.com): 

- Volumes of the bilateral frontal, parietal, temporal, and occipital grey matter, limbic 

cortex, cerebellar grey matter and white matter, brainstem, deep grey matter and 

cerebral white matter 

- Volume of total T2 lesions  

- Regional T1/T2 ratio of normal-appearing white matter in the corpus callosum, 

frontal, temporal, parietal, and occipital lobes, cingulate bundle and cerebellum.  

Details of image analysis and quality control pipelines are explained in detail in the 

Supplementary Material.  
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Statistical analysis 
 
Outline 

The analysis was divided in two parts. In the first part, we carried out the same data 

processing previously described9, using SuStaIn. We first trained and internally validated 

(cross-validated) SuStaIn in a “train and internal validation” set, and in the second part we 

tested it by using an “external” (unseen and independent) set. We also investigated the 

associations between SuStaIn subtypes and stages (and standard clinical MS phenotypes) 

and both disability progression and treatment response by using all the available datasets. In 

the second part of the analysis, we explored whether there were differences in treatment 

responses between MRI-driven subtypes in three phase 3 RCTs in RRMS and in three 

phase 3 RCTs in progressive MS.  

 

(1) Model training, internal and external validation 

The first part of the analysis included the following steps (Figure 1):  

1) Adjusting MRI measures for nuisance variables. 

2) Calculating Z-scores of MRI measures based on healthy controls. 

3) Separating, a priori, MS trials and cohorts into a “train and internal validation” set for 

model training and validation, and an “external” test set for model testing. 

4) Selecting MRI variables in the “train and internal validation” set. 

5) Identifying the optimal model by carrying out the leave-one-dataset-out cross-validation 

6) Testing the newly developed model on the external validation set, thereby confirming its 

generalization ability and investigating the differences in the risk of progression and 

disease activity between subtypes. 

7) Investigation of the relationship between subtypes and stages and both disability 

progression and treatment response using all the available datasets together (train and 

external sets). 
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8) Investigation of the reliability and stability of the model using all the available datasets 

together.   

 

We now explain each step below: 

1) Adjusting MRI measures for nuisance variables.  

For each of the 18 MRI variables listed above, we used the two datasets of healthy controls 

together to fit a Bayesian linear regression model with the total intracranial volume, sex, age 

and age squared as independent variables, and each MRI variable as the outcome. We 

calculated the expected values for each visit using this model and subtracted the observed 

values to obtain residual values of each MRI variable. We refer to the residual values as 

“adjusted values”. We used BAS package version 1.5.3 and R version 3.6.039. We evaluated 

“study” and “centre” effects separately, as explained below in the internal validation and in 

the Supplemental Methods.  

 

2) Calculating Z-scores of adjusted MRI measures based on healthy controls. 

We calculated the Z-scores for each MRI variable at each participant’s visit by subtracting 

the adjusted mean value of the healthy volunteers from the adjusted observed value in 

patients and dividing each patient’s MR variable by the standard deviation of the healthy 

volunteers.  

 

3) Separating, a priori, MS trials and cohorts into a “train and interval validation” set and an 

“external” test set.  

From the 18 datasets available, we a priori chose 14 datasets to create a “train and internal 

validation” set, which was used for model training and internal validation (or cross-

validation). These were three phase 3 RRMS trials29,30, three phase 3 PPMS trials5,22,23, two 

phase 3 SPMS trial14,27, three phase 2 SPMS trials24–26, one phase 2 PPMS trial40, and two 

observational cohorts35,38 (see Table 1 and Figure 1 for the complete list).  
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We set aside the remaining four datasets to create an external validation set, which was 

used to perform the model testing: one phase 3 RCT in RRMS31, one phase 3 RCT in 

PPMS13, one phase 2 RCT in SPMS28, and one observational cohort with mixed MS 

subtypes36 (Table 1).  

 

4) Selecting MRI variables in the “train and internal validation” set. 

To reduce the dimensionality of the models and computational expenses, we selected the 

MRI variables which were found to be ‘abnormal’ in MS when compared with healthy 

controls. To do so, we carried out pairwise comparisons between healthy volunteers and 

patients at their baseline visit and selected the MRI measures whose differences between 

the groups were associated with a moderate to large effect sizes (>0.5 Cohen’s D effect 

size).  

 

5) Identifying the optimal model by carrying out the leave-one-dataset-out cross-validation. 

 

We entered the MRI variables resulting from the previous step into SuStaIn. Since lower 

values of volume and T1/T2 ratio are expected to be associated with increased disability, we 

flipped their signs so that higher Z-scores and estimated stages represented disease 

worsening.  

 

To find the optimal model (that is the model with the highest likelihood of explaining MRI 

variables), we carried out the internal validation with leave-one-dataset-out cross-validation, 

which allowed us to choose the number of MS subtypes, quantify the uncertainty associated 

with a given subtype “trajectory” (or the evolution of MRI abnormalities), and evaluate the 

stability and robustness of the model across different trials, and MRI protocols. With the 

leave-one-dataset-out cross-validation procedure, we trained the model on 13 out of the 14 

datasets, and evaluated it using the remaining dataset (held-out sample). We permuted the 
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training and held-out samples until every dataset was used once as held-out sample, 

thereby iterating the procedure 14 times. The steps were as follows (Figure 1): 

I. We selected the best fitting model, which means the model with the optimal number 

of subtypes, and sequence of MRI abnormality changes in the same subtypes. We 

started by fitting the SuStaIn model on the 13 training folds with only one subtype 

and then increased the number of subtypes in steps of one. We calculated the log-

likelihood (which expresses predictive accuracy) of each held-out fold for each 

model and chose the fitted model with the number of subtypes that maximised this 

log-likelihood. 

II. We estimated the uncertainty of the quantification (posterior distribution) using the 

Markov Chain Monte Carlo (MCMC) algorithm with 100,000 iterations to sample 

from the posterior distribution of the most likely sequences found in the previous 

step. 

III. To evaluate how consistent MRI-driven subtypes were across these 14 datasets in 

the “train and internal validation set”, we quantified the effects of dataset (and 

therefore MRI protocol) on subtype trajectory. To do so, we quantified the degree of 

overlap of posterior distributions of sequences for each subtype across 14 iterations 

of cross-validation. For this purpose, we used the Bhattacharyya coefficient41 

between each pair of subtypes from different folds. The Bhattacharyya coefficient 

ranges from 0 (no agreement) to 1 (perfect agreement). We calculated all pairwise 

Bhattacharyya distances across all folds and subtypes pairs for the optimal model 

and reported the average and standard deviation for each subtype.  

IV. We fitted our final trained model on all the 14 datasets in “train and internal 

validation” set to obtain the optimal model to be used for external validation. We 

obtained MCMC samples and visualised the uncertainty of the final model with its 

posterior distribution. 
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To compare gender frequencies among MRI-driven subtypes and clinical phenotypes, we 

used Chi-square test. To compare ordinal and continuous outcome variables (e.g., EDSS, 

SuStaIn stages, age and disease duration), and lesion and cortical volumes we used 

general linear models (with Poisson distribution for ordinal variables). For longitudinal 

analysis of lesion volume and cortical volume we used mixed-effects models. In these 

mixed-effects models, we included hierarchical random effects: the visit variable was nested 

in 'subject’, and ‘subject’ variable nested in the ‘dataset’ variable; we only used the placebo 

arms of the RCTs to evaluate the natural course of MRI-driven subtypes in the absence of 

treatments and included total intracranial volume, age and sex as fixed-effects, nuisance 

variables.  

 

6) Testing the newly developed model on the external validation set, thereby confirming its 

generalisation ability, and investigating the differences in the risk of progression and 

disease activity between subtypes. 

We tested our trained model on the external validation set, which was not used for model 

training and internal validation. As mentioned above, this external validation set included one 

phase 3 RCT in RRMS (BRAVO)31, one phase 3 RCT in PPMS (ORATORIO)13, and one 

observational study with mixed MS subtypes (CLIMB)36, and one phase 2 RCT in SPMS 

(MS-SMART28) (Table 1).  

 

First, we applied SuStaIn to the whole test set to obtain subtype membership for each 

subject’s visit at baseline (study entry). Secondly, to investigate the differences in the hazard 

ratio of reaching the 24-week-CDP between the MS subtypes within each trial, Cox 

regression models were used. In the BRAVO RCT and CLIMB study, we performed a 

survival analysis to calculate the time-to-24-week CDP of each MRI-driven MS subtype. In 

the phase 3 RCT in PPMS (ORATORIO13), we considered only the placebo arm for the 

longitudinal analysis because the time-to-event analysis was modified by the experimental 

drug13. Since the number of 24-week confirmed EDSS progression events per MS subtype 
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in the placebo group of the ORATORIO trial was too small (<23 events per subtype on 

average) to provide statistically reliable results, we defined an event as ≥20% increase in the 

averaged 9 Hole-Peg Test time between two hands, as suggested by a previous study42. 

Thirdly, to investigate whether there were differences in disease activity between the MRI-

driven subtypes, we used the annual relapse rate in the BRAVO RCT (in the ORATORIO 

trial relapses were extremely rare) and the number of gadolinium-enhancing lesions at 

baseline in the BRAVO and ORATORIO trials, previously reported13,31. We used a Poisson 

model (with Poisson family distribution in R) in which the lesion count at baseline in all 

patients (placebo and treatment arms merged together) was the outcome and the MRI-

driven subtype was the independent variable. The CLIMB study did not include information 

on relapse rate and gadolinium enhancing lesion count. MRI data with gadolinium injection 

were not acquired in MS-SMART.  

 

7) Investigating relationship between SuStaIn subtypes and stages and both disability 

progression and treatment response using all the available datasets together (train and 

test sets).  

We used SuStaIn to estimate subtype stages along a trajectory or a ‘sequence’. Since there 

were 13 variables with three Z-scores each, each subtype included 39 stages, which ranged 

from one (the earliest stage) to 39 (the last stage). To investigate whether the MRI-driven 

subtypes and the standard clinical MS phenotypes were associated with disability 

progression, we constructed a mixed-effects model. In this model, time to reach 24-week-

confirmed EDSS progression was the outcome variable and ‘trial’ was a random-effects 

variable. Fixed-effects predictors were MRI-driven subtypes and stages at baseline, 

standard MS phenotypes, age, sex, and EDSS at baseline.  

 

8) Investigation of the reliability and stability of the model using all the available datasets 

(train and test sets). 
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We performed additional analyses to test the reliability and stability of the SuStaIn subtypes 

over time in both the train and test set (see Supplemental Material for details). 

 

(2) Difference in treatment response across MRI-driven subtypes  

In the second part of the analysis, we explored whether there were difference in treatment 

responses between the MRI-driven subtypes, by looking at the rate (or slope) of EDSS 

worsening in three phase 3 RCTs in progressive MS (ORATORIO, ASCEND, and 

OLYMPUS5,14,42) pooled together, and in three phase 3 RCTs in RRMS (DEFINE-CONFIRM-

ENDORSE, OPERA1, and OPERA2) also merged together. We chose these trials because 

they were either positive trials13,30,43 or had a subgroup that showed a trend towards a 

treatment response in previous publications5,14. For the RRMS trials, we merged the arms 

with different doses of the experimental drug, included the placebo arms, and excluded the 

active comparator arms. We used a linear mixed-effects model in which EDSS was the 

outcome variable with ‘group’, time, and group x time interaction as the independent 

variables. ‘Group’ was a binary variable indicating either a given subtype on treatment or the 

same subtype on placebo. To adjust for repeated measures and correlated residual errors, 

we added hierarchical random effects to our model, in which visits were nested in the 

‘subject’ variable. We reported the difference in percentage change of EDSS worsening 

between groups, which we refer to as ‘treatment response’ throughout this manuscript.  

 

We used NLME package version 3.1 and Survival package version 2.44 inside R version 

3.6.0 for statistical analysis44,45. 
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Table 1. Collated datasets. 

Study name Population Design Participants 

with eligible 

MRI 

Visits 

with MRI 

Published 

protocol 

citation 

number 

Datasets to develop norms 

UK Biobank* Healthy 

volunteers 

Observational 13,823 13,823 32 

Human 

Connectome 

Project* 

Healthy 

volunteers 

Observational 1,105 1,105 33 

MS datasets in the train and internal validation set** 

Siena Mixed Observational 149 595 38 

Basel Mixed  Observational 81 239 35 

DEFINE- 

CONFIRM, 

ENDORSE 

RRMS RCT  

(phase 3) 

1,071 5,208 29 

OPERA 1 RRMS RCT 

(phase 3) 

801 3,025 30 

OPERA 2 RRMS RCT  

(phase 3) 

824 3,044 30 

ASCEND SPMS RCT  

(phase 3) 

1,002 5,095 46 

Lipoic acid SPMS RCT  

(phase 2)  

41 111 26 

MS-STAT SPMS RCT  131 373 24 
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(phase 2) 

MAESTRO 3 SPMS RCT  

(phase 3) 

539 1,753 27 

Lamotrigine  SPMS RCT  

(phase 2) 

97 251 25 

ARPEGGIO PPMS RCT  

(phase 2) 

409 946 40 

INFORMS PPMS RCT  

(phase 3) 

323 758 23 

PROMISE PPMS RCT  

(phase 3) 

458 740 22 

OLYMPUS PPMS RCT  

(phase 2/3) 

396 1,630 5 

MS datasets in the external validation set, for model testing** 

CLIMB Mixed Observational 319 1,950 36 

ORATORIO PPMS RCT  

(phase 3) 

701 2,724 13 

BRAVO RRMS RCT  

(phase 3) 

1,203 3,009 31 

MS-SMART SPMS RCT  

(phase 2) 

425 1,151 28 

* UK Biobank and Human Connectome Project are cross-sectional cohorts. All others are 

longitudinal. 

** We chose training and external validation sets a priori. 

*** Refers to MAESTRO 1 study, which has a similar protocol to MAESTRO 3 (unpublished).  
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Abbreviations: RCT=double-blind randomised controlled trial; RRMS=relapsing-remitting 

multiple sclerosis; SPMS=secondary progressive multiple sclerosis; PPMS=primary 

progressive multiple sclerosis; PMID, PubMed Identifier. 
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Table 2. Demographic, clinical and radiological characteristics of the three MRI-driven 

subtypes and the clinical MS phenotypes in the train and internal validation set. 

MRI-driven subtypes 

 Cortex-led NAWM-led Lesion-led p-value 

Percentage of total 

population (number) 

43%  

(2,697)  

32% 

(2,011) 

25% 

(1,614) 

– 

Average age at 

baseline in years (SD) 

43.03 

(10.28) 

43.70  

(11.05) 

43.60 

(10.48) 

NS 

Female (%) 63% 63% 65% NS 

Median EDSS at 

baseline (interquartile 

range) 

4.0 

(2.5-5.5) 

3.5 

(2.0-5.5) 

4.5 

(3.0-6.0) 

<0.01 

Average disease 

duration at baseline in 

years (SD) 

6.27 

(6.92) 

5.56 

(6.82) 

9.09 

(8.33) 

<0.001 

Lesion volume at 

baseline in ml 

(SE) * 

17.51 

(20.10) 

8.77 

(10.74)  

47.94 

(33.66) 

<0.001 

Annual lesion accrual in 

placebo arms in ml 

(SE) 

1.02 

(±0.31) 

0.88 

(±0.41) 

2.37 

(±0.40) 

<0.01 

Cortical volume at 

baseline in placebo 

arms in ml 

(SE) * 

415.62 

(1.7) 

430.59 

(2.6) 

405.22 

(2.8) 

<0.001 

Percentage annual 

cortical atrophy in 

0.55% 

(0.04) 

0.47% 

(0.04) 

0.73% 

(0.05) 

<0.001 
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placebo arms (%) (SE)  

Average baseline 

SuStaIn stage (SE) 

15.89 

(±1.90)  

13.70 

(±1.90) 

17.93 

(±1.91) 

<0.001 

Annual increase in 

SuStaIn stages in 

placebo arms (SE) 

0.18  

(±0.06) 

 

0.29  
 

(±0.08) 

0.66 

(±0.08) 

 

<0.01 

Clinical MS phenotypes 

 RRMS SPMS PPMS p-value 

Percentage of total 

population1 (number) 

46% 

(2,884) 

29%  

(1,837) 

25% 

(1,601) 

– 

Average age at 

baseline in years (SD) 

37.44 

(9.2) 

49.41 

(8.09) 

49.20 

(8.41) 

< 0.01 

Female (%) 68% 65% 50%  <0.01 

Median EDSS at 

baseline 

(interquartile range) 

2.5  

(1.5-3.5) 

6.0  

(5.0-6.5) 

4.5  

(4.0-6.0) 

<0.01 

Average disease 

duration at baseline in 

years (SD) 

4.62 

(5.46) 

14.46 

(8.77) 

4.47 

(4.56) 

<0.01 

Average duration of 

progression in SPMS 

(SD) 

– 5.24  

(4.04) 

– – 

Lesion volume at 

baseline in ml (SD) 

19.70 

(23.10) 

30.30 

(32.06) 

18.83 

(25.92) 

<0.001 

Annual lesion accrual in 

placebo arms in ml 

(SE) 

1.68 

(0.36) 

1.42 

(0.34) 

0.84 

(0.43) 

<0.01 
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Cortical volume at 

baseline in ml (SE) 

416.90 

(3.4) 

416.33 
 

(2.68) 

421.91 

(2.1) 

<0.001 

Percentage annual 

cortical atrophy in 

placebo arms (%) (SE) 

0.51% 

(0.08) 

0.61% 

(0.03) 

0.59%  

(0.06) 

<0.001 

Table caption:  

* Predicted marginal means: adjusted for total intracranial volume, age, and expected lesion 

volume from healthy ageing. Unit is cubic centimetre.  

1 The total percentages may not add up to 100% because of rounding.  

NS=non-significant; SD=standard deviation; SE=Standard error of mean; NAWM=normal-

appearing white matter; EDSS=Expanded Disability Status Scale; RRMS=relapsing remitting 

multiple sclerosis; SPMS=secondary progressive multiple sclerosis, PPMS=primary 

progressive multiple sclerosis. 
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Table 3. Demographic, clinical, and radiological characteristics of three MRI-driven subtypes 

and the clinical MS phenotypes in the external validation set.  

MRI-driven subtypes 

 Cortex-led NAWM-led Lesion-led p-value 

Percentage of total 

population (number) 

 48% 

(n=1,115) 

21% 

(n=534) 

31% 

(n=999) 

– 

Average age at baseline in 

years (SD) 

40.40 

(10) 

43.15 

(11.06) 

42.17 

(11.97) 

<0.01 

Percentage female (%) 61% 71% 63% <0.01 

Median EDSS  

(interquartile range) 

3.5 

(2.0-4.5) 

3.5 

(2-5.5) 

4 

(2.5-6) 

NS 

Average disease duration at 

baseline in years (SD) 

3.7 

(5.33) 

3.2 

(4.25) 

5.12 

(7.14) 

<0.01 

Lesion volume at baseline 

in ml (SD)  

21.62 

(0.74) 

14.82 

(0.68) 

30.55 

(0.64) 

<0.001 

Annual lesion accrual in 

placebo arms in ml (SE) 

1.6 

(0.30) 

1.02 

(0.49) 

1.14 

(0.40) 

NS 

Cortical volume at baseline 

in ml (SE)  

425.29 

(1.98) 

445.18 

(3.43) 

423.62 

(2.38) 

<0.001 

Percentage annual cortical 

atrophy in placebo arms 

(SE) 

2.05% 

(0.16) 

1.01% 

(0.18) 

0.71% 

(0.17) 

<0.001 

Average SuStaIn stage at 

baseline (SE) 

10.4 

(±0.37) 

7.88 

(0.61) 

11.16 

(0.51) 

<0.001 

Annual increase in SuStaIn 

stages in placebo arms 

0.25 

(0.10) 

0.26 
 

(0.16) 

0.22 

(0.14) 

<0.001 
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(SE)  

Clinical MS phenotypes  

 RRMS SPMS PPMS p-value 

Percentage of total 

population1 (number) 

57%  

(1,512) 

16% 

(425) 

27% 

(711) 

– 

Average age at baseline in 

years (SD) 

36.5 ± 9.69 54.54 ± 7.03 44.52 ± 8.01 <0.001 

Female (%) 70% 67% 49.7% <0.001 

Median EDSS at baseline 

(interquartile range) 

2.5  

(1.5-3.5) 

6 

(6-6.5) 

4.5  

(3.5-6) 

<0.001 

Average disease duration 

at baseline in years (SD) 

4.93  

(7.02) 

15.21 

(9.21) 

2.99  

(3.78) 

<0.001 

Lesion volume at baseline 

in ml (SE) 

15.72 

(1.64) 

36.1 

(1.7) 

20.67 

(1.29) 

0.01 

Annual lesion accrual in 

placebo arms* in ml (SE) 

0.59 

(0.57) 

0.84 

(0.47) 

1.7 

(0.43) 

NS 

Cortical volume at 

baseline (SE, ml) 

429.54 

(3.6) 

428.01 

(3.5) 

429.59 

(2.8) 

NS 

Percentage annual cortical 

atrophy in placebo arms 

(SE) 

0.62% 

(0.04) 

0.87% 

(0.03) 

0.61% 

(0.04) 

<0.001 

 
 
Caption: Abbreviations: NAWM; normal-appearing white matter, EDSS; Expanded Disability 
Status Scale, SE; standard error, SD; standard deviation, NS; non-significant, ml; millilitre.   
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Figure 1. Model development. 

 

Figure 1 legend: This figure shows that all “raw” data from different data sets underwent a 

unique image processing pipeline to extract MRI variables of lobar grey matter volume, 

visible white matter lesion from FLAIR, and T1/T2 ratio. We used healthy volunteers (UK 

Biobank and the Human Connectome Project) to adjust MRI measures nuisance variables 

(see main text), calculate Z-scores, and select MRI variables. A priori we split our patient 

datasets into two separate datasets: 14 datasets in the “train and internal validation” set, and 

three datasets in the external validation set: CLIMB (an observational study), BRAVO (a 

phase 3 RRMS trial), ORATORIO (a phase 3 PPMS trial), and MS-SMART (a phase 2 SPMS 

trial).  

Acronyms: MCMC, Markov Chain Monte Carlo; RRMS, relapsing remitting multiple sclerosis; 

PPMS, primary progressive multiple sclerosis; MRI, magnetic resonance imaging.  
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Figure 2. Variable selection and subtype trajectories.  

 

Figure 2 legend: (a) We chose variables whose effect size was medium to large (Cohen’s d 

effect size greater than 0.5) when comparing all patients of the ‘train set’ with healthy 

volunteers. We have overlayed selected 13 variables on a T1-weighted MRI scan of a 
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randomly chosen patient. We used the same colour coding to show selected variables on 

the brain MRI scan and the right plot. On the right plot, dots represent point estimates of 

the effect size and error bars represent the 95% confidence interval of the effect size. (b) 

This section shows the temporal sequence of MRI abnormalities in each of the three MRI-

driven subtypes. The colour shade ranges from blue to pink which represents the 

probability of ‘abnormality’ (it can be interpreted as the degree of ‘abnormality’) (mild, 

moderate or severe which approximates 1, 2 and, 3 sigma). The cortex-led subtype (left) 

showed cortical atrophy in the occipital, parietal and frontal cortex in the early stages of the 

sequences, and a reduction in T1/T2 ratio in the NAWM in the later stages. The normal-

appearing white matter (NAWM)-led subtype (middle) showed a reduction in T1/T2 ratio of 

the cingulate bundle and corpus callosum in the earlier stages of the sequence, and deep 

grey matter and temporal grey matter atrophy in the later stages. The lesion-led subtype 

(right) shows early and extensive accumulation of lesions in the earlier stages of the 

sequence, and a reduction in the T1/T2 ratio in the NAWM in the later stages. The 

numbers on the left side represent SuStaIn stages. The minimum stage is 1 and the 

maximum stage is 39 (based on 13 variables that can show mild (sigma=1), moderate 

(sigma=2) and severe abnormality (sigma=3); 13x3 = 39). 

Acronyms: NAWM, normal-appearing white matter; SD, standard deviation; GM, grey 

matter; T1/T2, T1-T2 ratio.  
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Figure 3. Subtype membership in the train, and external validation sets.  

 

 

Figure 3 caption: MRI-driven subtypes in the train and cross-validation set (top) and the external 

validation set (bottom) are shown. Assignability or membership probability is shown as the 

distance from each vertex of the triangle; Each of vertices represent the point at which 
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membership of a given subtype is at its maximum (100%). We assigned one subtype to each 

subject (shown in red, green and blue) based on the dominant membership.    
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Figure 4. Predicting disability progression, disease activity, and treatment response.  

 

Figure 4 legend: this figure shows our analyses in the external validation sets (red border) and p

datasets of train and test sets (black border). (a) Patients in the lesion-led subtype had a faster E

progression in BRAVO; (b) patients with lesion-led subtype had a faster 9-Hole Peg Test progre

 

 pooled 

r EDSS 

ression 
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(see the main text for definition) compared to the other two subtypes in the placebo arm of the 

ORATORIO trial (we did not use treatment arm to look at longitudinal changes here because it was a 

positive trial). The vertical axis shows the 24-week confirmed EDSS progression; (c) top diagram: the 

lesion-led subtype had more annual relapse rates when looking at all patients in the BRAVO trial than 

the NAWM-led or cortex-led subtypes; bottom diagram: the lesion-led subtype had more gadolinium 

enhancing lesions in all patients of ORATORIO trial at baseline. Error bars represent the standard 

error; (d) this section shows that patients who were in the higher tertile of SuStaIn stages had a shorter 

time to progression: the higher the stage at baseline, the shorter the time to reach 24-week confirmed 

EDSS progression. When we repeated this analysis inside each subtype we found similar results 

(these are not shown); (e) Shows the change in EDSS worsening in MRI-driven subtypes in the pooled 

treatment arms of the ORATORIO, ASCEND and OLYMPUS trials compared to the corresponding 

subtypes in the pooled placebo arms (e.g., lesion-led subtype on treatment vs. lesion led subtype on 

placebo and so forth). Patients in the lesion-led subtype had the largest reduction in the rate of EDSS 

worsening and were the only group who had a significant treatment response. Error bars represent the 

standard error.  

Acronyms: 9HPT, 9-Hole Peg test; NAMW, normal-appearing white matter; EDSS, Expanded 

Disability Status Scale; RRMS, relapsing-remitting multiple sclerosis; PPMS, primary 

progressive multiple sclerosis.  
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Supplemental material 

Brain MRI Protocol 

MRI protocols differed between trials but inside each trial a unique MRI protocol has been 

used (except for the CLIMB study). We included brain 2D or 3D T1-weighted, fluid 

attenuated inversion recovery (FLAIR), and T2-weighted MRI scans. Supplementary Table 

1 shows the list of included trials with corresponding publications that reported details of MRI 

protocol.  

In the CLIMB study, in which the MRI protocol had changed over time from 2D T1-weighted 

MRI to 3D, we only included more recent 3D T1 weighted MRI data.  

Supplemental Methods  

Image analysis 

Brain MRI data handling 

We checked and labelled the sequence of MRI scans by visually inspecting nine slices of 

each MRI scan (three axial, three sagittal, and three coronal slices) with equal slice intervals 

from the coordinates of the “centre of gravity” of each scan. We organised and uploaded 

MRI data to an XNAT server (version 1.7.4)47. We implemented our image analysis pipeline 

inside XNAT with Nipype version 1.1.4 to enable large-scale high-throughput computing48.  

Regional brain volume calculation 

We aimed to analyse scans to extract volumes of the grey matter regions according to an 

established brain atlas developed by Klein and Tourville (Neuromorphometrics, 

http://www.neuromorphometrics.com, see above for the list)49. We applied an identical 

cross-sectional pipeline (treating each visit independently) to all the visits of patients and 

healthy controls in which T1-weighted, FLAIR and T2-weighted MRI were available. We 

chose a cross-sectional, rather than a longitudinal image processing pipeline, to ensure that 

our subtyping models can be used prospectively in the real-world datasets in which (future) 

follow up data are not yet acquired. We adapted our established MRI analysis pipeline, 

which we had previously validated in clinical trials and observational cohorts as explained 

elsewhere in detail50,51. Briefly, it included intensity inhomogeneity correction of the T1-
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weighted MRI with ITK version 5.0 N4-bias field correction algorithm52, automatic 

segmentation of hyperintense lesions of the FLAIR sequence using the consensus 

(intersection) mask of two different methods (the regression based method in Lesion 

Segmentation Toolbox version 2.0.1553 and a deep convolutional neural network based 

method in DeepMedic version 0.7.154 , trained and validated previously with manual lesion 

masks from MS patients), rigid registration of FLAIR to T1-weighted MRI with co-registration 

of the FLAIR lesion masks to T1-weighted MRI using ANTs version 2.1.0, and lesion filling 

with NiftySeg version 1.055. We segmented and parcellated the brain into 

Neuromorphometrics atlas regions on lesion-filled T1-weighted scans using the Geodesic 

Information Flows (GIF) software version 3.056. We used a modified version of this pipeline 

for the Siena cohort, ARPEGGIO and lamotrigine trials which did not have FLAIR but whose 

investigators had provided manually delineated lesion masks. 

 

T1/T2 ratio calculation of the normal-appearing white matter regions 

Lesion masks or brain volumes do not provide any quantitative information on 

microstructural changes in the white matter. We therefore chose T1/T2 ratio as a measure of 

extra-lesional white matter changes, because T1 and T2-weighted MRI are widely available 

in clinical trials and clinical practice (as opposed to more advanced MRI sequences such as 

diffusion imaging or magnetisation transfer ratio). T1/T2 ratio is an extensively used 

measures of microstructural changes57,58. We adapted available pipelines from the Human 

Connectome Project to calculate T1/T2 ratio maps for all trials59. We corrected for intensity 

inhomogeneity in T1 and T2-weighted MRI scans with N4 bias field correction algorithm. 

Next, we rigid-registered T1 and T2-weighted scans in a symmetric space, such that both 

modalities equally underwent only one interpolation to minimise interpolation artefacts. We 

calculated the T1/T2 ratio and normalised its value against the average T1/T2 ratio in the 

ventricles with the co-registered ventricular masks obtained from the GIF segmentation 

(explained above). We extracted T1/T2 ratio from bilateral normal-appearing white matter 

regions (see above for list of regions) after we removed co-registered lesions segmented in 
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FLAIR from the white matter regions, which we refer to as normal appearing T1/T2 ratio 

throughout this manuscript. Since the T1/T2 ratio in the grey matter regions were highly 

correlated with grey matter volumetric results, we did not include any T1/T2 ratio in the grey 

matter in our models.  

 

Quality control  

We developed a pipeline to check the quality of results of our pipeline by automatically 

generating 18 images from segmentation results, lesion segmentations, and registration 

results which we manually reviewed. We re-ran image analysis pipeline where we identified 

mis-registrations or faulty segmentations. We did not exclude any visit in clinical trials to 

perform an intention-to-treat analysis in individuals who met the minimal MRI criteria (which 

was availability of T1-, T2-weighted, and FLAIR).  

 

Supplemental Statistical Analysis 

Centre effects  

From the 18 data sets in the train and external validation sets, 14 were multi-centre, which 

means that their MRI data were acquired by two or more scanners. To compare “centre” 

effects with “subtype” effects, using all data from train and external validation (test), we fitted 

hierarchical mixed effects models in which MRI variables were outcome, “centre” and 

“subtype” were predictors, and “study” was the random effects variable.  

 

Reliability and stability of SuStaIn models: longitudinal subtyping  

In addition to subtyping patients at baseline, we trained our model on the baseline subjects 

and predicted the probability of subtype membership for the available patient visits over time 

(32,602 visits). We reported the number of subjects who preserved the subtype 

membership. To calculate the annual rate of change in SuStaIn stages for each data-driven 

subtype, we fitted a mixed-effects model in which the SuStaIn stage was an outcome 

variable and time was the independent variable (fixed effects). In these models to adjust for 
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hierarchical repeated measures, we defined nested random effects in which ‘time’ variable 

was nested in the ‘subject’ variable. To calculate longitudinal cortical atrophy in each 

subtype we used a similar mixed effects model and log-transformed the cortical volumes to 

obtain the annual percentage volume change.  

Supplemental Results 

Defining the optimal number of subtypes: model selection 

We fitted models that had one to five subtypes for 14 cross-validation folds (total of 70 

models, Figure 1). We used Cross Validation Information Criteria (CVIC) to choose the most 

optimal number. The CVIC was the most optimal (minimum value across models up to five 

subtypes) for the three subtype-model (Figure 2b).  

 

Centre vs subtype effects: Subtype was more strongly associated with clinical and 

imaging outcomes than the centre 

MRI and clinical data in train and external validation sets were acquired at 728 different 

centres. EDSS was more strongly associated with subtype than centre (difference in 

standardised �= 0.04, standard error = 0.009, p<0.001). Similarly, when looking at the 13 

MRI measures, their standardised � coefficients were significantly larger than centre 

coefficients, which means that they were more strongly associated with subtype than centre 

(all p values < 0.001).  
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Supplementary Figure 1. Positional variance diagram of three data-driven subtypes of 

multiple sclerosis.  

 

Figure legend: positional variance diagram for the three MRI-driven imaging subtypes. The 

three different colours represent the degree of abnormality based on Z-score (sigma or 

standard deviation) models: mild=blue, moderate=violet, and severe=red. The colour shades 

represent the uncertainty associated with each event position in the posterior distribution of 

100,000 Markov Chain Monte Carlo samples.  

Acronyms: DGM, deep grey matter; T1/T2, T1-T2 ratio; WM, white matter; GM, grey matter; 

DGM, deep grey matter; NAWM, normal-appearing white matter.  
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Supplementary Figure 2. Leave-one-dataset-out cross-validation and model selection.  

 

Caption: We used leave-one-dataset-out in the train set of 14 studies, each time leaving 

one study (or dataset) out and fitting SuStaIn algorithm on the remiaing 13 datasets. We 

chose the best number of subtypes according to the cross-validation information critiera 

(CVIC) calcualted from the left-out dataset each time (x14). The vertical axis shows the 

change CVIC. Absolute greater increases favour better models: we found that the three-

subtype model was the optimal model. 
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Supplementary Figure 3. Kaplan-Meier curves showing the proportion of patients reaching 

24-week confirmed EDSS progression in each MRI-driven subtype in the CLIMB dataset. 

  

Caption: p-value is for the log-rank test, which compares hazard-ratios of reaching the 24-

week confirmed EDSS progression across the three data-driven subtypes. The lesion led 

subtype had a shorter time to reach this disability milestone compared to the NAWM-led 

subtype but not the cortex-led subtype.  
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International Progressive MS Alliance (PMSA) Investigators of the network 

Name Institution 

Douglas L Arnold McConnell Brain Imaging Centre, 

Montreal Neurological Institute, McGill 

University, Montreal, Quebec, Canada 

Sridar Narayanan McConnell Brain Imaging Centre, 

Montreal Neurological Institute, McGill 

University, Montreal, Quebec, Canada 

Frederik Barkhof Queen Square Multiple Sclerosis 

Centre, Department of 

Neuroinflammation, UCL Queen Square 

Institute of Neurology, Faculty of Brain 

Sciences, University College London, 

WC1B5EH, UK 

Olga Ciccarelli  Queen Square Multiple Sclerosis 

Centre, Department of 

Neuroinflammation, UCL Queen Square 

Institute of Neurology, Faculty of Brain 

Sciences, University College London, 

WC1B5EH, UK 

Declan Chard Queen Square Multiple Sclerosis 

Centre, Department of 

Neuroinflammation, UCL Queen Square 

Institute of Neurology, Faculty of Brain 

Sciences, University College London, 
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WC1B5EH, UK 

Louis Collins McConnell Brain Imaging Centre, 

Montreal Neurological Institute, McGill 

University, Montreal, Quebec, Canada 

Tal Arbel McConnell Brain Imaging Centre, 

Montreal Neurological Institute, McGill 

University, Montreal, Quebec, Canada 

Charles R.G Guttman Center for Neurological Imaging, 

Brigham and Women’s Hospital, 

Harvard Medical School, 

Massachusetts, USA 

Jerry S Wolinsky McGovern Medical School, The 
University of Texas Health Science 
Center at Houston (UTHealth), Houston, 
Texas, USA 

Garry R Cutter University of Alabama at Birmingham 
School of Public Health, USA 

Nicola De Stefano University of Siena, Italy 

Maria Pia Sormani University of Genoa, Italy 

Ludwig Kappos University Hospital Basel, Switzerland 

Jack H Simon Oregon Health and Sciences University, 
Portland Veterans Affairs Medical 
Center, Oregon, USA 

Jeremy Chataway Queen Square Multiple Sclerosis 
Centre, Department of 
Neuroinflammation, UCL Queen Square 
Institute of Neurology, Faculty of Brain 
Sciences, University College London, 
WC1B5EH, UK 

Raj Kapoor Queen Square Multiple Sclerosis 
Centre, Department of 
Neuroinflammation, UCL Queen Square 
Institute of Neurology, Faculty of Brain 
Sciences, University College London, 
WC1B5EH, UK 
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Howard L. Weiner (CLIMB Investigator) Brigham and Women’s Hospital, Ann 
Romney Center for Neurologic 
Diseases, Department of Neurology, 
Boston, MA, 02115 

Tanuja Chitnis (CLIMB Investigator) Brigham and Women’s Hospital, Ann 
Romney Center for Neurologic 
Diseases, Department of Neurology, 
Boston, MA, 02115 

Rohit Bakshi (CLIMB Investigator) Brigham and Women’s Hospital, Ann 
Romney Center for Neurologic 
Diseases, Department of Neurology, 
Boston, MA, 02115 
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