medRxiv preprint doi: https://doi.org/10.1101/19008367; this version posted October 8, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

Identification of newborns at risk for autism using electronic medical records and

machine learning

Rayees Rahman', PhD, Arad Kodesh?, MD, Stephen Z Levine?, PhD, Sven Sandin®**, PhD,

Abraham Reichenberg®* ", PhD and Avner Schlessinger'”, PhD

'Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York,
us

’Department of Community Mental Health University of Haifa, Haifa, Israel

*Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, US
*Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount
Sinai, New York, US

*Corresponding authors

Words: 3086
Tables: 0
Figures: 3

References: 31

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.


https://doi.org/10.1101/19008367

medRxiv preprint doi: https://doi.org/10.1101/19008367; this version posted October 8, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

Key points

Question: Can autism risk in children be predicted using the pre-birth electronic medical record
(EMR) of the parents?

Findings: In this population-based study that included 1,397 children with autism spectrum
disorder (ASD) and 94,741 non-ASD children, we developed a machine learning classifier for
predicting the likelihood of childhood diagnosis of ASD with an average C statistic of 0.70,
sensitivity of 28.63%, specificity of 98.62%, accuracy of 96.05%, false positive rate of 1.37%,

and positive predictive value of 45.85%.

Meaning: The results presented serve as a proof-of-principle of the potential utility of EMR for

the identification of a large proportion of future children at a high-risk of ASD.
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Abstract

Importance: Current approaches for early identification of individuals at high risk for autism
spectrum disorder (ASD) in the general population are limited, where most ASD patients are not
identified until after the age of 4. This is despite substantial evidence suggesting that early

diagnosis and intervention improves developmental course and outcome.

Objective: Develop a machine learning (ML) method predicting the diagnosis of ASD in offspring
in a general population sample, using parental electronic medical records (EMR) available
before childbirth

Design: Prognostic study of EMR data within a single Israeli health maintenance organization,
for the parents of 1,397 ASD children (ICD-9/10), and 94,741 non-ASD children born between
January 1st, 1997 through December 31st, 2008. The complete EMR record of the parents was

used to develop various ML models to predict the risk of having a child with ASD.

Main outcomes and measures: Routinely available parental sociodemographic information,
medical histories and prescribed medications data until offspring’s birth were used to generate
features to train various machine learning algorithms, including multivariate logistic regression,
artificial neural networks, and random forest. Prediction performance was evaluated with 10-fold
cross validation, by computing C statistics, sensitivity, specificity, accuracy, false positive rate,

and precision (positive predictive value, PPV).

Results: All ML models tested had similar performance, achieving an average C statistics of
0.70, sensitivity of 28.63%, specificity of 98.62%, accuracy of 96.05%, false positive rate of
1.37%, and positive predictive value of 45.85% for predicting ASD in this dataset.

Conclusion and relevance: ML algorithms combined with EMR capture early life ASD risk.
Such approaches may be able to enhance the ability for accurate and efficient early detection of

ASD in large populations of children.
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Introduction

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by
impairments in social communication, and restricted stereotyped behaviors'. Between 2000 and
2018, the number of children with ASD more than tripled, and it is now estimated that ASD
affects about 1 in 59 children in the US". The diagnosis of ASD typically relies on the observation
of behavioral symptoms. Although these behaviors manifest at an early age (~1 year), in the
overwhelming majority of children the diagnosis is not ascertained until after the age of 42. This
points to an important challenge because mounting evidence indicates that early diagnosis and

interventions improve the outcome for affected children®*.

Existing studies have shown that ASD is highly heritable®. However, at present, genetic
screening cannot reliably predict ASD. Despite progress in identifying rare genetic variants
associated with ASD, single gene disorders only account for 3-7% of all ASD cases®. Thus,
unlike other single-gene disorders, such as Huntington’s disease, genetic screening has limited
utility in families with idiopathic ASD. In addition, due to the phenotypic heterogeneity of ASD,
identification of reproducible genetic variants with significant associations to ASD incidence
remains challenging’. Furthermore, even the strongest known ASD risk factor, a sibling with
ASD, is not useful in more than 95% of ASD cases — since there is no older sibling diagnosed
with ASD before the case is born. Taken together, risk-assessment models that are based on

genetic information alone do not perform reliably in the context of the complex etiology of ASD.

The overwhelming majority of studies into non-genetic ASD risk factors typically consider only
one exposure in isolation, e.g., paternal age® or antidepressant use during pregnancy®. However,
individual-risk factors do not provide practical predictive utility when predicting individual risk%"
12 Furthermore, such measures of risk were often derived from studies that used traditional
statistical methods to identify risk factors. Traditional statistical approaches have limited ability
to handle nonlinear risk prediction and complex interactions among predictors'®. The complex
interactions between ASD in the family, mental health, medical prescriptions, and socioeconomic

variables may yield greater predictive power than one factor alone.

Machine learning (ML) offers an alternative and novel analytic approach to handling complex
interactions in large data, discovering hidden patterns, and generating actionable predictions in

clinical settings’"°. Studies based on analysis of electronic medical records (EMRs) and
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application of ML tools have shown potential to discover complex relationships related to disease
risk, from genomic studies to activities in the emergency room'®'*® but, to our knowledge, has

not yet been applied to address the ASD epidemic.

The aim of the current study was to test the ability of machine learning models applied to
electronic medical records to predict autism spectrum disorders early in life. To address our aim,
we tested the associations between an array of parental characteristics available before

childbirth and the risk of ASD in offspring in a large population-based sample.
Methods

This study was approved by the Institutional Review Board at the University of Haifa and the
Helsinki Ethics Committee at Meuhedet healthcare. Those bodies waived the need for informed
consent because the study data were deidentified. This study followed the Standards for
Reporting of Diagnostic Accuracy (STARD) and the Transparent Reporting of a Multivariable

Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) reporting guidelines’”®.

Data source. EMR data was obtained from a population-based case-control cohort study
ascertained through a large health maintenance organization in Israel (Meuhedet). All Israeli
citizens are required to purchase a medical insurance plan from one of several health
maintenance organizations, which offer equivalent medical provision and fees, limiting potential
selection bias in our study. Details of the ascertainment and source population, as well as, the
representativeness of the cohort have been previously reported’®. The Meuhedet cohort used in
this study includes EMR data on children born in Israel from January 1, 1997, through December
31, 2007, and their parents. Children were followed up for ASD diagnosis from birth to January
26, 2015. The analytic sample consisted of 1,397 ASD cases across 1,207 father-mother pairs

and, 94,741 controls across 34,912 mother-father pairs.

Validity of ASD diagnosis. ASD diagnosis followed the International Classification of Diseases,
Ninth Revision (ICD-9) and International Statistical Classification of Diseases and Related
Health Problems, Tenth Revision (ICD-10). All children with suspected ASD underwent
evaluation by a panel of social workers, a psychologist, and one of a trained psychiatrist, a
developmental behavioral pediatrician, or a child neurologist. The final diagnosis was made by

a board-certified developmental behavioral pediatrician.
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Data preparation. Parental EMR data until the child’s birth was selected. All non-drug
treatments, such as medical devices, were removed along with rows containing non UTF8
formatted data. Next, a set of Anatomic Therapeutic Classification (ATC) codes were obtained
from the world health organization (WHO; www.whocc.no) (2016 version). Drugs that
correspond to multiple ATC classifications were combined into a single ATC code. ATC codes
were mapped to drug names present in the data; multiple drug names corresponding to the
same ATC or known combinations of drugs were manually annotated with unique ATC codes.
Multiple prescriptions corresponding to the same ATC code within a single individual were then

filtered out.

Features set used for training. For each parent, 102 features were selected as predictors to train
the different ML models. These features included prescribed medications and medical histories
(e.g., number of medical contacts) (Figure 1A), as well as sociodemographic characteristics
(e.g., age, socioeconomic status). Features found to be highly correlated (i.e., those exhibiting
>.8 Pearson correlation coefficient) were removed. All non-categorical features were normalized
using the Soft Max normalization technique (Figure 1A). Missing values were imputed using the
rfimpute method of the randomForest package in the R programming language depending on
ASD status?.

Statistical analysis

Machine learning (ML) models. Several statistical and ML methods were used to predict child
ASD status. We applied logistic regression, artificial neural networks, and a decision tree
algorithm, random forest, to predict the likelihood of offspring ASD diagnosis based on the
parental features described. In particular, one advantage of a decision tree-based learning is
that the importance explanatory features can be extracted after training. Random forest, an
ensemble decision tree learner, was utilized for its comparable predictive performance to

regression based techniques for EMR-based datasets'"°.

Model evaluation and training. To evaluate each model, 10-fold cross validation was employed
(Figure 1B). Eighty percent of all ASD and non-ASD mother-child pairs were sampled from the
original dataset, while the remaining 20% were kept as the validation set. Due to the significant

class imbalance present in the data, the Synthetic Minority Over-sampling Technique (SMOTE)
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was used to increase the proportion of ASD cases 5-fold with the ‘DMwR’ package in the training

set, while the validation set sampling was unchanged?®'.

Oversampling under-represented data (and under-sampling overrepresented data) in training is
a validated approach for developing predictive models for machine learning problems with large
class imbalances. This approach has been used to improve prediction of breast cancer
survivability??, and Alzheimer’s disease susceptibility?>. After oversampling, the resultant dataset
was used to train either the logistic regression model using the ‘glm’ method in the R
programming language, a multilayer perceptron using the RSNNS package, or a random forest
model implemented in the R using the ‘randomForest’ packagezo. We performed hyperparameter
optimization of the machine learning algorithms using google cloud services. The final multilayer
perception model used 4 hidden layers, of 5, 10, 10 and 2 nodes each, under default settings
and the final random forest model used 1,000 subtrees and randomly sampled 20 features per
tree. The remaining 20% of the ASD and non-ASD data was used as the validation set for the

models.

The literature on prediction of health outcomes often focuses on the area under the receiver
operating characteristic (ROC) curve (i.e., AUC or C statistic) rather than the full spectrum of
prediction performance. However, a diagnosis of ASD is a rare outcome, and therefore relying
on the C statistic alone may be biased due to either over- or underestimation®*. For the
evaluation of a clinical prediction tool, it has been recommended to report sensitivity, specificity,
accuracy, false positive rate, and precision (positive predictive value, PPV) (Figure 2), to provide
a more complete picture of the performance characteristics of a specific model. The validation
process was repeated 10 times and the average sensitivity, specificity, accuracy, precision, false
positive rate, and area under the receiver operator curve (AUC; C statistic) across all models

were computed:
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Notably, because oversampling only occurred during the training of the model and the validation
set remained unmodified, the evaluation metrics generated are indicative of classifier accuracy

for non-synthetic cases.

Gini impurity criteria was applied to determine the relative importance of individual features. The
Gini impurity is the probability of an unseen case being incorrectly classified for a given decision
or rule. Features with high Gini impurity (or low Gini importance) split the data into impure
categories, while features that decrease Gini impurity are able to partition the data into purer
classes with larger members. Thus, features with large mean decreases in Gini rank higher in
importance for the model. The importance of a feature is defined as the mean decrease in the

Gini impurity based on the Random Forest model.

Results

Prediction accuracy. After 10-fold cross validation of the testing dataset we observed that all
models tested had similar performance (Figure 2), achieving an average accuracy of 96.05%,
sensitivity of 28.63%, specificity of 98.62%, positive predictive value 45.85%, area under the
receiver operating characteristic (ROC) curve (AUC or C statistic) of 0.70, and false positive rate
of 1.37% for predicting ASD in this dataset (Figure 2A-C).

Importance of features. The random forest model allows the identification of features with the
strongest association with case classification (i.e. ASD vs. Non-ASD). Figure 2B shows the top
20 features ranked by median variable importance after 10-fold cross validation. Top features
included parental age differences, and parental number of medications per year, as well as
specific maternal and paternal exposure to medications. These include paternal
psychoanaleptics, drugs for the treatment of blood conditions, antiparasitic medications,
medications for genitourinary system and reproductive hormones, as well as nutritive
supplements, maternal endocrine therapies, antheleminitics, gastrointestinal drugs and anti-

obesity preparations.

Sensitivity analysis. Machine learning (ML) models are often prone to fitting to, or ‘memorizing’,
specific features or training examples, which can cause models to have poor performance for
novel samples; this is called model overfitting. Additionally, imputation of missing data can lead

to a potential source of bias in our data. Since any missing features were imputed in our training
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data, we investigated whether our models were overfitting due to missing information. We
included an additional feature labeling cases with missing parental information in order to
observe the effect missing data had on predictive performance. The models were then re-
generated and evaluated. The models perform similarly with or without the feature (Figure 3A),
indicating that our models are unlikely to be overfitting to the lack of parental information. Finally,
we also re-generated models removing features derived from either all paternal or maternal
medication history (Figures 3D,3E). These models have lower C-statistic compared to those of
models integrating both data sources, indicating that EMR records from either parent may

explain only part of the risk of ASD in the offspring.
Discussion

This study of population-based representative data shows that machine learning (ML) applied to
EMRs could potentially identify a large proportion of future ASD cases. In the sample studied
here, almost one third of ASD cases could be predicted prior to birth based on demographic and
medical characteristics of their mothers and fathers. The ML models achieved high predictive
performance using only routinely collected data in EMRs and without molecular genetic
screening. To our knowledge, this is the first study that applied ML on EMR data to specifically

predict ASD in a large population of children.

Unlike sensitivity and specificity, which are test properties, precision estimates are affected by
the rate of the outcome in the population. Low rates of ASD could lead to low precision and high
false-positive rate, even in tests with high sensitivity and specificity, and this therefore limit the
clinical utility of a prediction algorithm. For example, screening for trisomy 21 in 20- to 30-year-
old women (prevalence of approximately 1:1200)?°, has a precision of only 1.7% with a test with
sensitivity higher than 99% and specificity higher than 95%?2°. Despite the modest sensitivity in
this study (28%), the specificity was very high (98%), and the precision in the study was
acceptable (45%). Thus, our approach may allow high accuracy in identifying patients. To further

limit the false positives in this group, additional screening and assessment may be needed.

There are several potential explanations for the gains in the prediction ability by ML. First, ML
approaches possess scalability within a larger context of health information technology as they
are able to extract a multitude of potential predictors from EMR. Second, ML methods are able

to incorporate the high-order nonlinear interactions between features, which cannot be
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addressed by traditional modeling approaches (e.g. logistic regression model)?®®. Third, we

applied rigorous approaches to minimize the potential of overfitting of the models.

The individual features which had the strongest association with case classification included
several previously proposed sociodemographic risk factors for ASD, such as differences in
parental age®, and parental number of medications'®. Interestingly, there were also various
medication groups that were associated with case classification. We observed a relation with
psychoanaleptics, which has a mixed pattern of associations with ASD risk in previous

studies'®?":?8

. We also observed a relation with nutritive supplements and reproductive
hormones. Increased and decreased risk of ASD has been previously reported for medications
from these groups?**. Maternal metabolic conditions and disruptions in the endocrine system
have been associated with ASD risk?®>?®, and contributed to case classification. Taken together,
the agreement between our most useful features with previous studies analyzing ASD patients

increases the confidence in our combined approach.

Notably, the associations between drugs for the treatment of blood conditions, antiparitic
medications, medications for genitourinary system, anthelmintics, as well as gastrointestinal

drugs that showed importance for determining ASD risk warrants further research.

Finally, we observed that apparent ASD risk can only be partially explained using either only
maternal or paternal EMR data. Rather, the best predictive performance was obtained by training
a model combining both sources of information. This result provides evidence that characterizing

ASD incidence requires a multifaceted approach integrating maternal and paternal risk factors.

Our study has several limitations. First, the ML approaches are data driven and, therefore,
depend on accurate data. While coding errors do occur, the rate of such errors in EMRs has
been shown to be very low (rate less than 1%) and accuracy of the data in the Meuhedet health
provider is continuously monitored for completeness and accuracy of reporting. Second, the
imputation of missingness is a potential source of bias. However, the imputation by random
forest is known to be a rigorous technique®’. Third, the study lacked genetic information which
could provide mechanistic interpretation of the results as well as improve prediction accuracy.
Nonetheless, the objective of the present study was to develop machine learning-based
prediction models that harness the readily available typical EMR data. Future studies with
genetic linked data are warranted. Finally, while we show associations between several

medication groups and ASD, it is important to note that this does not provide evidence that these
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therapeutics are causally related to ASD. Rather, parental usage of these medications may be
indicative of underlying parental genetic predisposition to ASD, or the modifying role of

environmental exposure on genetic predisposition.

The current study demonstrates the feasibility and potential of routinely collected EMRs data for
the identification of future children at high-risk of ASD. The results also show the potential utility
of data driven approaches for uncovering previously unidentified risk factors for ASD. Although
certainly not causal or perfect, our results present reason for cautious optimism that recent
developments in ML methodologies will be able to enhance the ability for accurate and efficient
early detection of ASD in large populations of children, and allow interventions to be targeted to

the small number of individuals who are at greatest risk.
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Figure 1: Workflow used to build machine learning model of ASD incidence.

To evaluate the utility of EMR and ML for predicting the risk of having a child with ASD, we
developed a comprehensive dataset. A) For each mother-father pair, the parental age
difference, number of unique medications either parent has taken, the socioeconomic status
as well as the proportion of drugs, by level 2 ATC code, taken by the parent prior to the birth
of their child was used for further analysis. B) Workflow of performing 10-fold cross validation
to evaluate model performance. First, the data was partitioned into ASD and non-ASD cases,
where 80% of the data was randomly sampled as training set, and 20% was withheld as
testing set. The training set was then combined and the synthetic minority oversampling
technique (SMOTE) was used to generate synthetic records of ASD cases. A neural network,
logistic regression, and random forest models were trained using the oversampled training
data. They were then evaluated on the testing data based on sensitivity, precision, sensitivity
and false positive rate. Since the testing data did not have synthetic cases, the model
performance is indicative of performance of real data. This process was repeated 10 times,

and average model performance was reported.
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Figure 2. Electronic Biomarker of ASD.

A balanced dataset was generated to train various algorithms to predict the probability of an
ASD child from the EMR of the parents. A) Average validation statistics for all methods after 10-
fold cross validation. B) Receiver operator characteristic (ROC) curves for all methods tested:
logistic regression, random forest and multilayer perceptron (artificial neural network). C) Boxplot
of importance values of each feature in the random forest model after 10-fold cross validation
(10X CV). Importance of a feature is defined the mean decrease in Gini coefficient when training
a model, removing the feature. Level 2 ATC codes are represented by an alphanumeric 3-letter

code. D) Example confusion matrices from logistic regression and random forest models.
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Figure 3: Sensitivity analysis of the generated machine learning models.

A) Receiver operator characteristic (ROC) curves for all methods tested with ‘missing paternal

information’ label included. B) Example confusion matrices with ‘missing paternal information’

label included. C) Average performance for all methods after 10-fold cross validation with

‘missing paternal information’ label included. D) Effect of removing all paternal medication data

on model performance. E) Effect of removing all maternal medication data on model

performance.
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