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Abstract 

For persons with epilepsy, much suffering stems from the apparent unpredictability of seizures. 

Historically, efforts to predict seizures have sought to detect changes in brain activity in the 

seconds to minutes preceding seizures (pre-ictal period), a timeframe that limits preventative 

interventions. Recently, converging evidence from studies using chronic intracranial 

electroencephalography revealed that brain activity in epilepsy has a robust cyclical structure over 

hours (circadian) and days (multidien). These cycles organize pro-ictal states, hours- to days-long 

periods of heightened seizure risk, raising the possibility of forecasting seizures over horizons 

longer than the pre-ictal period. Here, using cEEG from 18 subjects, we developed point-process 

generalized linear models incorporating cyclical variables at multiple time-scales to show that 

seizure risk can be forecasted accurately over days in most subjects. Personalized risk-stratification 

days in advance of seizures is unprecedented and may enable novel preventative strategies.  

 

Keywords: Seizure forecasting; Circadian rhythms; Multidien rhythms; Interictal epileptiform 

discharges; Refractory epilepsy; Chronic EEG.  

Abbreviations 

AUC: area under the curve 

cEEG: chronic intracranial electroencephalography 

IEA: interictal epileptiform activity 

IoC: improvement over chance 

LE: long episodes 

PP-GLMs: point-process generalized linear models 

STiW: sensitivity vs. corrected proportion of time in warning 
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Introduction 

Despite decades of progress in seizure prediction, reliable methods to mitigate the looming threat 

of seizures remain elusive (Mormann et al., 2007). An ideal prediction model captures all seizures 

(high sensitivity) while minimizing time in warning (high specificity) (Kuhlmann et al., 2018). 

The pioneering NeuroVista trial demonstrated feasibility of a cEEG-based pre-ictal warning 

system (Cook et al., 2013), but the device used is no longer available. Another implanted device 

(RNS® System) that uses brain-responsive neurostimulation to treat seizures is available in the 

U.S. and provides a limited form of cEEG (Geller, 2018). Based on years-long recordings from 

this device, we recently uncovered daily (circadian) and multi-day (multidien) cycles of IEA that 

co-modulate with seizure risk (Baud et al., 2018). Other factors that putatively influence seizure 

timing include recent seizure history (Cook et al., 2014), sleep duration (Samsonsen et al., 2016), 

and days of the week (Karoly et al., 2018). Therefore, we hypothesized that pro-ictal states result 

from alignment of cyclical influences at ultradian (shorter than a day), circadian, and multidien 

timescales. To test this, we built PP-GLMs incorporating multiscale cyclical covariates (hereafter 

“temporal features”) and used an existing dataset to determine whether these models could 

generate accurate, pseudo-prospective seizure risk forecasts over 24-hour and one-hour horizons 

(hereafter “daily” and “hourly” forecasts, respectively). PP-GLMs provide a flexible statistical 

framework to study the association between a sequence of binary events occurring at discrete times 

(e.g. seizures) and a set of temporal features upon which event probability may depend (Truccolo 

et al., 2004).  

 

  

All rights reserved. No reuse allowed without permission. 
not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprint (which wasthis version posted October 5, 2019. ; https://doi.org/10.1101/19008086doi: medRxiv preprint 

https://doi.org/10.1101/19008086


 

4 

 

Materials and Methods 

Subjects and data acquisition 

We analyzed retrospective cEEG data (227–1049 days) from 18 adults with medically-refractory 

focal epilepsy who were implanted with the RNS® System (NeuroPace, Inc., Mountain View, CA) 

at one of two comprehensive epilepsy centers (University of California, San Francisco, N=13 and 

California Pacific Medical Center, N=5; Supplementary Table 1 and Supplementary Fig. 2). 

Indications for treatment with the RNS System included bilateral seizure onsets (temporal and 

frontal), seizures arising from eloquent cortex (visual or motor), and seizure focus contralateral to 

a prior resection. The study was approved by the Institutional Review Boards at both centers, and 

all subjects provided written informed consent for participation. 

 

Data selection 

The primary inclusion criteria for this retrospective study were more than 6 months of available 

data without large gaps and reliable seizure detection (fig. S2). The RNS System utilizes embedded 

algorithms based on line-length, area under the curve, and band-pass filters that are iteratively 

tuned by clinicians to improve sensitivity and specificity of detections of pathological brain 

activity. For detection of electrographic seizures, we relied on counts of LE, prolonged detections 

of abnormal activity that often represent seizures. LE timestamps are stored continuously by the 

neurostimulator even though storage of the corresponding electrocorticograms is limited. As 

described in detail previously (Baud et al., 2018), we only used data from subjects for whom the 

positive predictive value of LE’s being electrographic seizures was ≥90%. An additional exclusion 

criteria was >50% of days with seizures, because the utility of forecasting is likely low in 

individuals with very frequent seizures. For each subject, IEA time-series from two detectors were 
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selected for periods of continuous data with stable detection settings lasting longer than six months. 

Four detectors can be independently programmed on the neurostimulator, each with a unique 

parametrization of the embedded algorithm, and Boolean operators (“AND”, “OR”) are used to 

combine detectors (Sisterson et al., 2019). One subject (S15) only had one active detector. For all 

subjects, the first few months of cEEG (median 150 days) after RNS System implantation were 

discarded to avoid periods of time when recordings are unstable (Ung et al., 2017; Sun et al., 2018) 

and to account for time needed by clinicians to optimize detection parameters (Sun and Morrell, 

2014). 

 

Data pre-processing 

Data were pre-processed as described previously (Baud et al., 2018). Briefly, changes in detection 

settings affect detection sensitivity and, therefore, absolute IEA counts. Hourly IEA counts were 

z-scored by block, where a block corresponds to an epoch with stable detection settings. In six 

subjects, 8 gaps in the datasets owing to subjects’ non-compliance with data transmission were 

interpolated (median width 53 hours, range 18–303 hours) as follows: (i) For each gap, we selected 

flanking data on each side with the same length as the gap. We linearly interpolated the mean value 

of these windowed data and added a Gaussian random noise with standard deviation (SD) given 

by the SD of the concatenated IEA data in the two windows; (ii) We used this time-series to 

compute the different multidien rhythms xmultidien,t using a Morlet wavelet transform; (iii) We 

computed the circadian distribution of the mean and SD of the IEA time-series and created two 

corresponding periodic time-series, xmeanCircadian,t and xsdCircadian,t; (iv) Finally, we filled in the gaps 

by summing the multidien and circadian time-series according to the following equation: 
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IEAFilled, multidien,  meanCircadian, sdCircadian, = +  +  tt t t tx x x x  , with (0,1)t  the Gaussian distribution. We 

filled corresponding gaps in the seizure time-series by replacing missing data with zeros. 

 

Temporal feature extraction 

Temporal features were extracted from the interpolated IEA and seizure time-series. The 

distribution of seizures over 24-h clock time and the calendar week were computed on 60% of the 

data (training and validation set), and cyclical temporal features were constructed accordingly. We 

estimated the circadian and multidien IEA cycles using a centered bandpass finite impulse 

response causal filter of order 2160 and a Hamming window. The bandwidth of the filter was set 

as b = [2/3m,4/3m], where m is the peak periodicity previously derived by wavelet transform. The 

cosine and the sine of the phase, as well as the amplitude of each circadian and multidien rhythm, 

were then extracted through a Hilbert transform of the filtered signal after removal of the mean to 

compensate for slow drifts. The ultradian features were computed from the IEA time-series using 

a sliding window of 24 h, recursively shifted by one hour (95.83% overlap). At each time step, if 

the IEA count was higher than the number of counts averaged over that window, we considered 

that point as a proxy for sleep. A binary vector representing sleep/non-sleep states was then 

computed, along with the number of hours of sleep during the preceding day. 

 

Causality 

During temporal feature extraction, we took care to maintain potentially causal temporal 

relationships so that features at time t do not use current or future values of the IEA and seizure 

time-series. Specifically, we preferred a causal filter to a wavelet transform to estimate the 
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instantaneous phase used in our forecasting model. Ultradian features were computed using only 

past values of the IEA time-series. 

 

 

 

Point-process Generalized Linear Models (PP-GLMs) 

We considered the sequence of seizure occurrence times as a realization of a stochastic discrete-

time point process, St, with the time-bin length set to ∆=1 hour, based on the sampling resolution 

in our dataset. Because more than one seizure can occur in a given hour (true for 0.2% of the hours 

on average across subjects), multiple seizure events in a given time-bin were considered as a single 

seizure event such that St ∈ {0,1}. We used PP-GLMs with a log-link function and a (conditionally) 

Poisson distribution (Truccolo et al., 2004)  to predict the probability of a seizure (i.e. forecast 

seizure risk) as a function of features extracted from the most recent seizure history, the most 

recent history of the IEA, It, and other covariates {Xt
1,Xt

2,...}. This probability is related to the 

“instantaneous” rate or conditional intensity function λ(t|·) of the point process (Daley and Vere-

Jones, 2003), here modeled as: 

 { 1,..., } { 1,..., } 1 1

1 1 1

log ( | , , ) 
p q n

k

t t p t t q t i t i j t j k t

i j k

t S I X a S b I c X        

  

        

 where p and q correspond to the number of time points for the seizure and IEA histories, 

respectively; n is the number of additional covariates, and µ (related to a background rate), ai, bj, 

and ck are the model parameters to be estimated. We modelled the conditional intensity as a 

function of the instantaneous phase θt of a multidien cycle as follows: 

 
1 1 0 1 1 2 1log ( | ) cos( ) cos( ) s in( )t t t tt b b b                  
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where θ0 is the preferred phase of the seizure process with respect to the multidien cycle, and θt is 

the corresponding instantaneous phase of the cycle. 

Fitting of the model and forecasting was computed with R, using the library tscount 

(Liboschik et al., 2017) (https://cran.r-project.org/package=tscount). 

Data were divided into chronological training and held-out test sets comprising 60% and 

40% of total data, respectively. To find the optimal length of seizure IEA history for the model, 

we used five-fold cross-validation: the validation set was chosen sequentially without replacement 

as 20% blocks of the training data, and the training set consisted of the remaining 80% of data. For 

models using recent IEA and history, parameter space exploration was run by systematically 

varying the number of days (0 to 5) and hours (0 to 10) in the history. Optimal parameters were 

obtained using a performance metric (see below) and used to train PP-GLMs on the whole training 

dataset. Final performance reported here was assessed on the held-out test dataset. 

 

Performance metrics 

Properly assessing the performance of seizure forecasting models is not a trivial problem 

(Mormann et al., 2007). When classification problems are balanced (e.g. number of seizures equals 

the number of time points without seizures), model performance is typically evaluated by 

computing the area under the receiver operating characteristic curve. However, this measure was 

previously rejected in the field of seizure prediction given that seizures are typically rare events 

(Snyder et al., 2008). For such imbalanced problems, precision-recall curves are more appropriate 

but tend to underestimate the value of a model when used for seizure forecasting, as they heavily 

penalize false positives, which could actually represent a true pro-ictal state (e.g. seizure risk being 

high the day before a seizure). Based on previous developments in the field (Snyder et al., 2008), 
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we elected to use a more intuitive measure, the area under the sensitivity (number of seizures 

correctly predicted divided by total number of seizures) versus proportion of corrected time in 

warning curve (AUC STiW). The minimum time in warning corresponds to the number of 

predicted seizures (true positives), as our sampling period (one hour or one day) is equal to our 

warning duration. As a result, the same model performance would yield lower AUC in subjects 

with more predicted seizures. We corrected for this bias by using the following definition for the 

proportion of corrected time in warning: 

 

time in warning true positives
proportion of corrected time in warning

total time true positives




   

We also report the sensitivity for 25% proportion of corrected time in warning, the proportion of 

corrected time in warning for 75% sensitivity, and the sensitivity and proportion of corrected time 

in warning that minimize the Euclidean distance between the curve and the perfect forecasting 

point (sensitivity = 100% for time in warning = number of seizures). 

The proportion of time under low-risk assumed a one-hour or one-day duration and was 

computed by setting a lower threshold under which only 5% of seizures occurred. 

 

Statistical analyses 

A Poisson process (i.e. memoryless) was used to obtain the sensitivity of a naive, chance-level 

prediction for the seizure auto-history with a given proportion of corrected time in warning (Snyder 

et al., 2008) (Fig. 1). To determine chance-level forecast of IEA, we used a phase randomization 

approach to destroy the potential statistical dependence of the seizure point process on this 

covariate. M=200 chance-level surrogate datasets were constructed from the IEA time-series. We 

used the iterated amplitude-adjusted Fourier transform algorithm (Schreiber and Schmitz, 1996) 
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to randomize the phases of the IEA time-series in Fourier space while conserving the amplitude 

distribution and the auto-correlation function (power spectrum) of the IEA. Covariates based on 

each surrogate IEA time-series were then constructed for univariate and multivariate forecasting 

models. The p-values were computed according to p = (1+#{AUCsurr > AUC})/(1+M), where AUC 

was computed on the true test dataset and AUCsurr set was computed based on the chance-level 

surrogate datasets. We used the false discovery rate to correct for multiple testing (Benjamini and 

Hochberg, 1995) with a chosen target α = 0.05. 
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Results  

Multidien rhythms enable seizure forecasting over days 

We identified 18 adults (10 males; median age 38, range 20–69) implanted with the RNS 

System (Fig. 1A) for treatment of mesial temporal (N=13) or neocortical epilepsy (N=5, table S1) 

and obtained long-term cEEG (median 439 days, range 227–1049 days) comprising hourly counts 

of IEA and electrographic seizures (Fig. 1, B and C) (Baud et al., 2018). We derived temporal 

features from the IEA time-series, including phase and amplitude of circadian and multidien 

cycles, and from the seizure time-series, including seizure times over the previous 10 days (auto-

history) (Cook et al., 2014; Karoly et al., 2017) and their circadian and weekly distributions 

(Griffiths and Fox, 1938; Karoly et al., 2018). Our dataset did not include direct sleep 

measurements (Samsonsen et al., 2016),  but we used duration of nocturnal IEA increase (an 

ultradian feature) as a proxy for sleep duration, since IEA typically peaks during normal sleep 

hours (Spencer et al., 2016; Kinnear et al., 2018; Frauscher and Gotman, 2019).  

PP-GLMs incorporating one (univariate; Fig. 1, D, E, G, and H) or all (multivariate; Fig. 1 

F and I) temporal features (see Methods) were trained on 60% (minimum of 17 seizures) of each 

subject’s hourly or daily (24-hour average) data and tested on held-out data (40% of total, 

minimum of 12 seizures). Thresholding PP-GLM output probabilities classified periods as low- or 

high-risk (Fig. 1 F and I), the latter defining hours- to days-long pro-ictal states (Fig. 1, J and K). 

Even during days of high risk, hours of low risk could be found when taking into account temporal 

features such as the circadian rhythm (Fig. 1, G to I). PP-GLMs combining phase information from 

multidien cycles of different period-lengths revealed that seizure risk was highest when the rising 

phases of these cycles aligned (Fig. 1L). 
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Figure 1. Seizure risk forecasting in one subject (S7). (A) RNS System. A cranially-implanted 

neurostimulator connects to two four-contact intracranial depth leads (bilateral hippocampi in red) and/or 
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cortical strip leads (shown unconnected). (B) RNS System cEEG includes hourly counts of IEA detections 

(here, count=2 for detection of spike-wave discharges) and (C) electrographic seizures (note different 

timescale). ‘Pre-ictal’ refers to the seconds to minutes before seizures. (D) Top, seizures timings (red dots) 

as a point process realizations on a timeline. Middle, seizures in relation to daily IEA. Bottom, multidien 

cycles derived from IEA time-series with 9- and 13-day periods. (E) Univariate daily forecasting using 

temporal features derived from the seizure (dark red) or IEA time-series (purple-blue) with number 

corresponding to AUC STiW (see Fig. 2). Model outputs shown over 7 months of held-out test data (training 

over 10 months not shown). (F) Top, multivariate forecasting based on combined temporal features with 

number corresponding to AUC STiW. Thresholding of model output classifies periods of high (red) and 

low (green) seizure risk with corresponding sensitivity in red. Most seizures (vertical dotted lines) fall 

within high-risk periods (filled red dots, true positives) but some do not (empty red dots in D, false 

negatives) resulting in 92% sensitivity. Bottom, for control, the timing of high-risk periods is treated as 

realizations of a homogeneous Poisson process (Snyder et al., 2008). (G to I) Similar computations as in D 

to F, respectively, but using hourly time-series and temporal features derived thereof. (J and K) Seizure 

risk forecasts around the time of a seizure (t=0) illustrate pro-ictal periods (red shading) lasting days (J) and 

hours (K). (L) Heat map of forecasted seizure risk as a function of phase combinations of two multidien 

cycles (D). Contour lines represent actual seizure distribution (red dots as in D), showing that both seizure 

risk and realization of this risk are maximal when the rising phases of multidien cycles align.  

 

Performance of the models were quantified using AUC of STiW (Fig. 2, A and B), as 

described by others (Mormann et al., 2007; Snyder et al., 2008; Kiral-Kornek et al., 2018), and 

IoC was tested against a model based on a Poisson process (Snyder et al., 2008). Across subjects, 

univariate daily forecasts using temporal features derived from seizure time-series—recent history, 

circadian time, and weekly distribution—showed modest IoC (Fig. 2, C and D, table S2), likely 

reflecting the phenomena of seizure clustering (Haut et al., 2005), daily peak seizure hours 

(Langdon-Down and Brain, 1929; Griffiths and Fox, 1938), and preferential days of the week 

(Karoly et al., 2018), respectively. Training models based on recent IEA history, including sleep 

duration, also produced modest IoC (Fig. 2, C and D). By contrast, the phase of multidien IEA 

cycles, but not the amplitude, was the dominant contributor to final multivariate hourly and daily 
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models. These multivariate models performed significantly better than surrogate controls (see 

Methods) for daily and hourly forecasts in 15 (mean AUC=0.73) and 16 out of 18 subjects (mean 

AUC=0.77), respectively (table S3). Based on our hypothesis of days-long pro-ictal periods, 

corrected time in warning necessarily lasts several days for each seizure, and AUCs ≥ 0.70 (12 

subjects) should be considered as high performance (fig. S1). Three and five subjects had lower 

but still significant performance for daily (AUC 0.60–0.68) and hourly (AUC 0.65–0.68) forecasts, 

respectively. The three subjects with lack of IoC had a weak multidien rhythm (S3), a high number 

of days with seizures (S4, 48%; cut-off was 50%), and relatively short duration of cEEG data (S9, 

7.4 months; cut-off was 6 months).  

Next, we quantified model performance while increasing the forecasting horizon. IoC was 

maintained up to three days in advance for daily forecasts (p=1.8 x 10-6, two-sided Mann-Whitney 

U-test) and up to 10 hours in advance for hourly forecasts (p=3.5 x 10-4, two-sided Mann-Whitney 

U-test; Fig. 2, E and F). 
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Figure 2. Daily and hourly seizure forecasting performance across all subjects. (A) Individual 

sensitivity vs. proportion of corrected time in warning (STiW) curves showing performance of daily 

forecasts using combined temporal features on held-out test data (N=18). Blue curve corresponds to the 

subject shown in Fig. 1. (C) Area under the curve (AUC) for STiW when using temporal features alone and 

combined. (E) Model performance as a function of forecasting horizon. (B, D, and F) Same as A, C, and 

E, respectively, but for hourly forecasts. Boxplots show median and upper and lower quartiles with whiskers 

extending to the distribution extremes, outliers (diamonds) excluded. Dotted line shows chance level for a 

Poisson process.  
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Characteristics of seizure forecasting 

To help determine the feasibility of our forecasting approach for future prospective trials, we 

assessed training requirements for the models, first, by systematically increasing training period 

length from 12 days to 8 months. Forecasting performance reached 95% of maximum after an 

average of 101 and 111 days for daily and hourly forecasts, respectively (Fig. 3, A and B). Next, 

the quality of cEEG signals can fluctuate over time (Ung et al., 2017) causing feature drift that 

may require model retraining (Cook et al., 2013). However, performance of our models was stable 

over a wide range of retraining frequencies (Fig. 3, C and D). Finally, phase-locking values (PLV) 

between seizures and multidien IEA cycles (Baud et al., 2018) moderately correlated with 

performance of the multivariate forecasting model (Fig. 3, E and F, r=0.56 for days and r=0.63 for 

hours, Wald test, p=0.015 and p=0.005, respectively), indicating that retrospective data can be 

used to estimate forecasting potential for individual subjects.  
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Figure 3. Training characteristics of seizure forecasting models. (A) Performance of repeated forecasts 

on held-out test data using training periods of increasing length. Curves correspond to individual subjects 

(N=18). Average across subjects in orange, shading ±1 SD. On average, performance plateaus after ~100 

days of training. (C) Forecasting performance (AUC STiW) with different intervals of retraining. (B, D) 

Same as A, C, respectively, but for hourly forecasts. (E, F) Relationship between multidien phase locking 

value (PLV) and AUC STiW for all subjects’ daily (E) and hourly (F) forecasts. Pearson correlation 

coefficients ρ=0.56 and 0.63, respectively. Higher PLV predicts better model performance. 
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Discussion  

In summary, we demonstrate for the first time that seizure risk can be accurately forecasted 

days in advance. The phase of multidien IEA cycles emerged as the dominant temporal feature for 

daily and hourly forecasts, supporting our hypothesis of days-long pro-ictal states. The 

multivariate statistical models used to generate seizure forecasts are intuitive, robust, and modest 

in their training requirements. Forecasting horizons could be extended for days while maintaining 

IoC. Based on these results, we propose a nested approach to seizure forecasting: (1) Pro-ictal 

periods are identified 24 h or more in advance based primarily on the phase of multidien rhythms; 

(2) During high-risk days, hours of highest seizure risk are determined based on circadian seizure 

distribution, recent seizure history, sleep patterns, and possibly other factors; and (3) Warnings of 

impending seizures are provided minutes in advance based on real-time detection of pre-ictal EEG 

features, taking into account prior seizure probability (Cook et al., 2013; Karoly et al., 2017). Of 

practical importance is the fact that (1) and (2) are achievable with currently-approved 

neurotechnologies, low computational power, and do not depend on real-time responses to features 

detected in the EEG (Stacey, 2018). Ultimately, forecasting risk and warning of impending 

seizures would be complementary information provided to patients.  

To date, there has been only one prospective trial of a fully functional seizure advisory 

system (Cook et al., 2013). Models used in this trial showed IoC for nine out of 15 (60%) subjects. 

Across the subset of 10 subjects included in the advisory phase, median sensitivity was 60% and 

median time in warning was 28%. By comparison, our daily forecasts performed better than chance 

in 15 out of 18 (83%) subjects, with median sensitivity of 68% and median corrected time in 

warning of 26% (table S3). A key distinction of our work is that the amount of time in warning is 

aggregated over days-long periods and is to be understood as a risk, not a deterministic state. In 
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contrast to evanescent minutes-long alerts based on real-time detection of pre-ictal periods, our 

models detect pro-ictal states and provide smoother forecasting profiles while retaining high 

performance in most subjects (fig. S1). Metaphorically, previous seizure warning systems worked 

as ground-based lightning detectors that detect electrical tension proximal to imminent discharges, 

whereas we used a weather satellite approach that tracks trends at multiple scales to determine 

local risk of a thunderstorm over upcoming days. Sharp warnings are only desirable provided a 

high degree of confidence, as too frequent transitions may add stress or cause warning fatigue. In 

a Bayesian framework, prior knowledge of seizure probability (as done here) can boost reliability 

of seizure warning systems.   

Our results have important theoretical implications: neural dynamics leading to seizures may 

not operate in a regime of self-organized criticality, as previously hypothesized (Osorio et al., 

2010). Rather, these dynamics are modulated by robust, multiscale rhythms that drive abnormal 

networks close to a tipping-point or bifurcation, which, when crossed, results in a seizure (Jirsa et 

al., 2014, p. 20). These critical transitions are typically associated with precursor signatures 

(Scheffer et al., 2009; Kramer et al., 2012; Jiruska et al., 2013; Rings et al., 2019), such as critical 

slowing (Chang et al., 2018), and their direct measurement could boost predictability. 

Additionally, we speculate that multidien fluctuations in measurable neuromodulators (Baud and 

Rao, 2018) may influence cortical excitability and cause periodic instability. 

Our study has limitations. First, the sample size was relatively small and our subjects may 

not be representative of all persons with epilepsy. Specifically, these subjects received 

neurostimulation for treatment of seizures, but we previously showed that the cycles modelled here 

are independent of this stimulation (Baud et al., 2018). Second, the study was pseudo-prospective, 

so conclusions should be regarded as hypothesis-generating rather than clinical evidence 
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(Kuhlmann et al., 2018). Still, the fact that our approach relies on an approved device currently 

implanted in over 2500 patients with intractable epilepsy sets the stage for larger, prospective trials 

in the future. Third, we did not assess sleep duration in our subjects, and the proxy biomarker we 

used (nocturnal IEA increase) is likely imprecise. Finally, our models did not incorporate common 

seizure triggers, such as stress, medication non-compliance, and alcohol, and some false negatives 

could relate to such precipitating factors (Bartolini and Sander, 2019).  

Identifying pro-ictal states days in advance marks a paradigm shift in epilepsy (Kuhlmann 

et al., 2018). Long-horizon forecasts will likely have practical advantages over last-minute 

warnings, though clinical utility will need to be tested directly in trials. Future work will also 

involve optimization of forecasting models, integration with multimodal physiological data 

(Dumanis et al., 2017; Vieluf et al., 2019), and development of next-generation seizure forecasting 

systems (Kremen et al., 2018; Stacey, 2018) involving less-invasive devices (Weisdorf et al., 

2018). 
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Data availability  

Data analyzed and code created and used in this study will be made available upon request to the 

corresponding author after final publication of the manuscript. Figures 2 and 3 were created on the entire 

dataset comprising 18 subjects. Figure 1 represent one of these 18 subjects. 

 

Acknowledgments 

Part of this research was conducted using computational resources and services at the Center for 

Computation and Visualization, Brown University.  

 

Funding 

W.T. is supported by the National Institute of Neurological Disorders and Stroke (NINDS), grant 

R01NS079533, the U.S. Department of Veterans Affairs, Merit Review Award I01RX000668, and the 

Pablo J. Salame ’88 Goldman Sachs endowed Associate Professorship of Computational Neuroscience at 

Brown University. V.R.R. is supported by the Ernest F. Gallo Foundation Distinguished Professorship in 

Neurology at the University of California, San Francisco. M.O.B. is supported by an Ambizione Grant 

from the Swiss National Science Foundation and by the Velux Foundation.  

 

Author contributions 

M.O.B., T.P., V.R.R. and W.T. designed the study. V.R.R. collected the data. V.R.R. and M.O.B. selected 

the data. T.P., M.G.L. and M.O.B. performed the analysis under W.T. supervision. T.P., M.O.B., and 

V.R.R. wrote the manuscript, which all authors edited.  

 

Competing interests 

M.O.B. is a part-time employee of the Wyss Center for Bio- and Neuro-engineering in Geneva and is a 

co-inventor on an international patent application under the Patent Cooperation Treaty number 62665486 

entitled “Neural Interface System”. V.R.R. has served as a paid consultant for NeuroPace, Inc., 

manufacturer of the RNS System, but declares no targeted funding or support from NeuroPace for this 

study. All other authors declare no competing interests. The contents do not represent the views of the 

U.S. Department of Veterans Affairs or the United States Government.  

 

All rights reserved. No reuse allowed without permission. 
not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprint (which wasthis version posted October 5, 2019. ; https://doi.org/10.1101/19008086doi: medRxiv preprint 

https://doi.org/10.1101/19008086


 

22 

 

  

All rights reserved. No reuse allowed without permission. 
not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprint (which wasthis version posted October 5, 2019. ; https://doi.org/10.1101/19008086doi: medRxiv preprint 

https://doi.org/10.1101/19008086


 

23 

 

References 

Bartolini E, Sander JW. Dealing with the storm: An overview of seizure precipitants and 

spontaneous seizure worsening in drug-resistant epilepsy. Epilepsy Behav 2019; 97: 212–218. 

Baud MO, Kleen JK, Mirro EA, Andrechak JC, King-Stephens D, Chang EF, et al. Multi-day 

rhythms modulate seizure risk in epilepsy [Internet]. Nat Commun 2018; 9[cited 2018 May 25] 

Available from: http://www.nature.com/articles/s41467-017-02577-y 

Baud MO, Rao VR. Gauging seizure risk. Neurology 2018; 91: 967–973. 

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach 

to multiple testing. J R Stat Soc 1995; 57: 289–300. 

Chang W-C, Kudlacek J, Hlinka J, Chvojka J, Hadrava M, Kumpost V, et al. Loss of neuronal 

network resilience precedes seizures and determines the ictogenic nature of interictal synaptic 

perturbations. Nat Neurosci 2018; 21: 1742–1752. 

Cook MJ, O’Brien TJ, Berkovic SF, Murphy M, Morokoff A, Fabinyi G, et al. Prediction of seizure 

likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant 

epilepsy: a first-in-man study. Lancet Neurol 2013; 12: 563–571. 

Cook MJ, Varsavsky A, Himes D, Leyde K, Berkovic SF, Oâ€TMBrien T, et al. The Dynamics of 

the Epileptic Brain Reveal Long-Memory Processes [Internet]. Front Neurol 2014; 5[cited 2019 

Jun 23] Available from: http://journal.frontiersin.org/article/10.3389/fneur.2014.00217/abstract 

Daley DJ, Vere-Jones D. An introduction to the theory of point processes. 2nd edition. NewYork: 

Springer; 2003 

All rights reserved. No reuse allowed without permission. 
not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprint (which wasthis version posted October 5, 2019. ; https://doi.org/10.1101/19008086doi: medRxiv preprint 

https://doi.org/10.1101/19008086


 

24 

 

Dumanis SB, French JA, Bernard C, Worrell GA, Fureman BE. Seizure Forecasting from Idea to 

Reality. Outcomes of the My Seizure Gauge Epilepsy Innovation Institute Workshop. eneuro 

2017; 4: ENEURO.0349-17.2017. 

Frauscher B, Gotman J. Sleep, oscillations, interictal discharges, and seizures in human focal 

epilepsy. Neurobiol Dis 2019; 127: 545–553. 

Geller EB. Responsive neurostimulation: Review of clinical trials and insights into focal epilepsy. 

Epilepsy Behav 2018; 88: 11–20. 

Griffiths G, Fox T. Rhythm in epilepsy. The Lancet 1938; 232: 409–416. 

Haut SR, Lipton RB, LeValley AJ, Hall CB, Shinnar S. Identifying seizure clusters in patients 

with epilepsy. Neurology 2005; 65: 1313–1315. 

Jirsa VK, Stacey WC, Quilichini PP, Ivanov AI, Bernard C. On the nature of seizure dynamics. 

Brain 2014; 137: 2210–2230. 

Jiruska P, de Curtis M, Jefferys JGR, Schevon CA, Schiff SJ, Schindler K. Synchronization and 

desynchronization in epilepsy: controversies and hypotheses: Synchronization in epilepsy. J 

Physiol 2013; 591: 787–797. 

Karoly PJ, Goldenholz DM, Freestone DR, Moss RE, Grayden DB, Theodore WH, et al. Circadian 

and circaseptan rhythms in human epilepsy: a retrospective cohort study. Lancet Neurol 2018; 17: 

977–985. 

Karoly PJ, Ung H, Grayden DB, Kuhlmann L, Leyde K, Cook MJ, et al. The circadian profile of 

epilepsy improves seizure forecasting. Brain 2017; 140: 2169–2182. 

All rights reserved. No reuse allowed without permission. 
not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprint (which wasthis version posted October 5, 2019. ; https://doi.org/10.1101/19008086doi: medRxiv preprint 

https://doi.org/10.1101/19008086


 

25 

 

Kinnear KM, Warner NM, Gersappe A, Doherty MJ. Pilot data on responsive epilepsy 

neurostimulation, measures of sleep apnea and continuous glucose measurements. Epilepsy Behav 

Case Rep 2018; 9: 33–36. 

Kiral-Kornek I, Roy S, Nurse E, Mashford B, Karoly P, Carroll T, et al. Epileptic Seizure 

Prediction Using Big Data and Deep Learning: Toward a Mobile System. EBioMedicine 2018; 

27: 103–111. 

Kramer MA, Truccolo W, Eden UT, Lepage KQ, Hochberg LR, Eskandar EN, et al. Human 

seizures self-terminate across spatial scales via a critical transition. Proc Natl Acad Sci 2012; 109: 

21116–21121. 

Kremen V, Brinkmann BH, Kim I, Guragain H, Nasseri M, Magee AL, et al. Integrating Brain 

Implants With Local and Distributed Computing Devices: A Next Generation Epilepsy 

Management System. IEEE J Transl Eng Health Med 2018; 6: 1–12. 

Kuhlmann L, Lehnertz K, Richardson MP, Schelter B, Zaveri HP. Seizure prediction — ready for 

a new era. Nat Rev Neurol 2018; 14: 618–630. 

Langdon-Down M, Brain R. Time of day in relation to convulsions in epilepsy. The Lancet 1929; 

213: 1029–1032. 

Liboschik T, Fokianos K, Fried R. tscount : An R Package for Analysis of Count Time Series 

Following Generalized Linear Models [Internet]. J Stat Softw 2017; 82[cited 2018 Jan 19] 

Available from: http://www.jstatsoft.org/v82/i05/ 

All rights reserved. No reuse allowed without permission. 
not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprint (which wasthis version posted October 5, 2019. ; https://doi.org/10.1101/19008086doi: medRxiv preprint 

https://doi.org/10.1101/19008086


 

26 

 

Mormann F, Andrzejak RG, Elger CE, Lehnertz K. Seizure prediction: the long and winding road. 

Brain 2007; 130: 314–333. 

Osorio I, Frei MG, Sornette D, Milton J, Lai Y-C. Epileptic seizures: Quakes of the brain? 

[Internet]. Phys Rev E 2010; 82[cited 2016 Aug 18] Available from: 

http://link.aps.org/doi/10.1103/PhysRevE.82.021919 

Rings T, Mazarei M, Akhshi A, Geier C, Tabar MRR, Lehnertz K. Traceability and dynamical 

resistance of precursor of extreme events [Internet]. Sci Rep 2019; 9[cited 2019 Jul 12] Available 

from: http://www.nature.com/articles/s41598-018-38372-y 

Samsonsen C, Sand T, Bråthen G, Helde G, Brodtkorb E. The impact of sleep loss on the 

facilitation of seizures: A prospective case-crossover study. Epilepsy Res 2016; 127: 260–266. 

Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, et al. Early-warning 

signals for critical transitions. Nature 2009; 461: 53–59. 

Schreiber T, Schmitz A. Improved Surrogate Data for Nonlinearity Tests. Phys Rev Lett 1996; 77: 

635–638. 

Sisterson ND, Wozny TA, Kokkinos V, Constantino A, Richardson RM. Closed-Loop Brain 

Stimulation for Drug-Resistant Epilepsy: Towards an Evidence-Based Approach to Personalized 

Medicine. Neurotherapeutics 2019; 16: 119–127. 

Snyder DE, Echauz J, Grimes DB, Litt B. The statistics of a practical seizure warning system. J 

Neural Eng 2008; 5: 392–401. 

All rights reserved. No reuse allowed without permission. 
not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprint (which wasthis version posted October 5, 2019. ; https://doi.org/10.1101/19008086doi: medRxiv preprint 

https://doi.org/10.1101/19008086


 

27 

 

Spencer DC, Sun FT, Brown SN, Jobst BC, Fountain NB, Wong VSS, et al. Circadian and 

ultradian patterns of epileptiform discharges differ by seizure-onset location during long-term 

ambulatory intracranial monitoring. Epilepsia 2016; 57: 1495–1502. 

Stacey WC. Seizure Prediction Is Possible–Now Let’s Make It Practical. EBioMedicine 2018; 27: 

3–4. 

Sun FT, Arcot Desai S, Tcheng TK, Morrell MJ. Changes in the electrocorticogram after 

implantation of intracranial electrodes in humans: The implant effect. Clin Neurophysiol 2018; 

129: 676–686. 

Sun FT, Morrell MJ. The RNS System: responsive cortical stimulation for the treatment of 

refractory partial epilepsy. Expert Rev Med Devices 2014; 11: 563–572. 

Truccolo W, Eden UT, Fellows MR, Donoghue JP, Brown EN. A Point Process Framework for 

Relating Neural Spiking Activity to Spiking History, Neural Ensemble, and Extrinsic Covariate 

Effects. J Neurophysiol 2004; 93: 1074–1089. 

Ung H, Baldassano SN, Bink H, Krieger AM, Williams S, Vitale F, et al. Intracranial EEG 

fluctuates over months after implanting electrodes in human brain. J Neural Eng 2017; 14: 056011. 

Vieluf S, El Atrache R, Hammond S, Touserkani FM, Loddenkemper T, Reinsberger C. Peripheral 

multimodal monitoring of ANS changes related to epilepsy. Epilepsy Behav 2019; 96: 69–79. 

Weisdorf S, Gangstad SW, Duun-Henriksen J, Mosholt KSS, Kjær TW. High similarity between 

EEG from subcutaneous and proximate scalp electrodes in patients with temporal lobe epilepsy. J 

Neurophysiol 2018; 120: 1451–1460. 

All rights reserved. No reuse allowed without permission. 
not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprint (which wasthis version posted October 5, 2019. ; https://doi.org/10.1101/19008086doi: medRxiv preprint 

https://doi.org/10.1101/19008086


 

28 

 

 

All rights reserved. No reuse allowed without permission. 
not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprint (which wasthis version posted October 5, 2019. ; https://doi.org/10.1101/19008086doi: medRxiv preprint 

https://doi.org/10.1101/19008086

