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Abstract 

Juvenile-Onset systemic lupus erythematosus (JSLE) is an autoimmune rheumatic disease 

characterised by systemic inflammation and organ damage, with disease onset often coinciding 

with puberty. JSLE is associated with more severe disease manifestations and a higher motility 

rate compared to adult SLE. Due to the heterogeneous clinical and immunological manifestations 

of JSLE, delayed diagnosis and poor treatment efficacy are major barriers for improving patient 

outcome. In order to define a unique immunophenotyping profile distinguishing JSLE patients from 

age matched healthy controls, immune-based machine learning (ML) approaches were applied. 

Balanced random forest analysis discriminated JSLE patients from healthy controls with an overall 

91% prediction accuracy. The top-ranked immunological features were selected from the optimal 

ML model and were validated by partial least squares discriminant analysis and logistic regression 

analysis. Patients could be clustered into four distinct groups based on the top hits from the ML 

model, providing an opportunity for tailored therapy. Moreover, complex correlations between the 

JSLE immune profile and clinical features of disease were identified. Further immunological 

association studies are essential for developing data-driven personalised medicine approaches to 

aid diagnosis of JSLE for targeted therapy and improved patient outcomes. 
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Introduction 

Systemic lupus erythematosus (SLE) is a chronic, multi-system autoimmune rheumatic disease 

with a complex aetiology [1]. Juvenile-onset SLE (JSLE) accounts for approximately 15% to 20% of 

all cases and is defined as the development of SLE in childhood or adolescence [2]. JSLE has a 

more aggressive disease presentation characterised by increased prevalence of malar rash, 

nephropathy, central nervous system (CNS) disease and haematological manifestations [3-6] 

compared to adults with SLE. Severe disease complications, including multiple-organ impairment 

and a notable increase in risk of cardiovascular disease, are also described in JSLE [7]. To date, 

no medications have been approved for the treatment of JSLE due to the significant paucity of 

adolescent-specific trial data [8, 9]. Primarily, the same pharmaceutical drugs are used in JSLE as 

in adult SLE; however, JSLE patients commonly require increased corticosteroids and 

immunosuppressive therapies because of their more severe disease presentation [2, 5, 10, 11]. 

The heterogeneous nature of the clinical manifestations are matched by the broad variety of 

genetic and immunological abnormalities in JSLE patients [2], making precision diagnosis 

particularly difficult in these patients. The predicament with imprecise diagnosis and poor treatment 

efficacy leading to unsatisfactory outcomes for JSLE patients emphasises the urgent need for a 

widely accepted universal diagnostic criteria and valid patient stratification for personalised 

treatment. 

Recently, in depth computational analysis of large multi-omic datasets has accelerated 

understanding of complex heterogeneous diseases such as SLE/JSLE [12-15]. Machine learning 

(ML) is a subdivision of artificial intelligence that builds analytical models by learning by example 

and has been used in a wide range of clinical areas, including medical image classification and 

prediction [16], drug discovery by predicting the optimal pharmaceutical target [17], and building 

predictive models for disease diagnosis and prognosis [18]. It relies upon data collection, data 

preparation, model training, model evaluation and improved performance cycles for self-

improvement, giving it enormous predictive power. A random forest is an ensemble ML algorithm 

for classification consisting of multitudinous decisions trees, as in a real forest. Compared to a 

single decision tree, the random forest method can increase the accuracy of the model without 

suffering from overfitting data [19]. Each decision tree is able to generate independent predictions 

and vote for the decisive classification outcome, which is more accurate than performing any 

individual decision tree model alone. 

The most recent SLE study applied three different machine learning approaches, including k-

nearest neighbours (KNN), generalized logistic models (GLM) and random forest models to predict 

disease activity using gene expression profiles. The random forest classifier outmatched other 
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approaches by achieving an 83% accuracy under 10-fold cross-validation [20]. Another study used 

random forest models to predict lupus nephritis outcomes [21].  

Here, ML approaches were applied to immunophenotyping profiles of JSLE patients and age-

matched healthy controls. An immunological signature was identified and validated using a 

predictive ML model. This signature could be translated into potential diagnostic and therapeutic 

biomarkers, including CD4+, CD8+, CD8+ effector memory and CD8+ Naïve T-cells, naïve and 

unswitched memory B-cells and total CD14+ monocytes. This work could contribute to the 

evolution of more precise diagnostic immunological signatures for heterogeneous autoimmune 

rheumatic diseases such as JSLE and could facilitate better stratification of patients for optimal 

treatment choices and improve quality of life for patients.  
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Results 

JSLE patients have a different immunological architecture to healthy controls 

To investigate the potential immunological processes driving JSLE pathogenesis, in-depth 

immunophenotyping was performed on PBMCs from 67 patients with JSLE and 39 age-matched 

healthy controls (HCs) (demographic and clinical characteristics of the study cohort are given in 

Supplementary Table 1). Gating strategies and description of immune phenotyping panel are 

shown in Supplementary Figure 1 and Supplementary Table 2. 

Initial analysis by t-test revealed that JSLE patients had a vastly different immune cell profile 

compared to HCs following 1% false discovery rate (FDR) correction for multiple testing (Figure 

1A-C). This included increased total and naïve CD8+ T-cells and CD14+ monocytes as well as 

decreased total CD4+ T-cells, CD8+ central memory (CM) T-cells, invariant natural killer T (iNKT)-

cells, naïve (Bm1) and unswitched memory B-cells and plasmacytoid dendritic cells (PDC’s). 

The immunological architecture of JSLE patients compared to HCs was further explored using 

correlation comparison analysis of the 28 immunological parameters described above. In the HC 

population significant correlations were observed between many different types of immune cells, 

most notably, significant negative correlations were identified between naïve and memory B-cell 

sub-populations and separately between naïve and memory T-cell populations (Figure 1D-upper 

triangle, and Supplementary Table 3). In JSLE, a clear global change in immunological architecture 

was evident compared to HCs: many of the immune cell relationships identified in HCs were 

inverted or exacerbated in JSLE. Most notably, an increased negative correlation between naïve 

and memory (Early-Bm5) B-cells, an increased positive correlation between switched and 

unswitched memory B-cells and an increased negative correlation between classical and non-

classical monocytes. (Figure 1D-lower triangle, and Supplementary Table 3). These results 

suggest a comprehensive alteration of the immune system in JSLE with substantial memory 

lymphocyte involvement indicating dysregulation of the adaptive immune system. 

Machine learning identifies a unique immune signature associated with JSLE 

To further assess the importance of the immunological composition in JSLE pathology, a balanced 

random forest (BRF) ML approach utilising immunophenotyping data was employed to discriminate 

between patients with JSLE and HCs (Figure 2A for BRF schematic and methods section for 

description of the approach). Each decision tree was constructed with a randomly generated 

subset of the original sample data, where only a random subset of the immunological parameters 

is considered in each split. In order to maximise the performance of the predictive model, a 

parameter-tuning test was performed by comparing model accuracy using different numbers of 

randomly selected immunological parameters in each split. BRF models with 10 immunological 

parameters (Nvariables=10) selected in each split gave the best overall model accuracy, and thus 
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were employed in the following analysis. To ensure the reliable predictive performance of the 

model, a total of 10,000 decision trees were used for model construction.  

After optimisation, the BRF model identified JSLE patients from HCs with a classification accuracy 

of 86.8% (Figure 2B). The classification error rate in the out-of-bag validation set was 10.4% and 

17.9% for predicting JSLE samples and HC samples respectively. Receiver operating curve (ROC) 

analysis of the BRF model showed an AUC of 0.909 (Figure 2C), indicating the outstanding 

efficiency of the model in discriminating JSLE samples from HC samples. From this analysis the 

diagnostic sensitivity and specificity was 89.6% and 82.1% respectively. In addition, the 

classification accuracy held a steady measure of 87.8% in the 10-fold cross-validation analysis. 

Thus, JSLE patients can be discriminated from HCs with high confidence using these 

immunological parameters and this BRF ML model. 

Important immunological parameters selected from the balanced random forest model 

The top contributing feature identified by the random forest algorithm to segregate JSLE from the 

HC was the altered frequency of CD19+ unswitched memory cells, followed by Bm1 (naïve) B-cells 

and CD14+ monocytes (Figure 2D). To further evaluate the influence of individual immunological 

parameters, individual random forest models using each of the most important variables were 

performed. The AUC of these univariate random forest models ranged from 72.18% to 84.08%, 

with the best performance given by the Bm1-only model (AUC=0.8408), followed by the CD19+ 

unswitched memory B-cell-only model (AUC=0.8297) (Figure 2E). These results confirm the 

important role of each primary immunological parameter selected in the original random forest 

model.  

Removing individual parameters from the random forest model was investigated; the distribution of 

important variables generated from the model that excluded CD19+ unswitched memory B-cells 

was similar to that of the original model (Figure 2F). Therefore, the individual frequency alteration 

of CD19+ unswitched memory B-cells and other select immunological parameters might not be the 

critical explanation for JSLE pathogenesis. Instead, the systemic alteration of the immune system 

involving multiple immune cell dysregulations might better explain the complexity and 

heterogeneity of the disease phenotype. 

Validation of the top immunological parameters associated with JSLE from the balanced 

random forest model 

To further evaluate and validate the relationship between the individual immunological parameters 

and JSLE, logistic regression analysis was applied by modelling the probability of JSLE using the 

immune profiles of the HC and JSLE cohorts. Odds ratios (ORs) and 95% confidence intervals 

produced by the logistic regression model were used to evaluate the strength of the association 

between individual immunological parameters and JSLE (Figure 3A, Supplementary Table 4). In 
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agreement with the results of the autoregulation analysis (Figure 1D), logistic regression analysis 

identified 12 out of 28 immune cell types as significantly associated with JSLE, substantiating the 

global immunological difference between JSLE and HCs. The correlation between having JSLE 

and the reduced frequency of CD19+ unswitched memory cells was relatively high (OR=0.71, 

95%CI = (0.60, 0.82)), in accordance with previous BRF classification analysis (Figure 2D). 

Variables that were selected by the optimal BRF model were all confirmed to be significantly 

associated with JSLE by logistic regression, thus strengthening the evidence of their potential 

application as diagnostic biomarkers. Of note, vastly significant negative associations were 

observed in iNKT-cells (OR = 4.59e-06, 95%CI = 1.52e-10, 0.14) and PDCs (OR=2.03e-02, 95%CI 

= 6.11e-04, 0.67); for this reason, they were removed from the forest plot.  

As a secondary validation, sparse partial least squares discriminant analysis (sPLS-DA) was 

performed to rank and validate the immunological variables by their distribution in JSLE and HCs. 

sPLS-DA is a supervised clustering machine learning approach that combines parameter selection 

and classification into one operation. By assessing the overall estimation error rate and balanced 

error rate in 10-fold cross-validation, models with four components were chosen for optimal model 

performance (Figure 3B). After applying the optimal immunophenotyping-aid sPLS-DA, a 

significant separation between JSLE and HCs was observed by plotting principal component (PC) 

2 against PC 1 (Figure 3C), indicating a good prediction ability for the model. Similar to the BRF 

analysis, a subset of discriminating immune cell types were selected and ranked by discriminating 

capability (Figure 3D-E). Unsurprisingly, the highest weighted immunological parameter was 

CD19+ unswitched memory cell (weight = -0.69), followed by Bm1 at approximately half of the 

weight (-0.34). The top 10 discriminating parameters selected from sPLS-DA were all reported as 

significantly associated with JSLE and matched the most important parameters from the BRF 

model, with the exception of CD8+ CM cells and PDCs. Thus, a distinct immune signature was 

identified and validated that could be applied diagnostically to identify JSLE patients for faster 

targeted immunotherapy (Table 1).  

Patients can be stratified based on the top hits from the ML model 

To assess whether the immunological signature identified could be used to further stratify JSLE 

patients, K-mean clustering, an unsupervised ML algorithm was used. For this analysis, 

immunological parameters fulfilling the following criteria were selected: 1) selected as top 10 

important variables in balanced random forest model; 2) selected as top 10 weighting variables in 

sPLS-DA analysis; 3) significantly associated with JSLE in logistic regression analysis. After 

screening, eight immune cell types stood out from the 28 immunological parameters: CD4+, CD8+, 

CD8 EM and CD8+ Naïve T-cells, Bm1 and unswitched memory B-cells and total CD14+ 

monocytes (Table 1). K-mean clustering was performed to partition the original JSLE patients into 
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four groups (Group(G)1, n=10; G2, n=21; G3, n=21; G4, n=15) based on the top-weighted 

immunophenotyping variables, with distinct immune profiles (Figure 4A and B). 

Clear patterns among T cell subsets were observed from the patient grouping, with significant 

differences in CD4+, CD8+, CD8+ naïve, and CD8+ EM T cell subset frequencies (Figure 4B). 

JSLE samples in group (G)1 and G3 share relatively high CD8+ T-cells and relatively low CD4+ T-

cells, whereas the opposite phenotype was observed in G2 and G4. G1 also had relatively high EM 

but low naïve CD8+ T-cells. Interestingly, no significant differences were identified between the 

groups for unswitched memory and Bm1 B-cells, CD14+ monocytes or iNKT cells. In addition, 

relative comparison revealed no demographic or clinical differences between any groups with the 

exception of complement component 3 (C3) which was significantly reduced in G1 and G3 

(Supplementary Table 5). Thus, despite the identification of a strong predictive immune signature 

associated with JSLE, patient heterogeneity in JSLE could still be important for considering 

targeted and tailored treatment. 

Immune cell subsets associated with JSLE are driven by different clinical features 

Finally, in order to explore the systemic association between immunological parameters and 

serologic clinical features a network analysis was performed. Clinical features including the 

measurement of disease activity (SLE disease activity index, SLEDAI), anti-double stranded 

(ds)DNA antibodies, complement levels, serum lipids, and other JSLE-associated biomarkers, 

were selected to examine the relationship between immune cell frequencies and JSLE disease 

features. From the overall correlation network, extensive immune correlations across clinical 

features were observed (Figure 5, Supplementary Table 6). Consistent with the previous top-

weighted immunological parameters (Table 1), frequent connections involved total CD4+ and 

CD8+ T-cells, naïve CD8 T-cells and Bm1 and unswitched memory B-cells, whereas iNKT-cells 

only correlated positively with body mass index (BMI) and C3. 

Disease activity, (SLEDAI) correlated negatively with CD4+ T-cells, naïve B-cells and intermediate 

and non-classical monocytes and positively with CD8+ T-cells, transitional and mature B-cell 

subsets. Anti-dsDNA antibody measures correlated with early Bm5 and switched memory B-cells 

with no correlation with T-cell subsets. C3 also had many significant correlations, including a 

negative correlation with total and EM CD8+ T-cells, supporting patterns associated with the k-

mean clustered groups (Figure 4 and Supplementary Table 5).  

These results suggest the potential interaction between clinical features and disease-related 

immune dysregulation, which could help explain the multifactorial, heterogeneous and systemic 

nature of the disease. 
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Discussion 

While the immunological differences between HCs and patients with adult SLE have been well 

established in previous studies [3, 22], the immune phenotype of patients with JSLE is less well 

described. Defects in immune cell subtypes in JSLE may contribute to an increased disease 

severity and pathogenesis via different immunological pathways. Due to the complexity of the 

pathogenesis and the heterogeneous nature of JSLE clinical manifestations, imprecise diagnosis 

and poor treatment efficacy remain two major obstacles that drastically affect the outcome of 

patient with JSLE [2]. Here the immune profiles of 28 immune cell subsets in JSLE patients were 

compared to HCs to explore the immunological signature of the disease and assess potential 

drivers of JSLE immunopathogenesis. This analysis identified i) a global shift of the immunological 

architecture away from HCs in JSLE patients confirmed by correlation comparison analysis; ii) 

JSLE patients were distinguished from HCs using an optimal BRF model, indicating the potential 

immunologically-directed diagnostic power of ML; iii) Patients were clustered into four distinct 

groups based on the top hits from the ML model and iv) specific clinical features were differentially 

associated with immune cell subsets in JSLE. Together, these findings contribute to JSLE 

diagnostic research, help identify meaningful therapeutic targets for JSLE treatment and uncover 

the underlying pathogenic mechanisms of JSLE. 

Precise and early diagnosis of JSLE is particularly important because morbidity and mortality can 

be significantly controlled with suitable treatment [23]. A recent study showed that in the UK, JSLE 

diagnosis based on the onset of symptoms is accomplished in a median time of two months, but 

there was a significant variation in diagnosis time (interquartile range 1–6 months) due to the highly 

heterogeneous clinical manifestation of the disease [24, 25]. In clinical practice, 38% of SLE 

patients are diagnosed with at least one other co-occurring autoimmune disease [26]. Therefore, 

symptoms common in typical SLE patients such as fatigue, hair loss and lymphadenopathy are 

normally indeterminate for JSLE diagnosis as they also present in multiple other diseases. To 

accurately diagnose JSLE, a variety of clinical features and laboratory markers are necessary in 

order to distinguish JSLE from other systemic autoimmune conditions, such as juvenile idiopathic 

arthritis and juvenile dermatomyositis, and requires expertise across multiple fields. 

An initial SLE diagnosis is highly dependent on disease presentation without comprehensive 

laboratory testing [27], which makes the diagnosis of patients with inconspicuous symptoms 

particularly challenging. Considering the importance of immunophenotyping assessments and 

autoantibody tests, it is becoming crucial to include comprehensive peripheral blood tests in first- 

and second-line diagnostics [28]. The limited number of selected immune parameters makes the 

immune-based JSLE diagnostic assay economically feasible [29, 30]. ML models with substantial 

predictive accuracy can assist clinicians with complicated diagnostic decision making, though 

extensive study is necessary to construct accurate models for specific population groups. The 
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autonomy of ML is attributable to their exceptional learning ability, which allows for continuous self-

improvement without having step-by-step instructions. 

Using ML approaches here, 8 out of 28 of the immune subtypes were confirmed as significantly 

associated with JSLE, and they contribute substantially to the classification models. In principle, 

these select immunological features can be further assessed as valuable biomarkers and designed 

as a potential diagnostic tool. In addition, the high percentage (steady measure of 87.8%) obtained 

from the 10-fold cross validation suggests a consistently reliable model performance without 

overfitting issues when applied in practice. This tool could enhance current diagnostic routines by 

providing a more in-depth view of the patient’s immunological state.  

The development and use of biologic therapies have been increasingly promising because they 

can target specific immunopathological agents and diminish SLE disease progression [31]. 

However, the efficacy of each biologic drug is unsatisfactory due to the heterogeneous 

immunopathogenesis [23]. For instance, the complete response (CR) rate of rituximab assessed 

by the British Isles Lupus Assessment Group (BILAG) was only 46.7% for SLE [32]. The 

importance of the treat-to-target approach for SLE patients is addressed by van Vollenhoven and 

colleagues [33], as the appropriate target can be identified and resolved with specific therapy for 

each patient. In addition, biological drugs have become increasingly popular in routine 

management of patients with severe JSLE, but none have been approved for use in paediatric 

patients [23]. Despite the strong predictive immune signature developed from our ML method, 

JSLE patients could still be clustered into four distinct groups based on the expression of the top 

immune cell subsets from the ML model. Significant differences between the groups were only 

observed for T-cell subsets which may be associated with C3 levels; less heterogeneity was 

observed in the frequency of unswitched memory and Bm1 B-cells and CD14+ monocytes, which 

may explain the increased predictive power of these subsets in the BRF model. Therefore, using 

immunological biomarkers to unravel the underlying disease mechanism may allow for a more 

personalised approach, improving clinical trial design, approval rate and treatment efficacy of JSLE 

patients. 

This project has a number of potential limitations. While ML approaches are well-known for their 

robustness and their capability to self-learn, many ML algorithms function like an incomprehensible 

“black box” that produces reasonable prediction results without giving complementary justification 

[34]. Since this work was designed to be heavily based on ML, the lack of a rational biological 

explanation from the results is an inevitable problem. Therefore, to uncover the immunopathogenic 

significance from selected immune features, a longitudinal study of JSLE cohorts is critically 

important for validating the association between immune cell subsets and disease. 
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Patients with JSLE often have overlapping clinical manifestations with other autoimmune diseases, 

including Sjögren’s syndrome and Rheumatoid arthritis (RA) [35]. Due to the limited cohort 

recruited for this study, patients with other autoimmune diseases were not included in the analysis. 

Therefore, the immunological differences between JSLE and other immune diseases were not 

assessed. Additionally, ML models were only trained with JSLE and HC samples. As a result, the 

performance of classification models is limited when applied to the overall population where other 

confounding diseases are present. Separating patients with autoimmune diseases that show 

extensive overlapping of symptoms will be particularly meaningful in precision diagnosis. 

In conclusion, this study investigated the ability of immunophenotyping to stratify patients with 

JSLE and demonstrated the potential of immune-based ML to develop precision diagnosis and 

personalised treatment. By applying immune-based ML approaches, a BRF algorithm 

discriminated JSLE patients from HCs with an accuracy of ~91%. Future multi-omics association 

studies have the potential to investigate the correlation between the essential immunological 

parameters and clinical manifestations, extracting the full value of the immune signatures in clinical 

practice.  
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Materials and Methods 

Patients and control samples 

Patient blood was collected from JSLE patients (n=67) attending a young adult or adolescent 

rheumatology clinic at University College London Hospital (UCLH) or Great Ormond Street 

Hospital (GOSH) respectively. Teenage and young adult healthy control (HC) blood (n=39) was 

collected at the Rayne building, UCL, from volunteers taking part in educational events such as 

young scientist days. Informed consent was acquired from both patients and healthy controls under 

the ethical approval reference: REC11/LO/0330. All information was stored as anonymised data. 

Detailed clinical characteristics and disease features were recorded from patient files and 

questionnaires (Supplementary Table 1). Disease activity was calculated via the SLE Disease 

Activity Index (SLEDAI). A score of 4 or more was used to indicate active disease [36]. 

Flow cytometry 

Surface staining 

Multiparameter flow cytometry was used to immunophenotype JSLE and HC PBMCs stained with 

fixable blue dead cell stain (ThermoFisher) and a T-cell and antigen presenting cell (APC) antibody 

panel to measure cell marker expression (28 immune cell subsets, Supplementary Figure 1 for 

gating strategy, Supplementary Methods Table 1 for list of antibodies used). PBMCs were stained 

at a density of 1x10^6 cells per well (96 well round bottom plate). This was followed by subsequent 

washes and fixation in 2% PFA before running on a flow cytometer. 

Data acquirement and analysis 

Data was acquired using a BD LSRFORTESSA X-20 flow cytometer (1x10^6-2x10^6 cells per 

sample) and analysis was carried out using FlowJo Single Cell Analysis Software (TreeStar). 

Application settings were created to begin with and Cytometer Setup and Tracking (CS&T) (BD) 

beads were run on the flow cytometer before each session to assess cytometer performance. 

Application settings were applied to panel templates each time prior to compensation to ensure 

that all immunophenotyping data was comparable over time. Gating strategies were kept 

consistent throughout and are shown in Supplementary Figure 1. 

Statistical analysis 

The clinical features and immune profile data of 67 JSLE patients and 39 HCs were collated and 

stored in Microsoft Excel. Individual identifications were replaced with randomly assigned numbers 

to ensure confidentiality. General immunophenotype data compared between HCs and JSLE 

patients or across JSLE stratified groups was performed by unpaired t-test using GraphPad Prism 
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8 software and plotted as violin plots, scatter dot plots or as a volcano plot where data was 

corrected for multiple testing by two-stage linear step-up procedure of Benjamini, Krieger and 

Yekutieli (false discovery rate (FDR) of 1%). All other statistical analyses were performed in R 

version 3.5.2 [37] and demographic variables including gender, age and ethnicity were adjusted for 

in all ML analyses. The software/packages used for processing any analysis are listed in 

Supplementary Methods Table 2 and are detailed below. 

Correlation Comparison analysis 

Correlation comparison analysis was performed to investigate the difference in immunological 

architecture between the HC and the JSLE patients. Spearman correlation tests between pairs of 

immune cell types in both the HC and the JSLE patients were performed using R version 3.5.2 

[37]. The significance for the difference in corresponding correlation between the HC and the JSLE 

patients was calculated using the cocor package in R (cocor.indep.groups function) [38]. 

Spearman correlation coefficients for pairs of immune cell types were plotted in a heat map using 

the heatmap.2 function from gplots package in R (Supplementary Methods Table 2). 

Balanced random forest (BRF) 

To stratify JSLE patients from the HC using immunophenotyping data, the balanced random forest 

(BRF) approach was used with the randomForest package in R (Supplementary Methods Table 2). 

Decision trees were built using a bootstrap dataset consisting of randomly selected samples from 

the original dataset (n = 106), allowing the same sample to be selected more than once. As the 

original sample set had an unbalanced HC:JSLE (39:67) ratio, the balanced method was applied in 

the bootstrap dataset construction. The bootstrap dataset was first selected from the minority class 

(HC, n = 39) whilst randomly drawing the exact number (n = 39) from the majority class (JSLE). 

The balanced bootstrap dataset (n = 78) was then used for model training. After creating the 

bootstrap dataset, only a random subset of immunological variables was considered at each split 

of the decision tree. Every decision tree was built by constructing a new bootstrap dataset and 

considering a newly selected subset of variables at each step. A total 10,000 decision trees were 

used for the BRF model construction, allowing the output to be stabilised. The classification output 

of the model was provided by aggregating the predictions of every decision tree and making the 

final prediction. Samples that were not included in the bootstrap dataset were termed the Out-of-

Bag (OOB) dataset and were used to validate the model performance. 

In addition, model optimisation testing was performed to determine the exact number of 

immunological variables (Nvariable) included in each subset for building the decision tree. By 

comparing the accuracy of the BRF model with different Nvariable settings (Nvariable ranging from 1 

to 28), the model with the overall lowest classification error rate was selected as the optimal model 

All rights reserved. No reuse allowed without permission. 
was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprint (whichthis version posted October 5, 2019. ; https://doi.org/10.1101/19007765doi: medRxiv preprint 

https://doi.org/10.1101/19007765


14 
 

and applied in further analysis. For model performance evaluation, the ROC plot and the AUC of 

each model was computed with the pROC package in R (Supplementary Methods Table 2). To 

assess the BRF model performance in practice, 10-fold cross validation was applied with the caret 

package in R (Supplementary Methods Table 2). 

Sparse partial least squares discriminant analysis (sPLS-DA) 

This supervised machine learning approach sPLS-DA was operated using the mixOmics package 

(Supplementary Methods Table 2) in R. Ten-fold cross-validation with 50 repetitions was applied to 

prevent model overfitting. Model optimisation was applied to select the number of components 

included in the sPLS-DA model. By comparing the overall estimation error rate and the balanced 

error rate (BER) from 10-fold cross-validation, the model with the best discriminatory performance 

was selected as the optimal model and was used for further analysis. The separation of JSLE and 

HC samples was presented by projecting the samples into the subspace constructed of component 

1 and component 2. The prediction interval of the model was calculated from the 95% confidence 

ellipses for the HC group and the JSLE group. The top 10 weighted immunological parameters 

were selected and presented by variable loading plots. 

Logistic regression for association analysis 

The association between the immunophenotypes of 28 parameters and JSLE was assessed by 

logistic regression analysis adjusted for age, sex and ethnicity. For each measurement, the odds 

ratio (OR) and the 95% confidence interval (CI) were determined. The p-value for each association 

was calculated in the logistic regression analysis. Forest plots produced with the ggplot2 package 

(Supplementary Methods Table 2) in R were used to present the logistic regression analysis 

results, with significant associations highlighted in blue (p < 0.05). 

K-means clustering analysis 

To apply the identified biomarkers in JSLE patient stratification, k-means clustering analysis was 

performed with the stats package in r. The k-means clustering algorithm repositions the specific 

amount of cluster centroids around the JSLE samples (n=67) until the most convergent grouping 

appears. The number of groupings in k-means clustering is determined by the elbow method 

(Supplementary Methods Figure 1). The immunophenotypes of the selected top hits parameter 

were standardised and laid out as a heatmap, with columns representing selected immune cell 

types and rows representing individual JSLE samples. 

Network analysis 

To visualise the systemic connection between immune cell type and clinical features, network 

analysis was performed with Force Atlas layout in Gephi (Supplementary Methods Table 2). 16 
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clinical features, namely SLEDAI score, cholesterol, high-density lipoprotein (HDL), C:HDL, low-

density lipoprotein (LDL), triglycerides, lymphocyte count, complement component 3 (C3), C-

reactive protein (CRP), double-stranded DNA (dsDNA), erythrocyte sedimentation rate (ESR), 

haemoglobin, platelet count, urine protein:creatinine ratio, neutrophil count and body mass index 

(BMI) were applied in the network analysis, covering essential measurement of disease activity, 

lipid levels, inflammation and autoantibody levels. Pearson correlation coefficients for each 

association were calculated in R. Only correlations with an absolute value of ≥0.2 are shown in the 

graph. 
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Table 1. Selection of important immunological features from ML analysis 

 

BRF sPLS-DA Logistic regression 

CD4+ ✓ ✓ ✓ 

CD4+ CM 
   CD4+ EM ✓ 

 
✓ 

CD4+ EMRA 
   CD4+ Naive 
 

✓ 
 CD8+ ✓ ✓ ✓ 

CD8+ CM 
 

✓ ✓ 

CD8+ EM ✓ ✓ ✓ 

CD8+ EMRA 
   CD8+ Naive ✓ ✓ ✓ 

iNKT ✓ ✓ ✓ 

Treg 
   Tresp 
   CD19+ 
   Bm1 ✓ ✓ ✓ 

Bm2 
   Bm2 (Transitional) 
   Bm3-Bm4 
   Early Bm5 
   Late Bm5 
   CD19+ Naive ✓ 

 
✓ 

CD19+ Switched memory 
   CD19+ Unswitched memory ✓ ✓ ✓ 

CD14+ ✓ ✓ ✓ 

Classical 
   Intermediate 
   non-classical 
   PDC's 
 

✓ ✓ 
Table 1: Selection of important immunological features from ML analysis 
28 immune cell subsets involved in the immunopenotyping of HCs and JSLE patients assessed by flow 
cytometry. There are listed and ticked where: left) selected as top 10 most important variables in the 
balanced random forest (BRF) model; middle) selected as top 10 weighted variables in sparse partial least 
squares discriminant analysis (sPLS-DA) analysis; right) significantly associated with JSLE in logistic 
regression analysis. Abbreviations: Regulatory T-cells (Tregs), invariant natural killer T-cells (iNKT-cells), 
central memory (CM), effector memory (EM), plasmacytoid dendritic cell (PDC), Bm1 (naïve), Bm2 (mature), 
Bm2’ (transitional), Bm3-4 (Plasmablasts), early/late Bm5 (memory).  
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Figure 1: The immunological architecture is altered in JSLE: PBMC’s from HCs (n=39) and JSLE 

patients (n=67) were stained ex-vivo as described in Supplementary Figure 1 (gating strategy) and 

Supplementary Methods Table-1, to evaluate expression of 28 immune cell subsets by flow cytometry. (A) 

Volcano plot displaying data points from all 28 immune cell subsets between JSLE patients and HCs. Fold 

change and Log
10

 p values are displayed from unpaired t tests. Red line=adjusted p value following 1% false 

discovery rate adjustment for multiple comparisons. B-C) Violin plots displaying B) antigen presenting cells 

and C) T-cell subsets that were significantly different between HCs and JSLE patients by unpaired t test. 

Mean+SE, *=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001. D) Correlation comparison analysis was 

performed on immune phenotyping data described in (A). Upper left of the heat map: correlation between 

pairs of immune cell types (28 immunological variables) in HCs. Spearman correlation coefficients  for each 

pair of cell types are represented by colour (red indicates a positive correlation coefficient; blue indicates a 

negative correlation coefficient). Colour concentration is proportional to the strength of the correlation 

(corresponding value shown on the right of the figure). Bottom right of the heat map: Correlation between 

pairs of immune cell types in JSLE patients, where a dark grey colour indicates the Spearman correlation 

coefficient is not signficantly different to HCs. Correlations between pairs of immune cell types which were 

significantly altered in JSLE patients are coloured (p<0.05) (red colour indicates a positive correlation 

coefficient; blue indicates a negative correlationcoefficient) and boxed (p<0.01). 
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Figure 2: Balanced random forest machine learning using immunophenotyping data can predict 
accurately JSLE patients from healthy controls. (A) Building a predictive model using a Balanced 
Random Forest approach. A large number of decision trees are used (in this case n=10,000) (see methods 
section). Demographic variables including gender, age and ethnicity were adjusted for in the model. (B) 
Comparison of 28 different immune cell subsets in healthy donors (n=39) vs JSLE patients (n=67) using the 
Balanced Random Forest Model.The out of bag (OOB) error rate was 13.2%. (C) Reciever operator 
characteristic (ROC) curve analysis and 10-fold cross validation was used to validate the model providing an 
area under the curve (AUC) of 0.908 and an accuracy of 87.80%, meaning that the model was able to 
confidently predict differentiation between HCs and JSLE. (D) The top 10 variables contributing to the 
random forest model are shown. The mean decrease in Gini is a measure of each variable to the importance 
of the model, a higher score indicates a higher importance of the variable. (E) ROC showing the sensitivity 
and specificty of the top 9 markers identified by the model. This shows that all variables are important for the 
prediction. (F) The top 10 contributing variables in the random forest model trained on a total of 27 
immunological parameters (excluding CD19+ unswitched memory cells). 
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Figure 3: Top hits from BRF approach were validated using logistic regression analysis and sparse 
Partial Least Squares Discriminant Analysis (sPLS-DA). (A) Odds ratios (95% confidence intervals, CIs) 
of 28 immunological parameters were computed with logistic regression analysis. The dotted line represents 
the line of no effect (OR=1). 95% CIs that do not cross the dotted line (OR=1) indicate a statistically 
significant association between the immune cell type and JSLE (in red). Gender, ethnicity and age were 
adjusted in the logistic regression analysis to avoid confounding effects. For better visualization of the result, 
iNKT and PDC were omitted from the figure. (B-E) sPLS-DA analysis was perfomed. (B) Model optimisation. 
Models with different component numbers were assessed by 10-fold cross-validation x10, using the overall 
error rate (blue line) and balanced error rate (BER, yellow line) to evaluate model performance. The models 
with four components gave the lowest overall estimation error rate (16.7%) and BER (17.5%) and were 
selected as optimal for sPLS-DA models. (C) sPLS-DA plot to validate the top hits from the predictive model. 
sPLS-DA is a supervised clustering method, which applies weighting to measurements which separate HCs 
and un-stratified JSLE patients. Ovals indicate the 80% prediction interval. Using this analysis, the weighting 
of each cell type in component 1 is displayed (D) as well as their factor loading value (E). Demographic 
variables including gender, age and ethnicity were adjusted for in all analysis. 
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Figure 4: Patient clustering by top-weighted immunological parameters in JSLE compared to HCs. 
(A) JSLE Patients were stratified using k-means clustering including the using immunophenotypes of the 
selected top-weighted immunological parameters. The immunophenotypes are plotted as a heatmap, each 
row representing an individual JSLE sample, which are clustered by groups. The immunophenotype is 
standardised within each column by z-score. The colour key shows the corresponding colour for z-score 
(from -5 to 5) for each column, representing the relationship to the mean of the group; red colour indicates a 
relatively high frequency of the immune cell type, and blue colour indicates a relatively low frequency of the 
immune cell type. Four groups of patients were recognised with distinct immune cell profiles. Group 1 (n=10, 
red); Group 2 (n=21, orange); Group 3 (n=21,blue); Group 4 (n=15, green). B) Scatter dot plots displaying 
top-weighted immunological parameters between the k-means clustered groups (coloured appropriately). 
Mean+SE, one-way ANOVA, Tukey's multiple comparisons test, *=p<0.05, **=p<0.01, ***=p<0.001, 
****=p<0.0001.  
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Figure 5: Network analysis identifies associations between immunological and clinical features 
JSLE. Correlations between immune cell frequency measures and JSLE clinical characteristics. Pearson 
correlation coefficients based on univariate logistic regression are represented as connecting lines between 
the clinical characteristic nodes and immune cell frequency nodes. Only correlations with an absolute r value 
of 0.2 and above are shown. Immune cell subsets with no correlation (r) values above 0.2 are not shown. P 
values and r values are displayed in Supplementary Table 4. Size of the circles (nodes) are proportional to 
the total number of connections with other nodes. Red line colour indicates a positive correlation and blue 
lines indicate a negative correlation. Node colour was grouped according to immune cell type (T-cells: green, 
B-cells: orange, monocytes: pink, PDC’s: purple) and clinical characteristic (grey). The graph was generated 
using the Force Atlas layout in Gephi 0.9.2. 
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