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Abstract 

 

The early and accurate differential diagnosis of parkinsonian disorders is still a significant 

challenge for clinicians. In recent years, a number of studies have used MRI data combined 

with machine learning and statistical classifiers to successfully differentiate between different 

forms of Parkinsonism. However, several questions and methodological issues remain, to 

minimise bias and artefact-driven classification. In this study we compared different 

approaches for feature selection, as well as different MRI modalities, with well matched patient 

groups and tightly controlling for data quality issues related to patient motion. 

 

Our sample was drawn from a cohort of 69 healthy controls, and patients with idiopathic 

Parkinson’s disease (n=35, PD), Progressive Supranuclear Palsy Richardson’s syndrome 

(n=52, PSP) and corticobasal syndrome (n=36, CBS). Participants underwent standardised T1-

weighted MPRAGE and diffusion-weighted MRI. We compared two different methods for 

feature selection and dimensionality reduction: whole-brain principal components analysis, and 

an anatomical region-of-interest based approach. In both cases, support vector machines were 

used to construct a statistical model for pairwise classification of healthy controls and patients. 

The accuracy of each model was estimated using a leave-two-out cross-validation approach, as 

well as an independent validation using a different set of subjects.  

 

Our cross-validation results suggest that using principal components analysis (PCA) for feature 

extraction provides higher classification accuracies when compared to a region-of-interest 

based approach. However, the differences between the two feature extraction methods were 

significantly reduced when an independent sample was used for validation, suggesting that the 

principal components analysis approach may be more vulnerable to overfitting with cross-

validation. Both T1-weighted and diffusion MRI data could be used to successfully 

differentiate between subject groups, with neither modality outperforming the other across all 

pairwise comparisons in the cross-validation analysis. However, features obtained from 

diffusion MRI data resulted in significantly higher classification accuracies when an 

independent validation cohort was used. 

 

Overall, our results support the use of statistical classification approaches for differential 

diagnosis of parkinsonian disorders. However, classification accuracy can be affected by group 
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size, age, sex and movement artifacts. With appropriate controls and out-of-sample cross 

validation, diagnostic biomarker evaluation including MRI based classifiers can be an 

important adjunct to clinical evaluation.  

 

 

Key words: Parkinson’s disease; Progressive supranuclear palsy; Corticobasal degeneration 

syndrome; Margnetic Resonance Imaging; Support vector machine. 
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Introduction  

 

The early and accurate differentiation of parkinsonian disorders poses a challenge for clinicians 

and trialists, which will become critical with the advent of disease modifying therapies (van 

Eimeren et al., 2019). Early symptoms of akinetic rigidity and non-motor symptoms often 

overlap between idiopathic Parkinson’s disease (PD), progressive supranuclear palsy 

(Richardson syndrome, PSP) and degenerative corticobasal syndrome (CBS, and its 

pathological counterpart corticobasal degeneration, CBD). PD is the most common form of 

parkinsonism, with approximately 140 cases per 100,000 (Porter et al., 2006) whereas PSP and 

CBS are each approximately 3 per 100,000 (Coyle-Gilchrist et al., 2016). Misdiagnosis of PSP 

and CBS is common, often as PD, taking on average nearly three years from initial symptoms 

to diagnosis, while many cases remain undiagnosed.  

 

There is a pressing need for reliable biomarkers to differentiate these disorders, not only to aid 

diagnosis in early or atypical cases, but to monitor progression in trials and to support ante 

mortem studies of pathogenesis (van Eimeren et al., 2019). Biomarkers should be objective and 

observer-independent, reproducible, informative about the underlying biology and ideally non-

invasive. Candidate biomarkers for parkinsonian disorders have included cognitive tests 

(Aarsland, 2003; Pillon et al., 1995; Rittman et al., 2013) and assays of cerebral spinal fluid, 

serum or urine such as neurofilament-light (Jabbari et al., 2017; Constantinescu et al., 2019), 

supplementing those clinical features that have high clinicopathological correlations 

(Alexander et al., 2014; Gazzina et al., 2019; Respondek et al., 2017).  

 

Magnetic Resonance Imaging (MRI) provides a set of potential biomarkers (Whitwell et al., 

2017), with the advantages of being non-invasive, widely available and versatile. Multiple MRI 

methods have the potential to inform about the underlying neural systems and the changes 

resulting from specific pathologies. Pathognomic radiological signs have been reported, such 

as the “mickey mouse” and “hummingbird” signs of midbrain atrophy in PSP, but such 

abnormalities are insensitive, especially in early stage disease when there would be most to 

gain from disease modifying therapies. Moreover, visual assessment of MRI images is 

dependent on the experience of the observer.   
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Automated methods have been developed using volumetric or intensity change in grey matter 

(GM), for example voxel based morphometry (VBM).  Most VBM studies of grey matter in 

degenerative parkinsonian syndromes have compared patients to healthy controls (Beyer, 

Janvin, Larsen, & Aarsland, 2007; Brenneis et al., 2004; Cordato, Duggins, Halliday, Morris, 

& Pantelis, 2005; Ghosh et al., 2012; Summerfield et al., 2005; Yarnall et al., 2014), whereas 

few have compared different patient groups against each other (Boxer et al., 2006; Price et al., 

2004). Other studies have compared subgroups within each disorder, according to cognitive 

impairment (Mak et al., 2015; Paviour, Price, Jahanshahi, Lees, & Fox, 2006) or 

neuropsychiatric symptoms (Ghosh et al., 2012; Yao et al., 2014). White matter (WM) changes 

have also been described, using VBM or diffusion tensor imaging (DTI) measures such as the 

fractional anisotropy (FA) and mean diffusivity (MD). Differences are observed for PD patients 

vs controls (Goveas et al., 2015; Rae et al., 2012; Yoshikawa, Nakata, Yamada, & Nakagawa, 

2004; K. Zhang et al., 2011), PD vs PSP (Seppi et al., 2003) and PD vs CBS  (Boelmans et al., 

2010). A meta-analysis of 43 DTI studies in parkinsonian syndromes (Cochrane & Ebmeier, 

2013) suggested the potential of diffusion-weighted imaging to improve the differential 

diagnosis of parkinsonism. However, accuracy was often not greater than clinical criteria, 

sample sizes were often small, and the utility for single subject decision-making was limited.  

 

Here we propose that better classification can be achieved by alternative approaches to 

magnetic resonance imaging data, using statistical classifiers such as support vector machines 

(SVM). Mulitvariate data features from a training set of data (subjects) can be used to build a 

model to classify a new dataset (one or more new subjects). In addition to individual subject 

classification, these methods can identify which features underlie the classification (i.e. 

indicative of relevant pathological features) and indices of confidence or typicality that could 

be used to assess progression. Statistical classifiers have been successfully applied to a number 

of neurological and psychiatric disorders, including schizophrenia (Caan et al., 2006; 

Ingalhalikar, Kanterakis, Gur, Roberts, & Verma, 2010), Alzheimer’s disease, frontotemporal 

dementia (Davatzikos, Resnick, Wu, Parmpi, & Clark, 2008) and autism spectrum disorder 

(Bloy et al., 2011; Ingalhalikar et al., 2010; Ingalhalikar, Parker, Bloy, Roberts, & Verma, 

2011). Haller and colleagues (Haller et al., 2012) used DTI data from 17 PD patients and 23 

patients with other forms of “atypical parkinsonism” (including typical PSP and multisystem 

atrophy). Using tract based spatial statistics (TBSS), a non-linear SVM algorithm, and a 10-

fold cross-validation, classification between PD and other patients was accurate (97.5 ± 7.5%, 

depending on the number of features used for model training). In combination with manual 
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regions-of-interest selection, classification accuracies >95% were also achieved by Proedoehl 

and colleagues (Prodoehl et al., 2013) in binary differentiation of PD and PSP. T1-weighted 

MRI can also support binary classification, >85% (Focke et al., 2011; Salvatore et al., 2014).  

Unfortunately, whilst previous studies have demonstrated success for differential diagnosis in 

parkinsonism, significant limitations and methodological questions remain. First, many studies 

have used poorly matched groups in terms of age or clinical variables, and most studies have 

used different numbers of subjects in each group. The latter is of particular concern because 

commonly used statistical classifiers which minimize the classification error, such as support 

vector machines, are liable to inflate accuracy from unbalanced datasets (see for example (He 

& Garcia, 2009; Tang, Zhang, & Chawla, 2009)).  

 

A second problem relates to the selection of features used by the classifier. For example, 

previous studies have used either mean values from specified regions or individual voxel data, 

including manual selection with its operator dependence. In addition, studies have rarely 

compared MRI modalities to assess whether T1-weighted or diffusion-weighted images (DWI) 

are most useful for differential diagnosis of movement disorders.  

 

A third problem concerns the validation of results, which is challenging with small group sizes. 

Most studies have included small numbers of subjects, and therefore employed cross-validation 

techniques. However, the use of the same subjects for training and validation is controversial 

and may inflate classification accuracies. A more conservative approach is to split the data in 

two independently acquired groups: one for training and the other for validation (Salvatore et 

al., 2014). 

 

Finally, most studies have failed to consider how different levels of motion during the MRI 

acquisition affect classification accuracies. This issue is particularly important when working 

with patients with movement disorders. Head motion results in artefacts and smoothing of MRI 

data. Different levels of motion across groups could significantly contribute to classifier’s 

apparent success in separating patient groups.  

 

In the present study we aimed to address these four methodological issues in the context of 

differential diagnosis of PD, PSP and CBS. Specifically, we compare three equal-sized and 

closely-matched groups of patients; we used automatic feature selection of grey and white 

matter signals; and we undertook an initial leave-two-out cross-validation followed by 
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validation in an independent data set. The comparison of well-matched groups, with automatic 

feature selection is a challenge for imaging markers, but one that is necessary to develop 

unbiased and useful clinical research tools.  

 

Methods 

 

Subjects 

Our analysis sample was drawn from a cohort of 69 healthy controls (mean age 67.3 years, 

range 51 to 84), 35 people with idiopathic PD (mean age 66.9 years, range 46 to 76, UK 

Parkinson’s disease brain bank criteria), 52 people with probable PSP (mean age 71.9 years, 

range 51 to 92, MDS clinical diagnostic criteria for PSP-Richardson’s syndrome (Höglinger et 

al., 2017)), and 36 people with probable CBS (mean age 66.9 years, range 39 to 88, (Armstrong 

et al., 2013)). A neurologist experienced in movement disorders undertook the UPDRS-III 

motor subscale for all patients. For the cross-validation analysis (see below), 19 cases per group 

were selected so as to match for age, sex, MRI motion, and similar UPDRS-III score in the 

patient groups. Local Ethical Committee approval and written informed consent were obtained. 

All participants had mental capacity to consent under UK law.  

 

MRI data acquisition 

Diffusion and T1-weighted MRI data were acquired for all subjects using a 3T Siemens Tim 

TRIO scanner at the Wolfson Brain Imaging Centre. Diffusion MRI data was acquired with a 

twice refocused spin echo (TRSE) sequence (Reese, Heid, Weisskoff, & Wedeen, 2003). 

Diffusion sensitising gradients were applied along 63 non-collinear directions with a b-value 

of 1000s/mm2, together with one acquisition without diffusion weighting (b=0). The remaining 

imaging parameters were: TR=7800 ms, TE=90ms, matrix=96×96, field of view 

(FoV)=192×192 mm, slice thickness=2 mm without gap, interleaved slice acquisition, and the 

PAT mode was GRAPPA with an acceleration factor of 2. A high resolution 3D T1-weighted 

MPRAGE image was also acquired (TR=2300 ms, TE=2.98 ms, FOV=256×240 mm, 

matrix=256×256, slice thickness=1 mm). 

 

Quality assurance and exclusion criteria 

MRI data in general, and diffusion MRI in particular, can suffer from significant distortions in 

the presence of head motion. Given the motor deficits associated with parkinsonism, metrics 
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of motion are especially important to ensure the quality of the data across control and patient 

groups. Estimating the amount of motion in 3D MPRAGE images is not trivial. We used 

SPM12 (www.fil.ion.ucl.ac.uk/spm/) to estimate the level of smoothness associated with the 

MPRAGE images of each subject. While not a direct measure of head motion artefacts, the 

inherent smoothness in the data correlates with motion. Firstly we performed full image 

segmentation using the Segment tool in SPM12 (Ashburner & Friston, 2005). Secondly, the 

spm_estimate_smoothness function was used to estimate the inherent smoothness associated 

with soft tissue outside the brain, cerebral spinal fluid (CSF) and bone. This function returns a 

spatial smoothness estimator based on the variances of the normalised spatial derivatives as 

described in (Kiebel, Poline, Friston, & Holmes, 1999). The estimated smoothness values were 

then compared across controls and patients, and significant outliers (>2 standard deviations 

from the mean) were removed from further analysis.  

 

For the diffusion MRI data we estimated motion artefacts in two ways. Firstly, we used the 

eddy_correct function in FSL v5.0.9 (www.fmrib.ox.ac.uk/fsl) to perform affine registration 

between each diffusion weighted volume and the b=0 image. The output log files from 

eddy_correct were used to estimate the absolute displacement between each diffusion MRI 

volume and the b=0 images, as well as the relative displacement between a given volume and 

its predecessor. Significant outliers (>2 standard deviations from the mean) on either metric 

were identified and removed from further analysis. Subjects were also excluded if they moved 

more than 3mm (1.5 x voxel size) between any two diffusion MRI volumes. Secondly, we used 

an automated method for detection of striping patterns in the data (Neto-Henriques, Cam-CAN, 

& Correia, 2016). Stripping artefacts are caused by spin history and are a common consequence 

of head motion when interleaved MRI acquisitions are used. Subjects with more than five 

volumes affected by stripping artefacts were excluded. 

 

Cross-validation and validation groups 

The remaining subjects were divided into two subgroups: a cross-validation group and an 

independent validation group. The subjects included in the cross-validation group were 

selected to satisfy the following criteria: 

‐ Equal numbers of subjects across the four control/patient groups 

‐ No significant differences in motion metrics across the four control/patient groups 

‐ No significant age or sex differences across the four control/patient groups 
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‐ UPDRS-III scores matched for all three patient groups 

 

All remaining subjects who had not been excluded by the motion quality control metrics made 

up the validation group.  

 

Pre-processing of MRI data 

The T1-weighted MPRAGE images were segmented and normalised into MNI space using 

SPM12. Firstly, the MPRAGE images were segmented into grey and white matter maps using 

Segment (Ashburner & Friston, 2005). For this step, six tissues types were considered (grey 

matter, white matter, CSF, bone, soft tissue outside the brain, and air and other signals outside 

the head). Segmentation was then followed by DARTEL (Diffeomorphic Anatomical 

Registration Through Exponentiated Lie Algebra) (Ashburner, 2007), an algorithm which 

increases the accuracy of inter-subjects alignment by modelling the shape of each brain using 

three parameters per voxel, and generating an increasingly sharp average template over several 

iterations. Finally, the sixth iteration of the DARTEL template was used to generate spatially 

normalised and Jacobian scaled grey matter images in MNI space (Ashburner, 2009; Mechelli, 

Friston, Frackowiak, & Price, 2005). 

 

The diffusion MRI data were skull-stripped and motion corrected using FSL v5.0.9, and the 

diffusion tensor model fitted using a non-linear fitting algorithm implemented in C and matlab. 

Fractional Anisotropy (FA) and mean diffusivity (MD) were computed for each subject. FA 

and MD maps were transformed onto a common template space using DTI-TK, a tensor-based 

registration approach (Hui Zhang et al., 2007; H Zhang, Yushkevich, Alexander, & Gee, 2006), 

and a study-specific population based atlas (Hui Zhang, Yushkevich, Rueckert, & Gee, 2007). 

 

Feature extraction 

For the GM maps obtained from segmentation of T1-weighted images, feature extraction was 

performed in two ways: (A) using the cortical and subcortical regions-of-interest from the 

Harvard-Oxford Atlas (http://neuro.imm.dtu.dk/wiki/Harvard-Oxford_Atlas), and (B) using 

principal component analysis (PCA).  

 

For the region-of-interest analysis, 63 grey matter cortical and subcortical ROIs were applied 

to the spatially normalised GM maps for each subject, and the average GM density value per 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted September 25, 2019. ; https://doi.org/10.1101/19007575doi: medRxiv preprint 

https://doi.org/10.1101/19007575
http://creativecommons.org/licenses/by-nd/4.0/


ROI calculated, hence generating 63 independent features per subject (Figure 1A). For the PCA 

analysis, a GM mask was first created by thresholding the GM template obtained from 

DARTEL. This mask was then applied to the images from each subject, and the voxels 

contained within the mask were included in a multi-subject PCA analysis, resulting in N-1 

independent features, where N represents the number of subjects included in this analysis 

(Figure 1B).  

 

The same two methods for feature extraction were applied to the FA and MD maps. For the 

ROI approach, the white matter regions from the EVE atlas (http://lbam.med.jhmi.edu/) were 

used to extract the average FA and MD values for each region and subject (Figure 1C). For 

PCA, a white matter mask was first generated by thresholding the FA map corresponding to 

the study-specific template. Voxels selected from the FA and MD maps of all subjects were 

included to generate 2N-1 independent features (Figure 1D).  

 

Feature ranking and statistical classification 

Four parallel streams of subsequent analysis were performed, one for each data type and feature 

extraction method combination: (A) GM maps + ROIs, (B) GM maps + PCA, (C) diffusion 

maps + ROIs, and (D) diffusion maps + PCA.  

 

Following feature extraction, the features generated by each approach were ranked separately, 

using the Fisher Discriminant Ratio (FDR): 

𝐹𝐷𝑅 ൌ
ሺ𝜇ଵ െ 𝜇ଶሻଶ

𝜎ଵ
ଶ ൅ 𝜎ଶ

ଶ  

 

where 𝜇௜ and 𝜎௜
ଶ denote the mean and the variance of the i-th class, respectively. 

 

The top feature for each stream was used in combination with support vector machines (SVMs) 

to construct a statistical model for pairwise classification of healthy controls, PD, CBS and 

PSP. The remaining features were added to the model, one at a time, in the order of their FDR 

ranking, and the classification accuracy of each model as a function of the number of features 

was calculated. The SVM analysis was performed using the LIBSVM package in matlab 

(Chang & Lin, 2011).   
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Figure 1 – Analysis pipeline for each combination of data type and feature extraction method. (A) 
T1-weighted MRI and ROIs. (B) T1-weighted MRI and PCA. (C) Diffusion MRI and ROIs. (D) 
Diffusion MRI and PCA. 
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To assess the accuracy of the four analysis streams, we first used leave-n-out cross-validation, 

in view of the modest sample size of the well-matched groups. The N available subjects are 

randomly split into a training set of size (N-n) and a test set of size n. In this study, n=2 for the 

pairwise comparisons, with the testing set including one subject from each group. The training 

set is used to build a model and the validation of the resulting classifier is performed on the 

training set. Multiple rounds of cross-validation are then performed for different permutations 

of the two subjects left out of the training set. The average classification accuracy across all 

iterations of the cross-validation process is reported. However, this method may inflate 

classification accuracies. Therefore the leave-two-out cross-validation was supplemented by 

an independent validation using a different set of cases altogether when estimating the model’s 

accuracy. For the cross-validation approach, feature ranking using FDR was recalculated for 

each fold using the subjects in the training subgroup only, and the same ranking applied to the 

two subjects left out. For the independent validation, the FDR ranking was determined using 

the cross-validation group only, and the ranking order applied to the subjects in the validation 

group.  

 

Data availability 

Participant consent prevents open data access but academic (non-commercial)  requests for 

data sharing would be welcome. Please contact the senior author. The principal softwares used 

(SPM, FSL, libsvm and Matlab) are publically available. 

 

 

Results 

 

Quality assurance and subject exclusion 

Figure 2 shows examples of MRI images for the subjects excluded by the motion quality 

control assessment. Our exclusion criteria reduced the sample size to 62 controls (7 subjects 

excluded by DWI motion metrics), 32 PD (1 subject excluded by DWI motion metrics, 2 

subjects excluded by both DWI and MPRAGE metrics), 33 PSP-Richardson’s syndrome (16 

subjects excluded by DWI motion metrics, 3 subjects excluded by both DWI and MPRAGE 

metrics) and 26 CBS (6 subjects excluded by DWI motion metrics, 4 subjects excluded by both 

DWI and MPRAGE metrics). Overall, the PSP group was the most affected by motion, with a 

total of 19 subjects excluded.  
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Figure 2 – Examples of MRI images for subjects excluded by the motion quality control 
procedures. (A) T1-weighted MPRAGE for a PSP patient identified as outlier by the estimated 
smoothness of the segmented soft tissue outside the brain. (B) Two consecutive slices for the 
diffusion MRI data for a PSP patient identified as an outlier by the absolute and relative 
displacement metrics. (C) Diffusion MRI data for a CBS patient identified by the automated 
stripe detection algorithm. 
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Cross-validation and validation groups 

After quality assurance, patient groups were confirmed to be matched for motion metrics, age 

and sex using ANOVA or chi-squared, as appropriate. However, the 62 controls were younger 

than the patients, and included a larger proportion of females. To remove these confounding 

differences, we randomly removed females and younger subjects to reach a sample of 43 age- 

and sex-matched healthy controls.  

 

To form the cross-validation group, 19 patients were selected with each diagnosis, matching 

demographics and UPDRS-III, with 19 controls matching them for motion metrics, age and 

sex. The remaining 58 subjects (24 controls, 13 PD, 14 PSP and 7 CBS) formed the independent 

validation test cohort.  

 

Table 1 shows the demographic and neuropsychological evaluation scores for all groups. 

Motion quality control metrics are also shown. For the cross-validation group, there was no 

significant difference by diagnosis in sex, age or UPDRS-III score. There was a significant 

difference in MMSE score across the different groups, and post-hoc tests revealed that both 

PSP and CBS patients had a lower MMSE score when compared to healthy controls and PD 

patients. All motion metrics were matched across groups.  For the independent validation group 

age and head motion were matched across groups, but there were mild differences between 

PSP and controls or CBS in terms of age or smoothness respectively (see Table 1). 

 

Cross-validation results 

A summary of the cross-validation classification results obtained is presented in Figure 3. The 

mean and maximum accuracies were calculated over the number of features used for 

classification (ROIs or PCA components). The accuracy results obtained for the pairwise 

comparisons are all above chance level (50%), however some of these are lower than previous 

reports, e.g. (Haller et al., 2012; Salvatore et al., 2014), in which participants were not 

specifically matched for demographic and clinical features and/or motion.  

 

The strongest results were achieved when PCA was used as the method for feature extraction, 

resulting in mean accuracies above 80% and maximum accuracies above 90% for all pairwise 

comparisons, for both diffusion and T1-weighted data. The accuracies obtained with PCA were 

always greater than the corresponding ones obtained with ROIs for all pairwise comparisons.  
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Controls 

 

PD 

 

PSP 

 

CBS 

Difference 

between 

groups 

Cross-validation group 

sample size 19 19 19 19 -- 

sex f/m (%) 36.8/63.2 47.4/52.6 42.1/57.9 52.6/47.4 p=0.786a 

age (years) 66.2±1.6   

(54.9-81.1) 

65.0±1.9    

(46.9-76.9) 

69.1±1.3   

(60.8-83.2) 

68.2±2.3   

(39.1-88.2) 

p=0.373b 

UPDRS-III score -- 20.5±2.1      

(5-32) 

27.2±3.4      

(8-44) 

28.9±3.8      

(2-51) 

p=0.110c 

MMSE score 29.1±0.2      

(27-30) 

29.1±0.3      

(26-30) 

25.9±0.8      

(19-30) 

26.7±0.9      

(16-30) 

p<0.001d 

MPRAGE 

smoothness FWHM 

2086.5±21.0 

(1856.5-

2389.5) 

2069.4±36.7 

(1788.7-

2392.6) 

2163.9±34.0 

(1855.7-

2458.8) 

2117.1±38.6 

(1887.9-

2450.1) 

p=0.289e 

 

Absolute head 

displacement 

(DWI) 

1.62±0.09 

(1.30-2.77) 

1.85±0.17 

(1.25-3.82) 

1.71±0.11 

(1.27-3.38) 

1.61±0.08 

(1.25-2.43) 

p=0.447f 

Relative head 

displacement 

(DWI) 

0.51±0.02 

(0.26-0.75) 

0.48±0.03 

(0.13-0.71) 

0.42±0.02 

(0.28-0.59) 

0.44±0.03 

(0.18-0.60) 

p=0.119g 

Independent validation group 

sample size 24 13 14 7 -- 

sex f/m (%) 58.3/41.7 38.5/61.5 50.0/50.0 42.9/57.1 p=0.6545h 

age (years) 69.7±1.4   

(51.6-81.6) 

69.1±1.9   

(54.1-75.8) 

70.9±1.9   

(57.9-84.1) 

62.2±3.0   

(53.1-75.0) 

PSP>CBS 

p<0.05i 

MPRAGE 

smoothness FWHM 

1989.6±24.7 

(1781.9-

2238.2) 

2048.9±46.2 

(1824.9-

2380.2) 

2092.1±28.5 

(1937.1-

2266.6) 

2061.2±78.9 

(1863.2-

2364.5) 

Controls<PSP  

p<0.05j 

Absolute head 

displacement 

(DWI) 

1.46±0.04 

(1.19-1.98) 

1.47±0.08 

(1.27-2.44) 

1.59±0.06 

(1.31-2.01) 

1.62±0.11 

(1.25-1.96) 

p>0.05k 

Relative head 

displacement 

(DWI) 

0.48±0.02 

(0.23-0.70) 

0.48±0.02 

(0.25-0.59) 

0.44±0.03 

(0.32-0.61) 

0.48±0.05 

(0.30-0.65) 

p>0.05l 
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Table 1 – Demographic, neurophysiological evaluation scores and quality control information. 

Data are shown as mean ± standard error (range). aChi-squared test, bANOVA, cANOVA, 
dANOVA followed by post hoc tests (Control>CBS p<0.01, Control>PSP p<0.05, PD>CBS 

p<0.01 and   PD>PSP p<0.05), eANOVA, fANOVA, gANOVA, hChi-squared test, idue to the 

different samples sizes pairwise comparisons were conducted using t-tests (PSP>CBS p=0.035, 

all other comparison p>0.05), jdue to the different sample, sizes pairwise comparisons were 

performed using t-tests (Control<PSP p=0.011, all other comparison p>0.05), k,ldue to the 

different sample sizes pairwise comparisons were conducted using t-tests, all of which resulted 

in p>0.05.     

 

 

For example, this difference in accuracy was 24% for the classification of controls vs PD 

patients using diffusion data, and 26% for the classification of PSP vs CBS patients using T1-

weighted data.   

 

The results obtained with diffusion and T1-weighted data were generally similar. However, 

there were also some notable differences. For example, using diffusion data and white matter 

ROIs, the mean classification accuracy for controls and PD patients was 61.26%, which was 

significantly lower that the accuracy obtained with T1-weighted data and grey matter ROIs 

(71.96%). In contrast, the diffusion data resulted in better differentiation between PSP and CBS 

patients (79.84% for diffusion data and 62.16% for T1-weighted GM maps). While neither data 

type outperformed the other in all cases, the T1-weighted data always resulted in higher 

classification accuracies for the comparisons between controls and CBS, and between PD and 

CBS patients. In contrast, diffusion data produced higher accuracies when comparing controls 

and PSP patients, and PSP and CBS patients. 

 

Figure 3 also shows plots for classification accuracy, sensitivity and specificity as a function 

of the number of features included in the model (number of ROIs or PCA principal 

components). Sample plots for the comparisons between controls and PSP and between PD 

and PSP are shown as representative examples. When PCA is used for feature selection, 

accuracy, sensitivity and specificity generally increase as more features are added to the model 

until a plateau is reached at around 15 components for T1-weighted data and 15-30 for diffusion 

data; this level of accuracy is generally sustained until the last 2-5 features are added, which 

results in a decrease in classification accuracy, specificity and sensitivity. This observation is 
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consistent with previous studies (Salvatore et al., 2014) and was to be expected since features 

were first selected for their ability to explain variability in the data (PCA), followed by ranking 

in terms of each feature’s ability to discriminate between the two subjects classes (FDR). These 

two levels of feature ranking ensure that noisy information is concentrated in a small number 

of features.  

 

 

 

Figure 3 – Classification accuracies achieved for pairwise comparisons using a leave-two-out 
cross-validation approach. For each pairwise comparison, two patients, one from each group, were 
left out of the training phase for each cross-validation fold and used to estimate model accuracy. 
The classification accuracies presented correspond to the mean and maximum accuracies obtained 
when different numbers of features (ROIs or PCA components) are included in the statistical 
model. 
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This pattern, however, is no longer observed when ROIs are used as features.  This is expected, 

since only the FDR criterion has been used for feature ranking. FDR ranking is repeated for 

each cross-validation fold, and therefore the ranking of individual features will be different for 

each round of the cross-validation process. The ROIs were selected using anatomical criteria 

and therefore stay the same for each cross-validation round, while PCA features are selected 

for their ability to explain variance in a data-driven approach which is also repeated per cross-

validation fold. For this reason the noisy information is contained in a small number of features 

when PCA is used, while for ROIs the noise is more evenly distributed across features.  

 

Independent validation results 

Figure 4 shows a summary of the results obtained when the independent validation sample was 

used to estimate model accuracy. The mean and maximum accuracies were calculated over the 

number of features used for classification (ROIs or PCA components).  

 

Training and testing in less well matched independent sets of subjects resulted in mean 

classification accuracies in the range 44.37-71.87% for T1-weighted data and 57.63-90.49% 

for diffusion data. This decrease in classification accuracy partly reflects the overestimation 

inherent to a cross-validation approach, but may also reflect less stringent matching (Table 1). 

However, when diffusion metrics (FA and MD) were used the decrease in accuracy was less 

marked, and in some cases the accuracy was actually higher in the independent dataset when 

ROIs were used as features. The average decrease in mean classification accuracy from cross-

validation to independent samples for diffusion data was 10.9% (range: 1.52 to 27.08%). For 

the comparisons between controls and CBS, controls and PSP,  PD and CBS, and PD and PSP 

the mean classification accuracy in the independent sample increased by 8.61%, 8.05%, 5.01% 

and 11.85%, respectively, when compared to the cross-validation results.   

 

For T1-weighted GM maps, the mean classification accuracies in the independent validation 

group decreased on average 22.85% (range: 9.77 to 39.71%), and the accuracies achieved were 

no longer significantly above chance for several group comparisons. The decrease in mean 

classification accuracy was more accentuated when PCA was used for feature selection.  

 

Figure 4 also shows sample representative plots for classification accuracy, sensitivity and 

specificity as a function of the number of features included in the model (number of ROIs or 
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PCA principal components). In some cases there was an initial increase in classification 

accuracy, sensitivity and specificity as more features were added to the model, but in general 

the results obtained were very stable and independent from the number of features used.   

 

 

 

 

 

Figure 4 – Classification accuracies achieved using the independent validation group. 76 subjects 
(19 from each group) were used to train the model, and validation was performed on 58 unseen 
patients and controls. The classification accuracies presented correspond to the mean and 
maximum accuracies obtained when different numbers of features are included in the statistical 
model (ROIs or PCA components). 
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Discussion 

 

Our study addresses four key issues in the use of MRI for diagnostic or classification 

biomarkers for parkinsonian disorders. We show that even with well-matched groups of equal 

size, and with control of differential motion artefacts, machine leaning with cross-validation 

provides accurate differential diagnosis of PD, PSP and CBS. Good diagnostic accuracy can 

be achieved using either grey or white matter features from standard structural and diffusion 

MRI sequences respectively, but diffusion-weighted images provided better generalisaiton to 

an independent validation dataset. Using a principal components analysis over grey or white 

matter provides higher classification accuracies compared to a set of anatomical regions-of-

interest.  

 

Close matching by demographics, clinical severity and motion artefacts is essential to properly 

evaluate and compare candidate biomarkers. Without such matching, the apparent success of 

some previous imaging-based biomarkers in distinguishing clinical groups may have been 

inflated by individual differences that are unrelated to the structural and neuropathological 

consequences of disease. For example, in unselected cases, motion artefacts were greater in 

patients than controls: 26% of patients exceeded our motion criteria compared to only 10% of 

controls. Differences were also observed between patient groups: 9% of PD patients (3 of 35) 

were excluded, compared to 28% of CBS patients (10 of 36) and 37% of PSP (19 of 52) 

patients.  

 

Machine learning tools such as support vector machines are very sensitive to systematic 

patterns in the data but are agnostic as to the origins of such patterns e.g. motion versus 

neuropathology versus atrophy. The very high classification accuracies between patient groups 

reported in previous studies (100% in some studies), may have been inflated by different levels 

of motion. The effects of head motion in MRI data analysis are well documented in the 

literature. For example, head motion during acquisition of 3D T1-weighted MRI images results 

in reduced grey matter volume estimates (Reuter et al., 2015), while head motion in a diffusion 

MRI acquisition can result in spurious group differences in diffusion metrics (Yendiki, 

Koldewyn, Kakunoori, Kanwisher, & Fischl, 2014). Similarly, the comparison of groups at 

different stages of disease, or different levels of severity, would confound group-membership 

with severity. Unfortunately, there is no universal severity or staging rating scale across 
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parkinsonian disorders. The PSP-rating-scale (Golbe & Ohman-Strickland, 2007), and a new 

CBS-rating-scale under development include disease specific clinical features, but we applied 

the UPDRS-III with its focus on common motor features across our three clinical groups.  

 

The selection of features is critical to the performance and interpretation of classifiers. MRI 

provides a rich repertoire of structural, functional, neurochemical and diffusion features. We 

focus on the T1-image and diffusion tensor images which are most widely available, with short 

sequences that are readily tolerated by patients, and which require minimal operator expertise. 

These would be an advantage for scalable multisite studies, or in support of diagnostics and 

stratification in a trial context. Nonetheless, even these standard sequences provide many 

potential features and feature extraction options.  

 

We compared two approaches for feature extraction, based on (i) a priori regions of interest 

from a common anatomical atlas, and (ii) a data driven approach using a principal components 

analysis across subjects. Our cross-validation results suggest that using principal components 

analysis over the full extent of grey or white matter voxels provides higher classification 

accuracies when compared to calculating mean values over a set of anatomical ROIs (mean 

accuracies were on average 14 percentage points higher for PCA features than ROIs with T1-

weighted data and 16 points for diffusion data). This advantage of PCA could be due to small 

localised changes in brain morphology and/or function that are averaged across a ROI. On the 

other hand, the differences between the two feature extraction methods are significantly 

reduced when an independent sample is used for validation. This suggests that the PCA 

approach may be more vulnerable to the overfitting with cross-validation approaches.  

 

We also compared two types of feature – GM density measures based on a T1-weighted 

sequence and metrics of white matter tissue organisation using diffusion tensor imaging. Our 

results replicated previous studies in showing that both types of data result in classification 

accuracies significantly above the chance level. Neither feature type clearly outperforms the 

other across all pairwise comparisons among our three clinical cross-validation groups.  

 

However, features obtained from diffusion MRI data resulted in significantly higher 

classification accuracies when an independent validation cohort, for both methods of feature 

extraction (ROIs and PCA).  For some contrasts (controls vs CBS, controls vs PSP, PD vs CBS, 
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and PD vs PSP) the classification accuracy in the independent sample using diffusion data was 

as good as the cross-validation results.   

 

The issue of disease severity is challenging, from two perspectives.  First, there is currently no 

single rating scale or investigation that fully summarises disease severity across PD, PSP and 

CBS, either as a clinical scale, neurotransmitter or functional brain image. Even where a 

clinical scale such as UPDRS is applicable across the disorders, it may not give a like for like 

comparison in terms of disease stage (e.g., from onset to death) or functional decline (e.g., 

activities of daily living), or pathology (e.g., dopamine depletion, or cell loss). Second, the 

three diseases may each have prolonged prodromal phases and long periods in which patients 

are misdiagnosed.  PSP and CBD typically take 2.5-3 years from symptoms to diagnosis  

(Coyle-Gilchrist et al., 2016; Mamarabadi, Razjouyan, & Golbe, 2018), while PD causes 

under-recognised clinical manifestations like constipation and REM-sleep behavioural disorder 

many years before tremor and akinesia. It is too soon to know whether MRI based classification 

is capable of differentiating these disorders in the early prodromal stages, or even pre-

symptomatically, in the way that has been shown for frontotemporal dementia (Rohrer et al., 

2015). The recent operationalization of early stage ‘oligosymptomatic’ cases, and ‘possible’ 

versus ‘probable’ cases will enable MRI biomarkers of PSP to be tested earlier (MDS criteria 

(Höglinger et al., 2017)).   

 

Phenotypic variation other than severity is also a challenge. The classical presentation of PSP, 

as Richardson’s syndrome, has very high clinico-pathological correlations to PSP-pathology.  

However, in recent years it has been shown that this classical phenotype represents a minority 

of cases of PSP-pathology: cognitive, linguistic and behavioural presentations are common 

(Höglinger et al., 2017; Respondek et al., 2014). Similarly, CBS has many phenotypic variants, 

with motoric, behavioural and language presentations (Armstrong et al., 2013). This study does 

not include cases from the full phenotypic range of corticobasal syndromes, or syndromes 

caused by corticobasal degeneration (Alexander et al., 2014). The current study was not 

designed to resolve the issue of heterogeneity, but rather to highlight methodological 

considerations, and best practice, which we hope can be carried forward to identify robust 

biomarkers of a wide range of phenotypic expressions of the pathologies of PD, PSP and 

corticobasal degeneration.  
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Although we attempted to address the methodological limitations of previous studies, some 

limitations remain. This was a single centre study, resulting in a modest sample size when 

compared to recent multi-centre studies (Huppertz et al., 2016; Nigro et al., 2017). This limits 

the generalisation of our results to different clinical sites with potentially different scanning 

practices, scanner manufacturers and sequence parameters. The control and patient groups 

included in this study were matched for age, sex, motion parameters and UPDRS-III scores 

(for the patients). However, there was a difference in MMSE between the groups; and previous 

studies have highlighted the cognitive impairments resulting from PD (Williams-Gray et al., 

2013), PSP (Rittman et al., 2013), and CBS (Burrell, Hodges, & Rowe, 2014). Given the 

correlations between cognitive function and structural and diffusion MRI in Parkinson’s 

disease, PSP-Richardson’s syndrome, and CBS (Ghosh et al., 2012; Mak et al., 2015; Paviour 

et al., 2006; Rae et al., 2012) the non-matching by cognitive dysfunction could contribute to 

classification. Against this argument, is that different cognitive deficits are hallmarks of PD, 

PSP and CBS, and to match a cognitive profile would compromise the representativeness of 

the patients chosen.  

 

Another potential limitation of this study is that there is not always correspondence between 

current clinical diagnosis and neuropathology at post-mortem. Our patient labels were assigned 

using clinical diagnostic criteria not histopathology, and therefore might not be perfectly 

defined and independent, capping the statistical classifier’s ability to learn and separate the 

different patterns of disease. Our centre’s diagnostic accuracy of CBS and PSP is in line with 

other centres (Alexander et al., 2014; Gazzina et al., 2019), with generally high 

clinicopathological correlation of PSP-Richardson’s syndrome (>90%) relative to CBS/CBD 

(>60%). Finally, all our data were subjected to strict data quality control criteria, with the aim 

that the disease patterns detected by SVM were independent of the severity of motion present 

in those data. While this ensures that poor data quality will not be mistaken for real effects of 

the pathology, it may also exclude patients with symptoms that do not allow them to be still 

enough to undergo the MRI examination. For example, 19 subjects with PSP (37% of the 

original sample) were excluded by our quality control criteria, which may bias the sample in 

the PSP group. This means the patient sample included in our analysis may not be 

representative of the full range of disease. 

 

In summary, we suggest that machine learning methods for MRI data can be used to aid the 

automatic differential diagnosis of PSP, CBS and PD, meeting critical critieria set by the 
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Movement Disorder Society Neuroimaging Study Group and the JPND Working group ASAP-

SYn-Tau (van Eimeren et al., 2019). However to make such a contribution, and augment 

clinical assessments, these techniques must guard against methodological biases from different 

levels of motion across patient groups, and poorly matched samples. With closely matched 

groups, of equal size and similar severity, the use of diffusion weighted images is particularly 

encouraging, in its high accuracy rate and generalization to independent data. Application of 

these methods to large samples and multisite studies will be facilitated by international 

collaborative studies of early stage or atypical presentations of each disease (eg PROSPECT-

UK (Woodside et al., 2017) and the Four-repeat tauopathy neuroimaging initiative), aiming for 

reliable, unbiased, disseminated tools for early differential diagnosis and stratification in 

clinical trials of new therapies.  

 

 

Funding 

This work was supported by the Medical Research Council (SUAG/051 G101400, 

SUAG/058 G101400); the Wellcome Trust (103838); the Guarantors of Brain; the Raymond 

and Beverley Sackler Trust; the National Institute for Health Research Cambridge 

Biomedical Research Centre and the Cambridge Centre for Parkinson-Plus.  

 

 

 

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted September 25, 2019. ; https://doi.org/10.1101/19007575doi: medRxiv preprint 

https://doi.org/10.1101/19007575
http://creativecommons.org/licenses/by-nd/4.0/


References 

Aarsland, D. (2003). Performance on the dementia rating scale in Parkinson’s disease with 

dementia and dementia with Lewy bodies: comparison with progressive supranuclear 

palsy and Alzheimer’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 

74:1215-1220.  

Alexander, S. K., Rittman, T., Xuereb, J. H., Bak, T. H., Hodges, J. R., Rowe, J. B. (2014). 

Validation of the new consensus criteria for the diagnosis of corticobasal degeneration. 

Journal of Neurology, Neurosurgery & Psychiatry, 85(8): 925–929.  

Armstrong, M. J., Litvan, I., Lang, A. E., Bak, T. H., Bhatia, K. P., Borroni, et al. (2013). 

Criteria for the diagnosis of corticobasal degeneration. Neurology, 80(5): 496–503.  

Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1): 

95-113.  

Ashburner, J. (2009). Computational anatomy with the SPM software. Magnetic Resonance 

Imaging, 27(8): 1163–1174.  

Ashburner, J., Friston, K. J. (2005). Unified segmentation. NeuroImage, 26(3): 839–851.  

Beyer, M. K., Janvin, C. C., Larsen, J. P., Aarsland, D. (2007). A magnetic resonance 

imaging study of patients with Parkinson’s disease with mild cognitive impairment and 

dementia using voxel-based morphometry. Journal of Neurology, Neurosurgery, and 

Psychiatry, 78(3): 254–259. 

Bloy, L., Ingalhalikar, M., Eavani, H., Roberts, T. P. L., Schultz, R. T., Verma, R. (2011). 

HARDI based pattern classifiers for the identification of white matter pathologies. In 

Medical Image Computing and Computer-Assisted Intervention – MICCAI 2011: 234–

241.  

Boelmans, K., Bodammer, N. C., Suchorska, B., Kaufmann, J., Ebersbach, G., Heinze, H.-J., 

et al. (2010). Diffusion tensor imaging of the corpus callosum differentiates corticobasal 

syndrome from Parkinson’s disease. Parkinsonism & Related Disorders, 16(8): 498–

502.  

Boxer, A. L., Geschwind, M. D., Belfor, N., Gorno-Tempini, M. L., Schauer, G. F., Miller, B. 

L., et al. (2006). Patterns of brain atrophy that differentiate corticobasal degeneration 

syndrome from progressive supranuclear palsy. Archives of Neurology, 63(1): 81–86.  

Brenneis, C., Seppi, K., Schocke, M., Benke, T., Wenning, G. K., Poewe, W. (2004). Voxel 

based morphometry reveals a distinct pattern of frontal atrophy in progressive 

supranuclear palsy. Journal of Neurology, Neurosurgery, and Psychiatry, 75(2): 246–

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted September 25, 2019. ; https://doi.org/10.1101/19007575doi: medRxiv preprint 

https://doi.org/10.1101/19007575
http://creativecommons.org/licenses/by-nd/4.0/


249.  

Burrell, J. R., Hodges, J. R., Rowe, J. B. (2014). Cognition in corticobasal syndrome and 

progressive supranuclear palsy: A review. Movement Disorders, 29(5): 684–693.  

Caan, M., Vermeer, K., Vanvliet, L., Majoie, C., Peters, B., Denheeten, G., et al. (2006). 

Shaving diffusion tensor images in discriminant analysis: A study into schizophrenia. 

Medical Image Analysis, 10(6): 841–849. 

Chang, C.-C., Lin, C.-J. (2011). LIBSVM. ACM Transactions on Intelligent Systems and 

Technology, 2(3): 1–27. 

Cochrane, C. J., Ebmeier, K. P. (2013). Diffusion tensor imaging in parkinsonian syndromes: 

a systematic review and meta-analysis. Neurology, 80(9): 857–864.  

Constantinescu, R., Rosengren, L., Eriksson, B., Blennow, K., Axelsson, M. (2019). 

Cerebrospinal fluid neurofilament light and tau protein as mortality biomarkers in 

parkinsonism. Acta Neurologica Scandinavica, 140(2): 147–156.  

Cordato, N. J., Duggins, A. J., Halliday, G. M., Morris, J. G. L., Pantelis, C. (2005). Clinical 

deficits correlate with regional cerebral atrophy in progressive supranuclear palsy. 

Brain, 128: 1259–1266.  

Coyle-Gilchrist, I. T. S., Dick, K. M., Patterson, K., Vázquez Rodríquez, P., Wehmann, E., 

Wilcox, A., et al. (2016). Prevalence, characteristics, and survival of frontotemporal 

lobar degeneration syndromes. Neurology, 86(18): 1736–1743.  

Davatzikos, C., Resnick, S. M., Wu, X., Parmpi, P., Clark, C. M. (2008). Individual patient 

diagnosis of AD and FTD via high-dimensional pattern classification of MRI. 

NeuroImage, 41(4): 1220–1227.  

Focke, N. K., Helms, G., Scheewe, S., Pantel, P. M., Bachmann, C. G., Dechent, P., et al. 

(2011). Individual voxel-based subtype prediction can differentiate progressive 

supranuclear palsy from idiopathic Parkinson syndrome and healthy controls. Human 

Brain Mapping, 32(11): 1905–1915.  

Gazzina, S., Respondek, G., Compta, Y., Allinson, K. S. J., Spillantini, M. G., Molina-Porcel, 

et al. (2019). Neuropathological validation of the MDS-PSP criteria with PSP and other 

frontotemporal lobar degeneration. BioRxiv.  

Ghosh, B. C. P., Calder, A. J., Peers, P. V, Lawrence, A. D., Acosta-Cabronero, J., Pereira, J. 

M., et al. (2012). Social cognitive deficits and their neural correlates in progressive 

supranuclear palsy. Brain, 135: 2089–2102.  

Golbe, L. I., Ohman-Strickland, P. A. (2007). A clinical rating scale for progressive 

supranuclear palsy. Brain, 130(6): 1552–1565. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted September 25, 2019. ; https://doi.org/10.1101/19007575doi: medRxiv preprint 

https://doi.org/10.1101/19007575
http://creativecommons.org/licenses/by-nd/4.0/


Goveas, J., O’Dwyer, L., Mascalchi, M., Cosottini, M., Diciotti, S., De Santis, S., et al. 

(2015). Diffusion-MRI in neurodegenerative disorders. Magnetic Resonance Imaging, 

33(7): 853–876. 

Haller, S., Badoud, S., Nguyen, D., Garibotto, V., Lovblad, K. O., Burkhard, P. R. (2012). 

Individual detection of patients with Parkinson disease using support vector machine 

analysis of diffusion tensor imaging data: initial results. AJNR. American Journal of 

Neuroradiology, 33(11): 2123–2128. 

He, H., Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on 

Knowledge and Data Engineering, 21(9): 1263–1284.  

Höglinger, G. U., Respondek, G., Stamelou, M., Kurz, C., Josephs, K. A., Lang, A. E., et al. 

(2017). Clinical diagnosis of progressive supranuclear palsy: The movement disorder 

society criteria. Movement Disorders, 32(6): 853–864. 

Hui Zhang, Avants, B. B., Yushkevich, P. A., Woo, J. H., Sumei Wang, McCluskey, L. F., et 

al. (2007). High-Dimensional Spatial Normalization of Diffusion Tensor Images 

Improves the Detection of White Matter Differences: An Example Study Using 

Amyotrophic Lateral Sclerosis. IEEE Transactions on Medical Imaging, 26(11): 1585–

1597.  

Huppertz, H.-J., Möller, L., Südmeyer, M., Hilker, R., Hattingen, E., Egger, K., et al. (2016). 

Differentiation of neurodegenerative parkinsonian syndromes by volumetric magnetic 

resonance imaging analysis and support vector machine classification. Movement 

Disorders, 31(10): 1506–1517. 

Ingalhalikar, M., Kanterakis, S., Gur, R., Roberts, T. P. L., Verma, R. (2010). DTI based 

diagnostic prediction of a disease via pattern classification. In Medical Image 

Computing and Computer-Assisted Intervention – MICCAI 2010: 558–565.  

Ingalhalikar, M., Parker, D., Bloy, L., Roberts, T. P. L., Verma, R. (2011). Diffusion based 

abnormality markers of pathology: toward learned diagnostic prediction of ASD. 

NeuroImage, 57(3): 918–927. 

Jabbari, E., Zetterberg, H., Morris, H. R. (2017). Tracking and predicting disease progression 

in progressive supranuclear palsy: CSF and blood biomarkers. Journal of Neurology, 

Neurosurgery, and Psychiatry, 88(10): 883–888.  

Kiebel, S., Poline, J., Friston, K., Holmes, A. (1999). Robust smoothness estimation in 

statistical parametric maps using standardized residuals from the general linear model. 

Neuroimage, 10(6): 756-766. 

Mak, E., Su, L., Williams, G. B., Firbank, M. J., Lawson, R. A., Yarnall, A. J., et al. (2015). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted September 25, 2019. ; https://doi.org/10.1101/19007575doi: medRxiv preprint 

https://doi.org/10.1101/19007575
http://creativecommons.org/licenses/by-nd/4.0/


Baseline and longitudinal grey matter changes in newly diagnosed Parkinson’s disease: 

ICICLE-PD study. Brain,138: 2974-2986.   

Mamarabadi, M., Razjouyan, H., Golbe, L. I. (2018). Is the Latency from Progressive 

Supranuclear Palsy Onset to Diagnosis Improving? Movement Disorders Clinical 

Practice, 5(6): 603–606. 

Mechelli, A., Friston, K. J., Frackowiak, R. S., Price, C. J. (2005). Structural Covariance in 

the Human Cortex. Journal of Neuroscience, 25(36): 8303–8310.  

Neto-Henriques, R., Cam-CAN, Correia, M. M. (2016). Reducing inter and intra - volume 

instabilities on diffusion - weighted data for ageing studies. In Annual Meeting of the 

Organization for Human Brain Mapping. 

Nigro, S., Arabia, G., Antonini, A., Weis, L., Marcante, A., Tessitore, A., et al. (2017). 

Magnetic Resonance Parkinsonism Index: diagnostic accuracy of a fully automated 

algorithm in comparison with the manual measurement in a large Italian multicentre 

study in patients with progressive supranuclear palsy. European Radiology, 27(6): 

2665–2675. 

Paviour, D. C., Price, S. L., Jahanshahi, M., Lees, A. J., Fox, N. C. (2006). Longitudinal MRI 

in progressive supranuclear palsy and multiple system atrophy: rates and regions of 

atrophy. Brain, 129(4), 1040–1049.  

Pillon, B., Blin, J., Vidailhet, M., Deweer, B., Sirigu, A., Dubois, B., et al. (1995). The 

neuropsychological pattern of corticobasal degeneration: comparison with progressive 

supranuclear palsy and Alzheimer’s disease. Neurology, 45(8): 1477–1483. 

Porter, B., Macfarlane, R., Unwin, N., Walker, R. (2006). The Prevalence of Parkinson’s 

Disease in an Area of North Tyneside in the North-East of England. Neuroepidemiology, 

26(3): 156–161. 

Price, S., Paviour, D., Scahill, R., Stevens, J., Rossor, M., Lees, A., et al. (2004). Voxel-

based morphometry detects patterns of atrophy that help differentiate progressive 

supranuclear palsy and Parkinson’s disease. NeuroImage, 23(2): 663–669.  

Prodoehl, J., Li, H., Planetta, P. J., Goetz, C. G., Shannon, K. M., Tangonan, R., Vaillancourt, 

D. E. (2013). Diffusion tensor imaging of Parkinson’s disease, atypical parkinsonism, 

and essential tremor. Movement Disorders, 28(13): 1816–1822.  

Rae, C. L., Correia, M. M., Altena, E., Hughes, L. E., Barker, R. A., Rowe, J. B. (2012). 

White matter pathology in Parkinson’s disease: the effect of imaging protocol 

differences and relevance to executive function. NeuroImage, 62(3): 1675–1684. 

Reese, T. G., Heid, O., Weisskoff, R. M., Wedeen, V. J. (2003). Reduction of eddy-current-

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted September 25, 2019. ; https://doi.org/10.1101/19007575doi: medRxiv preprint 

https://doi.org/10.1101/19007575
http://creativecommons.org/licenses/by-nd/4.0/


induced distortion in diffusion MRI using a twice-refocused spin echo. Magnetic 

Resonance in Medicine, 49(1): 177–182.  

Respondek, G., Kurz, C., Arzberger, T., Compta, Y., Englund, E., Ferguson, L. W., et al.  

(2017). Which ante mortem clinical features predict progressive supranuclear palsy 

pathology? Movement Disorders, 32(7): 995–1005. 

Respondek, G., Stamelou, M., Kurz, C., Ferguson, L. W., Rajput, A., Chiu, W. Z., et al. 

(2014). The phenotypic spectrum of progressive supranuclear palsy: A retrospective 

multicenter study of 100 definite cases. Movement Disorders, 29(14): 1758–1766.  

Reuter, M., Tisdall, M. D., Qureshi, A., Buckner, R. L., van der Kouwe, A. J. W., Fischl, B. 

(2015). Head motion during MRI acquisition reduces gray matter volume and thickness 

estimates. NeuroImage, 107: 107–115.  

Rittman, T., Ghosh, B. C., McColgan, P., Breen, D. P., Evans, J., Williams-Gray, C. H., et al. 

(2013). The Addenbrooke’s Cognitive Examination for the differential diagnosis and 

longitudinal assessment of patients with parkinsonian disorders. Journal of Neurology, 

Neurosurgery, and Psychiatry, 84(5): 544–551.  

Rohrer, J. D., Nicholas, J. M., Cash, D. M., van Swieten, J., Dopper, E., Jiskoot, L., et al. 

(2015). Presymptomatic cognitive and neuroanatomical changes in genetic 

frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) 

study: a cross-sectional analysis. The Lancet. Neurology, 14(3): 253–262.  

Salvatore, C., Cerasa, A., Castiglioni, I., Gallivanone, F., Augimeri, A., Lopez, M., et al. 

(2014). Machine learning on brain MRI data for differential diagnosis of Parkinson’s 

disease and Progressive Supranuclear Palsy. Journal of Neuroscience Methods, 222: 

230–237. 

Seppi, K., Schocke, M. F. H., Esterhammer, R., Kremser, C., Brenneis, C., Mueller, J., et al. 

(2003). Diffusion-weighted imaging discriminates progressive supranuclear palsy from 

PD, but not from the parkinson variant of multiple system atrophy. Neurology, 60(6): 

922–927.  

Summerfield, C., Junqué, C., Tolosa, E., Salgado-Pineda, P., Gómez-Ansón, B., Martí, M. J., 

et al. (2005). Structural brain changes in Parkinson disease with dementia: a voxel-based 

morphometry study. Archives of Neurology, 62(2): 281–285.  

Tang, Y., Zhang, Y. Q., Chawla, N. V. (2009). SVMs modeling for highly imbalanced 

classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B: 

Cybernetics, 39(1): 281–288. 

van Eimeren, T., Antonini, A., Berg, D., Bohnen, N., Ceravolo, R., Drzezga, A., et al. (2019). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted September 25, 2019. ; https://doi.org/10.1101/19007575doi: medRxiv preprint 

https://doi.org/10.1101/19007575
http://creativecommons.org/licenses/by-nd/4.0/


Neuroimaging biomarkers for clinical trials in atypical parkinsonian disorders: Proposal 

for a Neuroimaging Biomarker Utility System. Alzheimer’s & Dementia (Amsterdam, 

Netherlands), 11: 301–309. 

Whitwell, J. L., Höglinger, G. U., Antonini, A., Bordelon, Y., Boxer, A. L., Colosimo, C., et 

al. (2017). Radiological biomarkers for diagnosis in PSP: Where are we and where do 

we need to be? Movement Disorders, 32(1): 955-971. 

Williams-Gray, C. H., Mason, S. L., Evans, J. R., Foltynie, T., Brayne, C., Robbins, T. W., et 

al. (2013). The CamPaIGN study of Parkinson’s disease: 10-year outlook in an incident 

population-based cohort. Journal of Neurology, Neurosurgery & Psychiatry, 84(11): 

1258–1264. 

Woodside, J., Lamb, R., Jabbari, E., Chelban, V., Burn, D., Church, A., et al. (2017). The 

PROSPECT study: Development of a UK-based longitudinal observational study of 

PSP, CBD, MSA and Atypical Parkinsonism syndromes. Alzheimer’s & Dementia, 

13(7): 348. 

Yao, N., Shek-Kwan Chang, R., Cheung, C., Pang, S., Lau, K. K., Suckling, J., et al. (2014). 

The default mode network is disrupted in parkinson’s disease with visual hallucinations. 

Human Brain Mapping, 35(11): 5658–5666.  

Yarnall, A. J., Breen, D. P., Duncan, G. W., Khoo, T. K., Coleman, S. Y., Firbank, M. J., et 

al. (2014). Characterizing mild cognitive impairment in incident Parkinson disease: the 

ICICLE-PD study. Neurology, 82(4): 308–316.  

Yendiki, A., Koldewyn, K., Kakunoori, S., Kanwisher, N., Fischl, B. (2014). Spurious group 

differences due to head motion in a diffusion MRI study. NeuroImage, 88: 79–90.  

Yoshikawa, K., Nakata, Y., Yamada, K., Nakagawa, M. (2004). Early pathological changes 

in the parkinsonian brain demonstrated by diffusion tensor MRI. Journal of Neurology, 

Neurosurgery, and Psychiatry, 75(3): 481–484.  

Zhang, H, Yushkevich, P., Alexander, D., Gee, J. (2006). Deformable registration of 

diffusion tensor MR images with explicit orientation optimization. Medical Image 

Analysis, 10(5): 764–785.  

Zhang, Hui, Yushkevich, P. A., Rueckert, D., Gee, J. C. (2007). Unbiased White Matter Atlas 

Construction Using Diffusion Tensor Images. In Medical Image Computing and 

Computer-Assisted Intervention – MICCAI 2007: 211–218.  

Zhang, K., Yu, C., Zhang, Y., Wu, X., Zhu, C., Chan, P., et al. (2011). Voxel-based analysis 

of diffusion tensor indices in the brain in patients with Parkinson’s disease. European 

Journal of Radiology, 77(2): 269–273.  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted September 25, 2019. ; https://doi.org/10.1101/19007575doi: medRxiv preprint 

https://doi.org/10.1101/19007575
http://creativecommons.org/licenses/by-nd/4.0/


 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted September 25, 2019. ; https://doi.org/10.1101/19007575doi: medRxiv preprint 

https://doi.org/10.1101/19007575
http://creativecommons.org/licenses/by-nd/4.0/

