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Abstract 61 

Background: Life course epidemiology provides a framework for studying the effects of time-62 

varying exposures on health outcomes. The structured life course modeling approach (SLCMA) 63 

is a theory-driven analytic method that empirically compares multiple prespecified life course 64 

hypotheses characterizing time-dependent exposure-outcome relationships to determine which 65 

theory best fits the observed data. However, the statistical properties of inference methods used 66 

with the SLCMA have not been investigated with high-dimensional omics outcomes.  67 

 68 

Methods: We performed simulations and empirical analyses to evaluate the performance of the 69 

SLCMA when applied to genome-wide DNA methylation (DNAm). In the simulations, we 70 

compared five statistical inference tests used by SLCMA (n=700).  For each, we assessed the 71 

familywise error rate (FWER), statistical power, and confidence interval coverage to determine 72 

whether inference based on these tests was valid in the presence of substantial multiple testing 73 

and small effect sizes, two hallmark challenges of inference from omics data. In the empirical 74 

analyses, we applied the SLCMA to evaluate the time-dependent relationship of childhood abuse 75 

with genome-wide DNAm (n=703).  76 

 77 

Results: In the simulations, selective inference and max-|t|-test performed best: both controlled 78 

FWER and yielded moderate statistical power. Empirical analyses using SLCMA revealed time-79 

dependent effects of childhood abuse on DNA methylation.  80 

 81 

Conclusions: Our findings show that SLCMA, applied and interpreted appropriately, can be 82 

used in the omics setting to examine time-dependent effects underlying exposure-outcome 83 
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relationships over the life course.  We provide recommendations for applying the SLCMA in 84 

high-throughput settings, which we hope will encourage researchers to move beyond analyses of 85 

exposed versus unexposed. 86 

 87 

Keywords:  Life course, structured approach, ALSPAC, omics, DNA methylation, post-88 

selection inference 89 

 90 

Key messages:  91 

1. The structured life course modeling approach (SLCMA) is an effective approach to 92 

directly compare life course theories and can be scaled-up in the omics context to 93 

examine nuanced relationships between environmental exposures over the life course and 94 

biological processes.  95 

2. Of the five statistical inference tests assessed in simulations, we recommend the selective 96 

inference method and max-|t|-test for post-selection inference in omics applications of the 97 

SLCMA.  98 

3. In an empirical example, we revealed time-dependent effects of childhood abuse on DNA 99 

methylation using the SLCMA, with improvement in statistical power when accounting 100 

for covariates by applying the Frisch-Waugh-Lovell (FWL) theorem.  101 

4. Researchers should assess p-values in parallel with effects sizes and confidence intervals, 102 

as triangulating multiple forms of statistical evidence can strengthen inferences and point 103 

to new directions for replication.  104 
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Introduction 105 

Epidemiologists have long been interested in whether and how exposures over the life 106 

course affect later health outcomes. Guided by theories developed in life course epidemiology1 107 

(Table 1), researchers are moving beyond simple comparisons of the presence versus absence of 108 

exposure to characterize time-dependent exposure-outcome relationships.2  Prior work in life 109 

course epidemiology has conceptualized timing effects in numerous ways, examining the role of 110 

the developmental timing of exposure (sensitive period hypothesis), the number of occasions 111 

exposed across time (accumulation of risk hypothesis), proximity in time to exposure (recency 112 

hypothesis), and change in exposure status across time (mobility hypothesis). Researchers have 113 

adopted this life course perspective, uncovering mechanistic insights that advanced many 114 

subfields of public health and medicine.7–11 As different life course hypotheses correspond to 115 

distinct theories of disease etiology, efforts to formally compare competing hypotheses and 116 

identify those best supported by empirical data are needed to guide prevention and intervention 117 

planning.   118 

To address the need for systematic comparisons of life course theories, Mishra and 119 

colleagues introduced the structured life course modeling approach (SLCMA).3  The SLCMA 120 

allows researchers to compare a set of a priori-specified life course theories and use goodness-of-121 

fit criteria to determine which theory is best supported by the empirical data.  Smith and 122 

colleagues later extended this approach by outlining an alternative statistical model selection 123 

strategy that makes use of least angle regression (LARS),12 accommodates both binary and 124 

continuous exposures, 4,5 and improves the accuracy of selecting the correct hypothesis. More 125 

recently, Madathil et al. proposed a Bayesian approach to life course modeling that does not 126 

perform variable selection, but rather estimates the posterior probability corresponding to each 127 
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theoretical hypothesis while assessing the relative importance of a series of life course theories 128 

altogether. 13 Since its inception, the SLCMA has been applied in a wide range of non-omic 129 

epidemiologic studies, including those examining the time-dependent impacts of childhood 130 

trauma, physical activity, or socioeconomic position on psychological, metabolic, and disease 131 

outcomes.6,14–19 132 

The growing availability of high-dimensional biological and phenotype data from 133 

longitudinal cohort studies has created new opportunities to test life course theories in 134 

epigenomics, transcriptomics, metabolomics, and other omics settings. While large cross-135 

sectional omics studies have identified associations between biological differences and various 136 

traits,20 applications of the SLCMA to longitudinal data and high dimensional outcomes allow 137 

researchers to answer more complex questions about disease mechanisms, including: Are there 138 

sensitive periods when environmental exposures induce more underlying molecular changes 139 

compared to those occurred during other time periods? Do exposures form a dose-response 140 

relationship, regardless of their timing? Do more proximal events matter more compared to distal 141 

events? As an example, Dunn and colleagues applied the SLCMA in a longitudinal birth cohort 142 

study to model timing effects of childhood adversity on DNA methylation, which is a widely 143 

studied epigenetic mechanism that could give rise to altered gene expression and phenotypic 144 

changes. Using the SLCMA, they found that DNAm differences were largely explained by the 145 

age at exposure, with the first three years of life appearing to be a sensitive period associated 146 

with more DNAm differences. Interestingly, the SLCMA found associations not uncovered in 147 

EWAS of exposed versus unexposed to childhood adversity.22  148 

As outlined in Dunn et al.,22 application of the SLCMA to omics data presents unique 149 

challenges that have not been systematically investigated.  First, it remains unknown whether 150 
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theoretical properties of statistical inference, such as Type I error (i.e., family-wise error rate 151 

(FWER) in the presence of multiple testing) or confidence interval (CI) coverage, are valid in 152 

omics data. Second, it is unclear whether the SLCMA is sufficiently powered to detect the small 153 

effects commonly found in omics settings. Third, questions exist on how to balance decision-154 

making regarding research evidence; omics studies often rely on p-value thresholds whereas 155 

epidemiologists and others increasingly prioritize other statistical evidence, such as effect sizes 156 

and CIs.23,24  We therefore performed both simulations and empirical analyses to assess the 157 

performance of the SLCMA when applied to omics data and illustrate how SLCMA can be 158 

applied to evaluate the time-dependent role of childhood abuse on genome-wide DNA 159 

methylation.   160 

All rights reserved. No reuse allowed without permission. 
was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprint (whichthis version posted September 19, 2019. ; https://doi.org/10.1101/19007062doi: medRxiv preprint 

https://doi.org/10.1101/19007062


 
 

8 

Methods 161 

The Structured Life Course Modeling Approach (SLCMA): An Overview 162 

The SLCMA has been described in detail elsewhere.3–5 In brief, the SLCMA is a two-163 

stage method that compares a set of life course hypotheses describing the relationship between 164 

exposures assessed over time and some outcome of interest. In the first stage of the SLCMA, 165 

each life course hypothesis is encoded into a predictor or set of predictor variables. Examples of 166 

the predictors that represent commonly studied life course hypotheses are shown in Table 1. A 167 

variable selection procedure is then used to select the subset of predictors that explain the 168 

greatest proportion of outcome variation. While it is possible for multiple predictors to be 169 

selected, the high dimensionality of the omics setting makes consideration more feasible of 170 

simple life course hypotheses (meaning those in which the exposure-outcome association is 171 

represented by a single predictor). Therefore, in this study, we focused on statistical inference 172 

regarding the single predictor that explains the greatest variation in the outcome.  173 

In the second stage of the SLCMA, post-selection inference is performed to obtain point 174 

estimates (of the direction and magnitude of effects) and confidence intervals (a measure of 175 

effect uncertainty) of the effects for the hypotheses identified from the first stage. Post-selection 176 

inference methods are used to derive unbiased test statistics because they account for the 177 

multiple testing that occurs when comparing multiple hypotheses, as the SLCMA iteratively 178 

works to select the variable with the strongest association with the outcome. Four primary 179 

inference methods that account for this “selective nature” are: (1) Bonferroni correction; (2) 180 

max-|t|-test;25 (3) covariance test;26,27 and (4) selective inference.28,29 These approaches are 181 

described in detail in the Supplementary Materials. 182 

  183 
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Simulation Analyses 184 

We performed simulations to examine the performance of these four post-selection 185 

inference methods compared to a naïve calculation (summarized in Table 2). To build these 186 

simulations in the context of a real-world application, we modeled the simulation strategy based 187 

on the genome-wide SLCMA study performed by Dunn et al.22 We evaluated each post-selection 188 

inference method with respect to three statistical properties: family-wise error rate (FWER) (the 189 

probability of making one or more false discoveries out of multiple tests), statistical power (the 190 

probability of correctly selecting the predictor with a true association with the outcome), and CI 191 

coverage (the probability that a 95% CI contained the true effect estimate). Assessing these 192 

properties enabled us to determine whether inference based on these tests was valid in the 193 

presence of multiple testing and small effect sizes, which are two hallmarks of high-dimensional 194 

data. Mathematical definitions of the test-statistics as well as the procedure for constructing 195 

confidence intervals are included in the Supplemental Materials. Example R code for 196 

implementing all methods described in this study are also provided in the Supplemental 197 

Materials.  198 

We considered two scenarios, which differed in the nature of the simulated outcome: 199 

 200 

Scenario 1: Normal outcomes  201 

In the first scenario, we simulated exposure to childhood sexual or physical abuse based 202 

on empirical data from the Avon Longitudinal Study of Parents and Children (ALSPAC), a 203 

population-based birth cohort.30–32 The outcome was simulated from a normal distribution and 204 

the sample size was set to 700 to be consistent with ALSPAC. Simulations were based on m=485 205 

000 tests corresponding to an analysis of Illumina Methylation 450k Beadchip data and a 206 
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standard genome-wide significance threshold of p<10−7. To assess FWER under the null 207 

hypothesis, we ran a single simulation of 485 000 tests and examined the distributions of 208 

observed p-values against their expected distribution. To assess statistical power and CI 209 

coverage, we ran simulations in which the outcome variable was correlated with one of the 210 

predictors and then varied the correlation between outcome and predictor such that the variance 211 

explained by the predictor varied from 0.01 to 0.1. This range of values was chosen to illustrate 212 

poor and good statistical power, respectively.  213 

 214 

Scenario 2: Empirical outcomes  215 

To further examine the performance of post-selection inference methods in an empirical 216 

setting, we combined real predictors from ALSPAC capturing repeatedly measured exposure to 217 

childhood sexual or physical abuse as described above and an outcome variable that more closely 218 

resembled the data distribution of DNAm at a single locus (meaning the proportion of cells in 219 

which the cytosine at the locus is methylated). To assess the FWER under the null hypothesis, 220 

we resampled the real predictors and DNAm values from ALSPAC separately. The resampling 221 

breaks the predictor-outcome link and hence removes any observed association between the two, 222 

while maintaining the empirical distributions of DNAm, which may not be normal. To assess 223 

statistical power and CI coverage, we simulated the outcome from a beta distribution, as 224 

proposed by Tsai and Bell.33 Effect sizes were parameterized as the difference in mean levels of 225 

DNAm between the exposed and unexposed groups (ΔDNAm), ranging from 0.05 to 0.5. The 226 

number of tests and p-value threshold were the same as Scenario 1. We additionally considered a 227 

transformation of the DNAm values from beta values (y) to M values equivalent to 228 

M=log2(y/(1−y)), which are sometimes used to stabilize variance.34 229 
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 230 

Empirical Analyses 231 

To illustrate how the SLCMA and the different corresponding post-selection inference 232 

methods work in practice, we reanalyzed data used by Dunn et al.22 Briefly, we compared the 233 

effects of sensitive period, accumulation, and recency hypotheses for the associations between 234 

exposure to sexual or physical abuse and genome-wide DNA methylation at age 7 in ALSPAC 235 

participants. Sample characteristics and adversity measures are described in Supplemental 236 

Materials. Building from that study, which only used the covariance test, we additionally 237 

applied the other three post-selection inference methods summarized earlier. We also tested a 238 

new method for covariate adjustment that could be used alongside any post-selection inference 239 

method. Based on the Frisch-Waugh-Lovell (FWL) theorem, this method regresses the outcome 240 

on covariates in parallel and enters the residuals into the model selection procedure.35–37 A more 241 

thorough description of this method and a full list of the covariates are available in the 242 

Supplemental Materials.    243 
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Results 244 

 245 

Simulation Analyses  246 

 Table 3 summarizes the main findings from the simulation analyses with regard to the 247 

statistical properties and implementation of the assessed methods. 248 

 249 

Family-wise error rate 250 

Due to the high computational burden of genome-wide association studies, we illustrate 251 

FWER control of each inference test using a single simulation with m=485 000 tests. As shown 252 

in Figures 1 and 2, when compared against the expected p-value distribution under the null 253 

hypothesis, the p-values obtained from naïve calculations appeared too liberal in both scenarios, 254 

as suggested by the systematic upward departure from the diagonal line. P-values from the 255 

covariance test were also smaller than expected across scenarios. 256 

With normally distributed outcomes in Scenario 1, the p-values from the Bonferroni 257 

correction, max-|t|-test, and selective inference method followed the expected distribution closely 258 

(Figure 1). With empirical DNAm outcomes in Scenario 2, p-values from the three methods 259 

seemed too conservative (Figure 2). Transforming the DNAm (beta) values to M-values did not 260 

affect the results (Figure S1). Together, these findings suggest that three methods adequately 261 

controlled the FWER: Bonferroni correction, the max-|t|-test, and the selective inference method.  262 

Estimates of FWER from repeated simulation experiments when the number of tests 263 

ranged from m=1 to 1000 are available in the Supplemental Materials.  264 

 265 

Statistical Power and CI Coverage 266 
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We assessed the statistical power of the three methods that adequately controlled FWER. 267 

We did not evaluate the performance of the covariance test or naïve calculation, as these methods 268 

had smaller than expected p-values under the null hypothesis in all simulations. Inclusion of 269 

these methods would have thus resulted in an unfair comparison, as their statistical power is 270 

inflated by their tendency to fail to reject the null hypothesis.  271 

Figure 3 shows the estimated statistical power as a function of effect sizes tested both 272 

with normal and empirical outcomes. There was very little difference in statistical power 273 

between the three methods; they all had ideal statistical power (over 80%) when the effects were 274 

moderate to large (R2 > 0.06 in scenario 1; ΔDNAm > 0.25 in scenario 2). 275 

Figure 4 shows CI coverage as a function of effect size. With normal outcomes, the 276 

selective inference achieved ideal coverage (around 95%) across all effect sizes with sample size 277 

n = 700; the max-|t|-test had slightly lower coverage when the effect size was small (R2 < 0.03). 278 

With empirical (beta distributed) outcomes, the CI coverage probabilities were below the desired 279 

level (95%) when the between-group difference (ΔDNAm ) was below 0.3, though exceeded 95% 280 

as the effect size increased. Bonferroni corrected CIs were over-conservative across effect sizes 281 

and scenarios, as expected.  282 

  283 

Empirical Analyses 284 

 Using the covariance test, Dunn and colleagues identified five CpG sites in ALSPAC that 285 

showed differential methylation profiles at age 7 following exposure to physical or sexual abuse 286 

in childhood; the “sensitive period” model was the selected life course theory for these five sites. 287 

We reanalyzed the genome-wide SLCMA analyses using two other post-selection inference 288 

methods that showed no inflation in FWER and desired CI coverage: the max-|t|-test and 289 
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selective inference method. Results are shown in Table S1. While neither method identified any 290 

CpG site as significantly associated using a stringent Bonferroni corrected p-value threshold of 291 

p<1x10-7, the CpG site with the smallest p-value from the covariance test (cg06430102) 292 

remained the CpG with the smallest p-value (out of the 485 000 CpG sites tested) for the two 293 

alternative methods (Table S1). The CI calculated based on the covariance test, selective 294 

inference, and the max-|t|-test substantially overlapped (Figure 5; Table S1).  295 

After applying the Frisch-Waugh-Lovell (FWL) theorem to additionally adjust for 296 

covariates, the p-values decreased at all five loci (Figure S2), suggesting that the approach 297 

improved statistical power and additionally controlled for any bias that may be caused by 298 

confounding.  299 

On a genome-wide level, Table S2 shows the overlap in most strongly associated loci 300 

based on results obtained from the three methods assessed in the empirical analyses to compare 301 

the preferred alternative methods to the widely-used (but now identified as inflated) covariance 302 

test. The concordance between the liberal covariance test and recommended selective inference 303 

method was high, implying that both methods agreed on the loci with the strongest associations 304 

with the exposure.   305 
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Discussion 306 

As the availability of longitudinal biological and phenotypic data grows, methods from 307 

life course epidemiology can be translated to “harness the ‘omics’ revolution” 7 and reveal 308 

critical insights about how exposures become biologically embedded. We showed that one such 309 

method – the SLCMA – is an effective approach to directly compare life course theories and can 310 

be scaled-up to answer nuanced questions about complex and time-dependent exposure-omics 311 

relationships. Importantly, not all methods for statistical inference in the SLCMA are suitable in 312 

high-throughput applications. Based on our findings, we recommend the selective inference 313 

method and max-|t|-test for post-selection inference in omics applications. Our simulations also 314 

showed that statistical power to detect effects depended on effect size, but not necessarily on the 315 

post-selection inference method used. When deciding between these two inference methods, 316 

researchers will need to consider several factors, including goals of analysis and study-specific 317 

contexts, as both methods have strengths and limitations in these areas (Supplemental 318 

Materials). The simulation analyses highlight the value of using simulations in scientific 319 

research,39,40 especially when theoretical assumptions may be violated in a new application 320 

setting.  321 

In the empirical analyses, we also showed that evaluating multiple forms of evidence can 322 

help contextualize the SLCMA findings in omics applications, though statistical significance 323 

based on p-values may differ across methods. Researchers should assess p-values in parallel with 324 

effects sizes and confidence intervals, as decision rules of significance based on p-values of one 325 

method may be biased due to inflation or overcorrection. While it remains challenging to draw 326 

definitive conclusions about the presence versus absence of an effect, triangulating evidence 327 

from multiple sources and methods may suggest directions for future replication.41 For example, 328 
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a CpG that was identified as the top site by multiple methods and showed substantial changes in 329 

methylation levels between exposed versus unexposed individuals may be more likely to capture 330 

effects of the exposure and worth pursuing in experimental validation.  331 

Several limitations are noted. First, although we varied the effect size and compared 332 

normal versus empirical distributions of the outcome, we did not assess diverse correlation 333 

structures or distributions in the exposures tested, as it was not possible given the number of 334 

possible combinations of these parameters.  Thus, we encourage researchers to perform their 335 

own simulations to arrive at a better understanding of the statistical properties of the SLCMA in 336 

their specific research context. Second, we restricted our analyses to the application of linear 337 

regression-based model selection; a brief discussion on the possibility of implementing post-338 

selection inference methods for generalized linear models is included in the Supplemental 339 

Materials. Third, as suggested by the simulations, a typical longitudinal epigenetic study with a 340 

sample size under 1000 is likely underpowered to detect small effects. One approach to improve 341 

statistical power is to combine data or summary results from multiple samples and perform a 342 

mega/meta-analysis; developing methods to meta-analyze results from SLCMA analyses is an 343 

important goal of future work. Another approach is to use the FWL theorem for covariate 344 

adjustment, which as shown in this paper led to improvement in power.   345 

In conclusion, the SLCMA is a useful approach that brings the life course perspective 346 

into the omics context. This analysis framework can reveal site-specific mechanisms, as well as 347 

system-level pathways. Compared to an analysis that only categorized exposure status as 348 

exposed versus unexposed, the SLCMA not only offers additional mechanistic insights, but also 349 

increases statistical power when the true underlying exposure-outcome relationship is more 350 

nuanced.22 As a field, we should move beyond analyses of the presence versus absence of 351 
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exposure, and make full use of repeatedly measured phenotype and omics data to generate 352 

knowledge that improves human health over the life course.  353 
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Table 1. Commonly tested life course theories.   
Hypothesis Life course theory Definition Encoding Example 
Sensitive period The developmental timing 

of exposure X has the 
strongest effect on the 
outcome at a specific time 
point due to heightened 
levels of plasticity or 
reprogramming.  
 

Exposure at a particular time 
point j (Xj) is associated with 
the outcome  

Xj  abuseperiod1 (X1)=exposed (1) vs. 
unexposed (0) at time period 1  
 

Accumulation Every additional time point 
of exposure affects the 
outcome in a dose-response 
manner, independent of the 
exposure timing.  
 

The accumulated sum of the 
number of exposure occasions 
(A) is linearly associated with 
the outcome. 

A = X1 + … + Xm abuseaccumulation (A) =count of the 
number of time periods exposed to 
abuse (range 0-6) 

Recency More proximal exposures, 
meaning those that happen 
closer in time to the 
measurement of the 
outcome, are more strongly 
linked to the outcome 
compared to distal 
exposures.  
 

The weighted sum (R) of the 
number of exposure occasions 
is linear associated with the 
outcome such that the weight 
of each exposure is 
proportional to the age at the 
time of measurement.  

R = X1T1 + … + XmTm abuserecency  (R) = abuseperiod1 exposed 
(1) vs. unexposed (0)*(ageperiod1) + 
…+ abuseperiod6 exposed (1) vs. 
unexposed (0) *(ageperiod6) 

Mobility The change in exposure 
status between two time 
periods, rather than the 
absolute state at each 
individual time point, 
affects the outcome.  

The unidirectional change 
(𝑀𝑗𝑘

+  or 𝑀𝑗𝑘
− )  between two 

measurement occasions (from 
jth to kth) is associated with 
the outcome. 

Positive change: 𝑀𝑗𝑘
+ =

(1 − 𝑋𝑗)𝑋𝑘   
Negative change: 𝑀𝑗𝑘

− =
𝑋𝑗(1 − 𝑋𝑘)   
 

Abusemobility+,period1to2 (𝑀1,2
+ ) = [1-

exposed (1) at time period 
1]*exposed(1) at time period 2 

The notations are based on the description of hypotheses by Smith et al.4 Let X1, …, Xm be a set of m repeated binary measures of exposure 
(0=unexposed; 1=exposed) and T1… Tm the corresponding age at the time of measurement. Xj represents the measure at the jth measurement occasion. 
Examples of how the life course theories could be encoded are shown in the last column, which were tested in the empirical analyses of epigenome-
wide SLCMA of exposure to physical or sexual abuse in childhood. Of note, the accumulation models can also be parameterized differently, such as 
with non-linear effects (“u-shaped” or “j-shaped” relationships).  However, for simplicity, we provide the simplest definition of accumulation here, 
which is also often the most often tested. 
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Table 2. Summary of the simulations study setup.  

Under the null (Family wise error rate) 

 Predictors Outcome Number of tests 

Normal outcomes Based on exposure to childhood abuse from ALSPAC. 
Seven variables encoding sensitive period, 
accumulation and recency hypotheses.  
 

𝑦~𝒩(0,1)  485 000 

Empirical outcomes Resampled DNAm values  485 000 

Under the alternative (Power and confidence interval coverage) 

 Predictors Outcome Effect size 

Normal outcomes Based on exposure to childhood abuse from ALSPAC. 
Seven variables encoding sensitive period, 
accumulation and recency hypotheses.  
 

Simulated normal variables associated with the 
first predictor (earliest sensitive period) 
 

R2: 0.01 to 0.1 

Empirical outcomes Simulated beta variables associated with the 
first predictor (earliest sensitive period) ΔDNAm: 0.05 to 0.5 

The table is divided into two approaches: to assess the familywise error rate, we simulated the exposures and outcomes to have no association with each other 
(i.e., under the null hypothesis), and ran a single simulation of 485 000 tests to examine the distributions of observed p-values against the expected distribution. To 
assess the power and confidence interval coverage under the alternative hypothesis, we ran 2 000 simulation experiments to allow the confidence interval (CI) of 
the assessed metrics (i.e., power and CI coverage) to have a radius (i.e., margin of error) of 1%, setting α to 5%. The two metrics of effect sizes were different 
with normal versus empirical outcomes due to the difference in the underlying data generating processes.  
Sample size was set to n=700 in all simulations based on the sample size of the empirical study.   
R2: variance of the outcome explained by the selected predictor.  
ΔDNAm: difference in average methylation levels between the exposed and unexposed individuals.  
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Table 3. Summary of main findings: statistical properties of post-selection inference methods.  
Method FWER  

(Figures 1 & 2) 
Statistical power 
(Figure 3) 

CI coverage 
(Figure 4) 

Software 
availability 

Computation time 
for an epigenome-
wide analysis* 

Naïve calculation Inflated p-values 
and FWER 

Biased due to 
inflated FWER 

Lower than 
expected coverage 
when effect size is 
small4 

 

Widely available Fast (24 minutes) 

Bonferroni correction Controlled at any 
level 
 

Comparable Overconservative 
(i.e., above 
expected coverage)  
 

Widely available Fast (24 minutes) 

Max-|t|-test Controlled at any 
level 

Comparable Lower than 
expected coverage 
when effect size is 
small 
 

R code provided in 
the Supplement 

Slow (11 hours 51 
minutes) 

Covariance test Inflated p-values 
and FWER 

Biased due to 
inflated FWER 

Expected 
coverage;4 interval 
not necessarily 
contiguous 
 

R Package 
archived27 

Moderate (1 hour 
19 minutes) 

Selective inference Controlled at any 
level 

Comparable Expected coverage R Package 
available;29 
possible to 
implement 
generalized linear 
models as well  

Slow (14 hours 13 
minutes) 

FWER: family-wise error rate; CI: confidence interval 
*Computation time was based on analyses running under R 3.4.0 using a high performance computer cluster with 8GB RAM and a 
maximum of 6 CPU cores allotted.  
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Figure 1. Q-Q plots comparing the expected versus observed p-values simulated under the null for naïve calculations 
and four post-selection inference methods (N=700) with normal outcomes, where the outcome variables were simulated 
to follow a normal distribution (scenario 1).  
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Figure 2. Q-Q plots comparing the expected versus observed p-values simulated under the null for naïve calculations and four post-
selection inference methods (N=700) with empirical outcomes, where the outcome variables were resampled from observed DNAm 
values (scenario 2).  
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Figure 3. Estimated statistical power and corresponding 95% CI in simulated epigenome-wide analyses (n=700), with 
varying effect sizes.  
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Figure 4. Estimated confidence interval coverage probability and corresponding 95% CI in simulated epigenome-wide 
analyses (n=700), with varying effect sizes.  
 

 
Gray dashed line corresponds to the pre-specified coverage probability (95%).  
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Figure 5. Overlap between confidence intervals based on the covariance test, selective inference, and the max-|t|-test in the 
empirical example, showing the top five loci. 
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