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Abstract 

 

Introduction: Despite careful patient selection for subthalamic nucleus deep brain 

stimulation (STN DBS), some Parkinson’s disease patients show limited improvement of 

motor disability. Non-conclusive results from previous prediction studies maintain the need 

for a simple tool for neurologists that reliably predicts postoperative motor response for 

individual patients. Establishing such a prediction tool facilitates the clinician to improve 

patient counselling, expectation management, and postoperative patient satisfaction. 

Predictive machine learning models can be used to generate individual outcome predictions 

instead of correlating pre- and postoperative variables on a group level. 

Methods: We developed a machine learning logistic regression prediction model which 

generates probabilities for experiencing weak motor response one year after surgery. The 

model analyses preoperative variables and is trained on 90 patients using a ten-fold cross-

validation. We intentionally chose to leave out pre-, intra- and postoperative imaging and 

neurophysiology data, to ensure the usability in clinical practice.  

Weak responders (n = 27) were defined as patients who fail to show clinically relevant 

improvement on Unified Parkinson Disease Rating Scale (UPDRS) II, III or IV. 

Results: The model predicts weak responders with an average area under the curve of the 

receiver operating characteristic of 0.88 (standard deviation: 0.14), a true positive rate of 

0.85 and a false positive rate of 0.25, and a diagnostic accuracy of 78%. The reported 

influences of the individual preoperative variables are useful for clinical interpretation of the 

model, but cannot been interpreted separately regardless of the other variables in the 

model. 

Conclusion: The very good diagnostic accuracy of the presented prediction model confirms 

the utility of machine-learning based motor response prediction one year after STN DBS 

implantation, based on clinical preoperative variables. 

After reproduction and validation in a prospective cohort, this prediction model holds a 

tremendous potential to be a supportive tool for clinicians during the preoperative 

counseling. 

 

Abbreviations: BMI: body mass index, H&Y: Hoehn and Yahr scale, LEDD: levodopa 

equivalent daily dosage, (MDS) UPDRS: (Movement Disorders Society) Unified Parkinson’s 

Disease Rating Scale, MR: magnetic resonance, PD: Parkinson’s disease, QoL: quality of life, 

STN DBS: subthalamic nucleus deep brain stimulation, TEED: total electrical energy delivered 
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Introduction: 

 

Subthalamic nucleus deep brain stimulation (STN DBS) is a widely accepted therapy for 

Parkinson’s disease (PD) patients in which dopaminergic replacement therapy is 

unsatisfactory.1-4 In these patients, DBS can reduce motor symptoms or their fluctuations 

and thereby improve quality of life.5 Despite careful patient selection, some patients still 

show limited or no improvement of motor disability.5 Since the introduction of STN DBS, 

clinicians aimed to determine reliable predictors.6 Researchers have previously studied the 

predictive power of preoperative clinical information7, genetic profiling8, MR imaging 

studies9, dopamine-transporter imaging10, and intraoperative neurophysiological 

assessments.11  

Preoperative levodopa responsiveness of motor symptoms, severity of motor symptoms, 

and younger age are repeatedly reported as positive predictive factors for postoperative 

(Movement Disorders Society –) Unified Parkinson’s Disease Rating Scale ((MDS-)UPDRS) 

motor improvement.12 Contrarily, other authors reported preoperative levodopa 

responsiveness as not being predictive of STN DBS outcome.7, 13 Preoperative severe quality 

of life (QoL) impairment, more time spent in off-condition of dopaminergic medication, 

levodopa responsiveness, and low BMI have been shown as positive predictive factors on 

postoperative QoL.7, 14-16 Reports on the predictive value of disease duration at surgery, 

daily levodopa dosage, postural and gait impairment, and non-motor symptoms all show 

conflicting results.
12, 15, 17, 18

 Comparison of reported motor outcome is hampered due to 

variance in assessment scales and assessments during varying dopaminergic states.19  

These non-conclusive results maintain the need for a simple tool which neurologists can use 

in clinical practice to predict motor outcome after STN DBS for individual patients. To realize 

a usable and representative tool for the preoperative setting, our approach is limited to 

preoperative available clinical variables. Prediction during the preoperative phase will 

always lack information due to surgical factors such as lead placement. This lack of 

information is inherent to any approach that aims at contributing to a better preoperative 

counselling. 

Machine learning methods are increasingly used in medical practice to unravel patterns and 

connections to improve prediction in clinical practice.20 Predictive machine learning models 

can be distinguished from traditional statistics by generating outcome predictions for new, 

individual patients, instead of correlations between pre- and postoperative variables on a 

group level. The evaluation with cross-validation leads to less limitations in sample size 

regarding number of considered predictive variables or confounders.21 To ensure practical 

usability, clinical relevance, and interpretable results, the development and implementation 

of these models requires statistical, programming, and clinical expertise.22 Predictive 

analysis in PD can have additional value by improving challenging clinical decision making 

instead of only reproducing valid clinical decisions.23 One study already applied these 

methods to predict individual patient response to dopaminergic therapy.24 Here, we report 

the development and proof-of-concept of a prediction model that generates probabilities 

for weak and strong motor response one year after STN DBS for individual PD patients 

based on preoperative clinical variables.  
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Materials and Methods: 

 

Study population 

 

We considered patients who underwent STN DBS for PD in our academic neurosurgical 

centre between 2004 and March 2018. We included all patients who completed one-year 

postoperative follow up in this retrospective cohort analysis. We excluded patients who had 

missing UPDRS-III scores in their preoperative on-medication condition, or postoperative 

on-medication, on-stimulation condition.  

The Medical Ethical Committee of Maastricht UMC+ approved this study (2018-0739). 

Informed consent was not obtained since the retrospective data was collected coded. 

 

Surgical procedure 

 

PD patients were indicated for STN DBS based on severe motor symptoms despite optimal 

levodopa treatment, severe motor fluctuations, or dyskinesia, and often showed a good 

levodopa responsiveness.25 Surgical electrode location was determined based on 

preoperative MRI trajectory planning, microelectrode recordings, and intra-operative 

testing. The first part of surgery was performed while the patient was cognizant, after which 

the lead and pacemaker implantation was completed under general anaesthesia. 

Postoperative CT examinations verified the electrode location. Postoperative stimulation 

parameters and dopaminergic drug therapy were set and managed by the neurologist in the 

outpatient clinic during regular follow-ups. 

 

Pre- and postoperative variables 

 

All available preoperative demographic data, disease specific data (disease onset, disease 

duration, levodopa equivalent daily dosage (LEDD))26, clinical performance scores ((MDS)-

UPDRS, and Hoehn & Yahr (H&Y) scores), as well as relevant neuropsychological 

assessments in the on-medication condition (Stroop test interference, Verbal Fluency, 

categorical, and letter tests) were incorporated. We intentionally chose to leave out pre-, 

intra- and postoperative imaging and neurophysiology data, to ensure the usability in 

clinical practice. We simulate the situation of a clinician during preoperative counselling.  

All preoperative clinical and neuropsychological scores were assessed in the on-medication 

condition except (MDS-)UPDRS III and H&Y scores which were also assessed in the off-

medication condition. Preoperative motor levodopa-responsiveness was calculated by 

subtracting UPDRS III scores in the off-medication condition with scores in the on-

medication condition. Postoperative collected variables consist of UPDRS I, II, III and IV and 

H&Y scores in on-medication and on-stimulation conditions, UPDRS III in on-stimulation and 

off-medication conditions, and neuropsychological Fluency and Stroop tests in on-

stimulation and on-medication conditions. Both MDS-UPDRS and UPDRS scores were 

collected due to the variation in surgery dates among the population. To create uniform 

UPDRS scores, MDS-UPDRS scores were recalculated to UPDRS scores.19 Pre- and 

postoperative differences for UPDRS scores I until IV, H&Y scores, LEDD, and 

neuropsychological assessments were calculated. Furthermore, we registered applied DBS 

voltage, frequency, and pulse width at one-year follow up. To compare DBS-settings, we 

computed the mean total electrical energy delivered (TEED).27 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. not certified by peer review)

(which wasThe copyright holder for this preprint this version posted October 5, 2019. ; https://doi.org/10.1101/19006841doi: medRxiv preprint 

https://doi.org/10.1101/19006841
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5

 

 

 
Figure 1. Overview of prediction approach 

Workflow of the prediction model as a preoperative counselling tool. The preoperative individual 

patient variables (left) are inserted in the prediction model, which is trained on the retrospective 

database (‘Training Data’). The model calculates the probability to become a weak responder 

between 0 and 1, in this example 0.7. The neurologist can use this probability to inform the patient 

during preoperative counselling.  

 

Prediction model 

 

We used a machine learning based multivariate logistic regression model that distinguishes 

itself from (univariate) correlative regression models by predicting individual outcome 

probabilities (fig. 1). We focused on motor response as outcome and differentiated between 

‘strong responders’ and ‘weak responders’. Patients who did not reach a minimal clinically 

relevant improvement on UPDRS II, III, or IV in on-medication and on-stimulation condition 

vs. preoperative on-medication condition, were categorized as weak responders. If at least 

one of the improvements were met, they were categorized as strong responders (fig. 2). The 

minimal clinically relevant improvement for UPDRS III was 5 points, and for UPDRS II and IV 

it was 3 points. For further description of this approach, please see Supplementary Material. 

Our outcome prediction was based on the following available preoperative variables: 

gender, age at DBS, PD duration at DBS, age at PD onset, UPDRS I, II, III and IV in on-

medication condition, motor levodopa response, H&Y scale in on- and off-condition, Stroop 

interference score, Fluency categorical and total letter score, and the levodopa equivalent 

daily dosage (LEDD).  
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Figure 2. Venn diagram with patient distribution over outcome parameters 

The three circles represent the three response criteria, Unified Parkinson’s Disease Rating Scale 

(UPDRS) I, UPDRS II and UPDRS III, accompanied by the minimal improvement that is considered to 

be clinically relevant. The numbers within the circles stand for the number of patients that meet the 

criteria. The overlapping parts of the circles represent the number of patients that meet both or all 

three criteria. 

 

The predictive logistic regression model was fitted, i.e. trained, on the relation between 

preoperative variables and postoperative outcome categorization in the retrospective 

database.28 We evaluated our prediction approach in a 10-fold cross-validation. In this 

approach, the relationship between preoperative variables and postoperative outcome is 

fitted on 90% of the patients, the ‘training data’. This training assigns a weight, ‘β’, to every 

single preoperative variable, ‘x’. The prediction model was then evaluated on the remaining 

10% of patients in the database, the ‘test data’. When the preoperative variables of a new 

patient out of the test data were inserted, they got processed with these weights, leading to 

a prediction of the probability to become a weak responder. The probabilities were 

generated from the weighted preoperative variables by feeding them into the logistic 

function 1 / (1 + exp(- β * x)). The fitting and testing procedure was repeated 10 times until 

every patient was used for testing exactly once. The cross-validation approach simulates 

validation on new patients. Since the outcome values of the test data subjects were known, 

the model performance could be tested by comparing predicted probabilities to actual 

outcome values. We chose logistic regression as a prediction model instead of a deep 

learning-based model due to the relatively small database size and the fact that the weight, 

or influence, of every preoperative variable can be interpret separately. for the logistic 

regression can, which helps to generate an intuition what the prediction is based on.29 

 

Since the model predicts probabilities between 0 and 1, the accuracy of the model is 

strongly dependent on the threshold that decides which probabilities are assumed to be 

weak responders. To evaluate the overall performance, we employ the receiver operating 

characteristic (ROC) which visualizes true positive and false positive rates for different 

thresholds between 0 and 1 (fig 3A). Performance of prediction models is expressed as the 
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area under the curve (AUC) of the ROC (fig. 3A). For converting the model into a prospective 

application, one of these thresholds should be selected. The model is then expected to 

produce the true and false positive rates that correspond to the selected threshold.  

 

To understand which variables the prediction model bases its prediction on, we can explore 

the importance of every preoperative variable. The model weights can be converted to 

Odds Ratios by calculating exp(β), which we normalize by subtracting 1 to enable 

interpretation. We interpret these normalized Odds Ratios as relative influence values in 

percent. The relative influence values denote the change in probability to be a weak 

responder when the respective variable increases 1 unit and all other variables stay 

constant.  

Comparative descriptive analysis between preoperative and postoperative variables and 

between weak and strong responders are performed with Mann-Whitney-U-tests. 

To facilitate prediction models, we imputed missing data-points in preoperative variables. 

(For further explanation on the Random Forest imputations applied on preoperative 

variables, please see Supplementary Material). To prevent imputations of variables that are 

the target of prediction, we did not impute postoperative variables. Analysis is performed in 

Python Jupyter Notebook 3 (Jupyter Team, https://jupyter.org, revision fe7c2909) using 

packages pandas (version 0.24.2), Numpy (version 1.16.4), scikit-learn (version 0.21.2), and 

Scipy (version 1.3.0). We report our findings according to the TRIPOD Checklist for 

Prediction Model Development.
30
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Results 

 

Preoperative and postoperative variables 

 

We included 98 patients with a well-documented one year follow up after STN DBS of which 

90 had no missing data points in UPDRS III score in preoperative on-medication condition 

and postoperative on-medication and on-stimulation condition. We report descriptive 

statistics containing the original data (no imputed preoperative data). The total group 

showed statistically significant postoperative improvements in UPDRS III scores, compared 

with both preoperative on- and off-medication conditions, and in UPDRS IV scores. We 

observed a significant decrease in LEDD (table 1). Further, there was a significant 

deterioration in neuropsychological scores on group level.   

 

The categorization resulted in 63 strong responders and 27 weak responders (fig. 2). The 

groups had significant differences on all postoperative UPDRS scores and differences, except 

for the UPDRS III during on-stimulation and off-medication state (table 2). We observed no 

significant or relevant differences between the groups regarding neuropsychological scores, 

LEDD, or TEED. 

 

Table 1. Preoperative and postoperative variables of total population 

 Baseline characteristics $ 

Female sex  37 (41%) 

Age 61 (8) 

 

Disease duration 10.6 (5.1) 

Preoperative 

UPDRS III levodopa 

response  

-18.9 (13.4) 

Preoperative 

UPDRS III % 

levodopa response 

-45.4 (37.9) 

 Preoperative 

$ 

1 year follow up $ 

UPDRS I ¶ 01.3 (1.3) 02.9 (3.1) 

UPDRS II ¶ 09.8 (6.5) 09.7 (5.5) 

UPDRS III ¶ 21.8 (12.5) 16.6 (10.0) * 

UPDRS III ¶¶ 39.4 (13.2) 22.4 (12.4) * 

UPDRS IV ¶ 05.5 (4.0) 02.7 (2.4) * 

H&Y 1 ¶ 

H&Y 1.5 ¶ 

H&Y 2 ¶ 

H&Y 2.5 ¶ 

H&Y 3 ¶ 

H&Y 4 ¶  

H&Y 5 ¶ 

02 (02%)† 

02 (02%) 

14 (16%) 

34 (40%) 

24 (16%) 

09 (10%) 

- 

-  

01 (02%) 

03 (05%) 

22 (37%) 

17 (29%) 

14 (24%) 

02 (03%) 

Fluency total 

categories ¶ 

39.7 (9.4) 33.7 (9.7) * 

Fluency total 35.8 (11.2) 31.6 (12.0) * 
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letters ¶ 

Stroop 

interference ¶ 

56.0 (34.9) 76.4 (62.8) * 

LEDD (milligrams) 1197 (622) 665 (513) * 

TEED - 134 (130) 

 

H&Y: Hoehn & Yahr scale, LEDD: levodopa equivalent daily dosage, off-/on-med: off-/on-

medication, off-/on-stim: off-/on-stimulation, TEED: total electrical energy delivered, 

UPDRS: Unified Parkinson Disease Rating Scale 

 

$: values are given as mean and standard deviation of the mean. 

¶: preoperative: on-medication, postoperative: on-medication and on-stimulation 

¶¶: preoperative: off-medication, postoperative: off-medication and on-stimulation 

†: percentage of Hoehn and Yahr scales are relative based on the number of available data 

(on: n = 86, off: n = 60) 

*: significant difference with p-value < 0.05, calculated with Mann Whitney-U test 

 

Table 2. Comparison of postoperative variables in groups with strong responders and 

weak responders 

1 year follow up variables Strong responders, n=63 $ Weak responders, n=27 $  

UPDRS I † 02.2 (2.2) 04.7 (4.2) * 

UPDRS I change ¶ 00.5 (1.9) 01.4 (1.8) * 

UPDRS II † 09.0 (5.3) 11.5 (5.7) * 

UPDRS II change ¶  -2.0 (6.9) 05.2 (5.4) * 

UPDRS III †  15.3 (9.7) 19.8 (10.0) * 

UPDRS III change ¶  -9.9 (13.6) 05.9 (7.5) * 

UPDRS III ‡ 22.3 (13.5) 23.2 (4.1) 

UPDRS III change ± -27.3 (15.1) -13.9 (14.1) * 

UPDRS IV † 02.4 (2.3) 03.3 (2.6) * 

UPDRS IV change ¶  -4.2 (4.0) 00.7 (3.1) * 

Fluency total categories † 33.8 (10.2) 33.2 (8.4) 

Fluency total letters † 31.6 (12.0) 31.6 (12.2) 

Stroop interference † 78.0 (69.6) 72.3 (41.6) 

LEDD  627 (509) 747 (511) 

LEDD change  -522 (480) -562 (513) 

LEDD change (%) -41.2 (37.5) -40.9 (34.3) 

TEED 144 (147) 112 (72) 

 

LEDD: levodopa equivalent daily dosage, off-/on-med: off-/on-medication, off-/on-stim: off-

/on-stimulation, TEED: total electrical energy delivered, UPDRS: Unified Parkinson Disease 

Rating Scale 

 

$: values are given as mean and standard deviation of the mean  

†: on-stimulation, on-medication 

¶: difference between on-medication and on-stimulation vs. preoperative on-medication 

‡: on-stimulation and off-medication  

±: difference between on-stimulation and off-medication vs. preoperative off-medication 
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*: significant difference with p-value < 0.05, calculated with Mann Whitney-U test 

 

Performance of the prediction model 

 

The receiver operating characteristic (ROC) represents the true positive and false positive 

rates corresponding to different thresholds that can be chosen to accept a probability to be 

true. Our prediction model performs with an average AUC of the ROC of 0.88 (standard 

deviation: 0.14) (figure 3A). 

When 0.24 is chosen as a threshold for accepting probabilities to become a weak responder, 

this leads to a true positive rate of 0.85 and a false positive rate of 0.25 (fig. 3A-B). This also 

leads to a diagnostic accuracy of 78%, since 70 out of 90 patients are predicted correctly. 

 

Figure 3: Prediction model performance and importance per predictive variable.  

 

A: Visualization of the performance of our prediction model. Our prediction model performs with an 

average area under the curve (AUC) of the receiver operating curve (ROC, blue line) of 0.88 

(standard deviation: 0.14). All the dots on the ROC represent a threshold between 0 and 1 for 

accepting a probability to be a weak responder to be true. Every threshold leads to a different true 

positive rate and false positive rate. The red circle represents the threshold corresponding with pane 

B. The orange line represents chance level in which true positive rates equal true negative rates. 

B: Matrix of the example when 0.24 is chosen as a threshold for accepting the probability to be a 

weak responder (red circle in pane A). The true positive rate of 0.85 results in 23 out of 27 true weak 

responders getting a true weak prediction. The false positive rate of 0.25 results in 16 out of 63 true 

strong responders getting a false weak prediction. 
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C: Relative influence of all preoperative predictive variables. The normalized Odds Ratios represent 

the effect of a 1 unit increase in the specific variable, while all other variables stay equal.  

 

AUC: area under the curve, DBS: deep brain stimulation, H&Y: Hoehn & Yahr scale, LEDD: levodopa 

equivalent daily dosage, Levodopa response: difference between UPDRS III off-medication minus 

UPDRS III on-medication; off: off-medication, on: on-medication, ROC: receiver operate 

characteristic, TEED: total electrical energy delivered, UPDRS: Unified Parkinson Disease Rating 

Scale, PD: Parkinson’s disease 

 

The calculated relative influence values represent the importance of each preoperative 

variable in generating the probability to be a weak responder for each individual (fig. 3C). 

Older age at PD onset has the strongest relative influence for becoming a weak responder. 

Similarly, age at DBS is a predictor for becoming a weak responder but is less strong 

compared to age at PD onset. High preoperative UPDRS III and IV scores in the on-

medication condition are the strongest predictors for becoming a strong responder (figure 

3C). Additionally, a high preoperative UPDRS II score, high neuropsychological scores on the 

categorical Fluency test and Stroop test, and higher H&Y score in the on-condition were 

moderate predictors for becoming a strong responder. 

 

 

Discussion 

 

The clinical value of preoperative prediction of STN DBS motor response 

 

Establishing an accurate prediction tool for motor outcome after STN DBS facilitates the 

clinician to improve patient counselling, expectation management, postoperative patient 

satisfaction, and potentially even patient selection.
32

 Due to the complexity and 

heterogeneity of individual STN DBS candidates, outcome prediction needs to be 

accompanied by a clinical expert’s appraisal. The likelihoods provided by our approach 

might also assist clinicians with less experience to identify promising candidates for DBS 

procedures. Moreover, the accuracy of a prediction model solely regarding clinical 

preoperative factors will always be limited due to the influence of surgical factors. 

Nevertheless, we intentionally chose to leave pre-, intra- and postoperative imaging and 

neurophysiology variables out of our model. This way, we ensure the model to be usable in 

and representative for clinical practice. We aim to provide the clinician during preoperative 

counselling with numerical support and insight into the motor outcome which is most likely 

to expect for an individual patient. This individual estimation can be difficult and has to be 

made on clinical experience so far.  

 

The additive value of machine learning methods for clinical prediction models 

 

The applied predictive multivariate logistic regression model was chosen to overcome 

limitations inherent to conventional (univariate) logistic regression models.7, 14, 15 

Conventional analyses mainly result in a correlation between one preoperative variable and 

a postoperative outcome while controlling for several confounding preoperative variables. 

In designing this analysis, a researcher has to make concessions in selecting the confounding 

variables because the number of allowed confounding variables is restricted depending on 
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the sample size.21 The selection-bias that occurs during this selection directly influences the 

results and is a major limitation of these conventional statistical models. 

The presented model distinguishes itself in this regard, and although it is trained using the 

same principles of logistic regression, the multivariate approach in our model evaluates all 

available variables simultaneously. Additionally, by applying cross-validation, we ensure that 

no overfitting occurs. Moreover, the restriction due to sample size is small and prevents an 

a priori selection-bias. Lastly, we stress the importance of the use of interpretable predictive 

machine learning models towards ensuring clinical validity.29  

 

The prediction model performance and its relevant predictive variables 

 

The high AUC of the ROC corresponds to predicted outcome probabilities strongly 

corresponding to actual outcomes, leading to a very good diagnostic accuracy (AUC = 0.88) 

(fig. 3A). These results of the presented model confirm the proof-of-concept of machine 

learning prediction of postoperative motor outcome based on preoperative clinical 

variables. The prediction accuracy of 78% endorses the potential and need for a further 

validation in a larger and multicentre patient population. In a future prospective prediction 

model the nature of the inaccuracy, the balance between false positive and false negative 

predictions, can be directed by determining the threshold for acceptance (fig. 3B).  

 

The reported influence of higher age at PD onset on becoming a weak responder contradicts 

earlier findings that report younger age to be a positive predictor for a favourable outcome, 

although the same meta-analysis reports longer PD duration as a predictor for favourable 

outcome.12  

Preoperative UPDRS III and IV scores in the on-medication condition have the highest 

relative influence values for becoming a strong responder in this model. The finding of high 

preoperative motor severity increases chances on a stronger response are in line with a 

meta-analysis, although most included studies report on preoperative severity on off-

medication condition.
12

 Evidence on the predictive value of symptom severity in on-

medication condition is limited. The finding H&Y scores are not majorly influencing outcome 

probabilities is in line with literature describing disease severity to positively influence the 

chance on strong motor response, while axial and balance problems negatively influence 

this chance.12 Furthermore, predictive analysis on QoL outcomes confirm the predictive 

value of higher UPDRS III scores.14, 15 Conversely, recent studies have failed to show positive 

predictive value of UPDRS III on QoL outcome.7, 16  

Both high scores on categorical Fluency and Stroop interference are small contributors to 

becoming a strong responder. Such influences of neuropsychological tests are non-

conclusive since a high categorical Fluency score and a high Stroop interference score 

correspond to better and worse neuropsychological functioning, respectively. 

A high UPDRS III levodopa response did not show to influence the probability of becoming a 

weak responder which contradicts other studies that had identified levodopa 

responsiveness as an important predictor,12, 15 but supports other findings which do not 

assert predictive value to levodopa responsiveness.7, 13 

Previous studies have also suggested lower scores on preoperative QoL-scales predict large 

QoL improvement.7, 18 The absence of a predictive value of UPDRS II and III suggests low 

correlations between UPDRS II & III and the QoL-scale.
7
 We did not reproduce the positive 

predictive value of less levodopa exposure on QoL improvement.18 Regarding levodopa 
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exposure, one should consider that LEDD is expressed in milligrams, which means that the 

relative influence of a unit increase (1 milligram) is not a clinically relevant increase. 

Likewise, the absence of a proper non-motor symptom scale hampered potential 

reproduction of the recently described importance of non-motor symptoms.
17

  

 

The reported influences of the preoperative variables on the outcome probability are partly 

consistent with the literature, and are partly contradicting literature. We stress that these 

influences cannot be seen outside the scope of this model. They are only reported to gain 

insight in the underlying weights which determine the probabilities.  

 

The overview of interpretable weight of each predictive variable is an advantage of the 

predictive logistic regression model (fig. 3C). This advantage enables clinicians to verify 

whether the ratio behind the predictions is clinically valid or whether predictions are based 

on unexpected variables. As stated earlier, the variable weights are not explicitly intended 

to be interpret outside of the scope of this model. They cannot be interpreted on their own 

within individual patients when other variables in the model are disregarded. 

 

The applied categorization for postoperative motor response 

 

To identify the suboptimal responding minority of STN DBS patients objectively, we created 

a holistic categorization based on available variables representing ADL, motor symptoms, 

and adverse effects (fig. 2). Previous literature describes STN DBS outcome with a 

heterogenous variety of variables including UPDRS III severity in on- or off-conditions, time 

spent in on-condition, and QoL scales.2, 3, 5, 7 In the absence of a validated QoL scale, we 

consider our categorization as the best possible definition of general unsatisfactory 

outcome. 

This categorization resulted in 30% weak responders, which is comparable to reported 

improvement ratios on quality of life after STN DBS.5, 14, 17, 18 Especially since we regarded 

postoperative differences in on-medication conditions instead of off-medication conditions; 

and postoperative surgical results are often comparable to the best state in on-medication 

condition.12 

The strong and weak responder groups significantly differed on all UPDRS changes, except 

for UPDRS III scores in the on-stimulation and off-medication condition compared to the 

preoperative off-medication condition (table 1). A plausible explanation is that nearly all 

patients will benefit from stimulation compared to the untreated preoperative condition. 

We consider comparing on-medication states as more natural and realistic because therapy 

aims to keep patients in on-medication state most of the time.  

Given the concordance regarding preoperative and postoperative UPDRS scores and LEDD 

amounts between our cohort and the literature, we consider our cohort to be 

representative for the general STN DBS population.2, 5 Our cohort showed an expected older 

age and more severe pre- and postoperative characteristics then a cohort included based on 

early motor complications.4 The observed neuropsychological deteriorations after STN DBS 

are also in line with previous findings.31  

 

 

Limitations 
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Our study is limited by its retrospective character. Missing preoperative data points were 

overcome by imputations. Outcome values were not imputed to prevent training of the 

model based on imputed self-generated data. Even though the imputation method was 

sound, the imputed values will never reach true values and will continue to influence 

outcomes. Lastly, our cohort lacks QoL outcome variables; our holistic outcome 

categorization is theoretically a surrogate for QoL but we are unable to make any conclusive 

claims on QoL.  

Second, the accuracy of our prediction approach will always be limited by the fact we only 

consider preoperative clinical variables. We aim to empower their motor outcome 

prediction which is currently often made on clinical experience. It is expected that our 

prediction model cannot perform perfectly, as DBS outcome is also influenced by surgical 

factors such as lead placement, which cannot be foreseen during preoperative counselling. 

A prediction in the preoperative phase will therefore always contain variance in accuracy. 

 

 

 

Conclusion 

 

The presented model predicted individual outcome probabilities for becoming a weak 

responder one-year after STN DBS therapy with very good diagnostic accuracy. This 

confirms the proof-of-concept of machine learning prediction of motor outcome after STN 

DBS based on preoperative clinical variables.  

The reported influences of the preoperative variables cannot be interpreted outside the 

scope of this specific prediction model, but endorse the clinical reliability of the applied 

method. 

After reproduction and validation in a prospective cohort, this prediction model holds a 

tremendous potential to be a supportive tool for clinicians during the preoperative 

counseling. 
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