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Abstract 

Background: Chronic breathlessness profoundly affects quality of life for its 

sufferers. Often, reported breathlessness is inconsistent with airway pathophysiology 

and objective disease markers. While a mechanistic understanding of this 

discordance has thus far remained elusive, factors such as mood, attention and 

expectation have all been implicated as important perceptual modulators. Therefore, 

here we have developed a model capable of exploring these relationships aiding 

patient stratification and revealing clinically-relevant neuro-biomarkers. 

Methods: A cohort of 100 participants with mild-to-moderate chronic obstructive 

pulmonary disease (COPD) underwent a comprehensive assessment that included 

functional brain imaging while viewing and rating breathlessness-related word cues, 

self-report questionnaires and clinical measures.  

Results: Using an exploratory factor analysis across psychological and physiological 

measures, we identified two distinctive neuropsychological behavioural profiles that 

differed across four key factors corresponding to mood, symptom burden, and two 

capability measures. These profiles stratified participants into high and low symptom 

groups, which did not differ in spirometry values. The low symptom load group 

demonstrated greater FMRI activity to breathlessness-related word cues in the 

anterior insula.  

Conclusions: Our findings reveal two clear groups of individuals within our COPD 

cohort, divided by behavioural rather than clinical factors. Furthermore, indices of 

depression, anxiety, vigilance and perceived capability were linked to differences in 

brain activity within key regions thought to be involved in monitoring bodily 

sensations (interoception). These findings demonstrate the complex relationship 

between affect and interoceptive processing, providing the foundations for the 

development of targeted treatment programmes that harness clinical and symptom-

relevant biomarkers.  
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Introduction  

For the millions of people living with chronic obstructive pulmonary disease (COPD), 

asthma, heart failure or cancer, breathlessness is a major source of suffering, 

extending pervasively into people’s lives. COPD describes a collection of lung 

conditions including bronchitis and emphysema, 85% of which arise as a result of 

long-term cigarette smoking. Despite the substantial personal, social and economic 

impacts of breathlessness resulting from COPD alone (4.5% of people over 40 have 

been diagnosed with COPD according to the British lung foundation and in 2015 

5.6% of the worldwide deaths were attributed to COPD [1]), mechanistic 

understandings of symptom variability and the discordance between pathophysiology 

and subjective perceptions remain elusive. 

 

While traditional thinking has viewed breathlessness as a symptom arising directly 

from lung damage or cardiopulmonary stress, recent work in breathlessness has 

highlighted the influence of factors such as mood and attention on subjective 

perceptions [2]. Furthermore, 40% of people with COPD are thought to experience 

clinically relevant anxiety and depression, compared to <10% of the general 

population [2]. In addition to these factors, previous experiences, symptom 

expectation and the ability to correctly monitor our internal bodily state (also known 

as interoception [3, 4]) also appear to play a fundamental role in perceptual 

experiences, as outlined by the “Bayesian Brain” hypothesis.  

 

In the Bayesian Brain model, the brain weighs prior expectations against noisy 

ascending sensory inputs to determine sensory perception. This perceptual 

weighting is thought to be further modulated by emotions and attention [5]. Such 

theories are beginning to gain traction and formalising these in terms of their neural 

correlates may yet offer a fresh perspective on the challenges of understanding 

breathlessness [6, 7]. 
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Thus, breathlessness arises not only from current patho-physiological status of the 

lungs and airways, but also depends on the brain's interoceptive networks – those 

networks associated with interpreting incoming signals from the body. The production 

of breathlessness perceptions arise from a complex product of previous experiences, 

the interpretation of internal sensory signals and factors such as emotional status. A 

model incorporating this interplay of the behavioural and neuro-psychological 

networks may facilitate stratification of patient groups based on brain-related metrics, 

offer explanations for symptom discordance and heterogeneity and in turn lead to the 

development of targeted treatments within these groups. 

 

Here, we have investigated this relationship by building on our previous work linking 

brain activity to breathlessness-related word cues [8, 9] and drawing upon the big-

data techniques of unsupervised machine learning and dimensionality reduction. We 

applied unsupervised machine learning algorithms to a large multi-modal 

questionnaire, behavioural and physiological dataset and identified the best 

combination of measures for describing the breathlessness experience across 

individuals. Using dimensionality reduction, we then reduced the measures down to 

their underlying factors and used these to stratify the population of individuals with 

COPD into subgroups with distinct neuropsychological profiles. Finally we used this 

information to probe potential differences in neural processing of breathlessness 

expectations between these symptom-based groups.  
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Methods and Materials  

A brief overview of the study methodology is presented here. Full details can be 

found within supplementary materials.  

 

Participants 

100 participants (36 female, mean age 69 years (49-84 years)) with mild to moderate 

COPD (according to GOLD [Global Initiative for Chronic Obstructive Lung Disease] 

standards) were recruited to this study immediately prior to their enrolment in a 

National Health Service prescribed course of pulmonary rehabilitation. From this 

population, 91 participants completed the magnetic resonance imaging (MRI) 

component of the study (Supplement Figure 1). Written informed consent was 

obtained from all participants prior to the start of the study. Study approval was 

granted by South Central Oxford REC B (Ref: 118784).  

 

 

Age (years/range) 69/(49-84) 

BMI kg.m-2 ± SD 28.0±6.2 

Smoking pack-years ± SD 36.7±26.0 

Resting SpO2% ± SD 94.1±3.3 

Resting heart rate beats.min-1 ± SD 80.8±13.6 

FEV1/FVC ± SD 0.55±0.15 

FEV1 % Predicted ± SD 58±21 

MRC (IQR) 3 (1) 

Table 1. Demographic information (N=100) 
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Behavioural Measures 

Self-report questionnaires: We selected a comprehensive set of questionnaires 

designed to probe the experience of living with COPD, focusing particularly on the 

potential influence of emotional and behavioural measures. 

 

The following self-report questionnaires were completed and scored according to 

their respective manuals: Dyspnoea-12 (D12) Questionnaire [10], Centre for 

Epidemiologic Studies Depression Scale (CES-D) [11], Trait Anxiety Inventory 

(TRAIT) [12], Fatigue Severity Scale [13], St George’s Respiratory Questionnaire 

(SGRQ) [14], Medical Research Council (MRC) breathlessness scale [15], Mobility 

Inventory (MI) [16], Pittsburgh Sleep Quality Index [17], Anxiety Sensitivity Index 

Questionnaire (ASI) [18], Catastrophic Thinking Scale in Asthma [19], Pain 

Awareness and Vigilance Scale [20].  

 

Emotional Stroop: Participants completed an emotional Stroop task, featuring 

breathlessness-related words vs control neutral words matched for length and 

frequency (modified from: Reinecke et al., 2011). Participants were required to read 

aloud the colour of the word and the reaction time to respond to emotional vs neutral 

words was computed. Due to technical issues, Stroop data were collected from a 

subgroup of 66 participants.  

 

Physiological Measures: Spirometry and two Modified Shuttle Walk Tests (MSWT) 

were collected using standard practices. Participant height and weight was recorded 

at each session.  
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MRI Measures 

Image acquisition: Imaging was carried out using a 3T MAGNETOM Trio, A Tim 

System (Siemens Healthcare GmbH) using a 12-channel head coil. A T1-weighted 

(MPRAGE) structural scan (voxel size: 1 x 1 x 1 mm) was collected and used for 

registration purposes. A T2*-weighted, gradient echo planar image (EPI) scan 

sequence (voxel size: 3 x 3 x 3 mm) was used to collect functional imaging data 

during the word cue task. Field map scans of the B0 field were obtained to aid the 

distortion correction of the functional scans  

 

Word cue task: To probe breathlessness-related expectation we examined the 

activity of brain regions responding to breathlessness-related word cues and fixed 

string non-words, and correlated this to corresponding visual analogue ratings of 

anxiety and breathlessness [22]. Ratings were recorded throughout the task and 

word presentation order was pseudo-randomized for each session. 

 

Faces task:  In the second functional scan, participants were shown human faces for 

500ms (drawn from the set described by [23] in blocks of 30 seconds, with fearful or 

happy expressions. Participants were asked to identify whether the faces were male 

or female. A fixation cross condition was interspersed for 30 seconds between the 

happy/fearful blocks of faces. Reaction time and accuracy were recorded throughout 

the task.  

 

Analysis  

Behavioural Analysis – factor identification 

Full correlation matrices were calculated for (z-scored) behavioural (questionnaires) 

and physiological scores (spirometry, demographics and MSWT measures) (Table 

1), using MATLAB 2017b (Mathworks, Natick, MA). For this analysis, only data from 

participants (n=91) who completed both the behavioural and MRI parts of the study 
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were utilised. The structure of the correlation matrices was examined by applying a 

hierarchical cluster model to the data (Figure 1). To formalize the relationships 

observed as a result of applying the hierarchical cluster model to the data, an 

Exploratory Factor Analysis (EFA) was conducted using parallel analysis, oblique 

rotation and a maximum likelihood estimation. Model selection criteria included 

loading variables above 0.4 with no cross loading or freestanding variables, and 

significant X2/df ratio with Tucker-Lewis Index (TL-index) close to 1 and Root Mean 

Square Error of Approximation (RMSEA) < 0.06. Models were fit using Lavaan 

version 0.6-1 (Rosseel, 2012) in R version 3.2.1 (R Core Team).  

 

 

1. Anxiety 9. MSWT HR Change 17. MSWT Start HR 

2. Depression 10. MSWT Distance 18. Spirometry 

3. St George – Impact 11. St George – Activity 19. MSWT SATS Change 

4. D12 12. MRC 20. MSWT BORG Change 

5. Catastrophising  13. Avoidance – Alone 21. Pack Years 

6. Vigilance 14. Avoidance - Accompanied 22. Age 

7. Fatigue 15. MSWT Start SATS 23. BMI 

8. St George - Symptom 16. Sex  

Table 2. A list of all measures included in the hierarchical cluster model  

 

 

Behavioural Analysis – participant stratification  

A principal component analysis was performed across the measures within each 

factor, identified via the EFA in the factor identification process, reducing data-

dimensionality. This created one composite score per participant for each factor. This 
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information was input into the hierarchical cluster algorithm, alongside anonymized 

subject identities. A scree plot was used to identify the most statistically distinct 

groupings of participants (Supplementary Figure 3).  

 

Stroop 

Stroop scores were calculated for each individual by subtracting the mean reaction 

time in response to neutral words from that of the social-threat words and 

breathlessness-threat words. This was carried out separately for the masked and 

unmasked conditions. Repeated measures ANOVAs were carried out separately for 

word type presented under masked or unmasked conditions. Labels, corresponding 

to high and low symptom load, assigned during the participant stratification process, 

were then applied to this group. Repeated measures ANOVAs were carried out 

separately for word type presented under masked or unmasked conditions using 

group identity as the predictor variable. 

 

Imaging Analysis 

Image processing was carried out using the Oxford Centre for Functional Magnetic 

Resonance Imaging of Brain Software Library (FMRIB, Oxford, UK; FSL version 

5.0.8; https://ww.fmrib.ox.ac.uk/fsl/), MATLAB (R2017b) and associated custom 

scripts.  

 

Functional MRI Analysis 

MRI processing was performed using FEAT (FMRI Expert Analysis Tool, within the 

FSL package).  

 

Word task lower-level analysis 

At the individual subject level, a general linear model (GLM) was created with 

explanatory variables (EVs) for word or non-word presentation, and two de-
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meaned EVs modeling the reported breathlessness and anxiety response to the 

word cues. An additional explanatory noise variable was included to model the 

period during which the participant responded using the VAS. In addition to the 

mean contrasts for each of the EVs, differential contrasts were also created for 

activity in response to breathlessness-related words greater than that for non-

words and for non-words greater than that for words.   

 

Faces task lower-level analysis 

At the individual subject level, a GLM was created with EVs for stimulus 

presentation periods of happy and fearful faces, along with the associated (de-

meaned) reaction times. Two additional EVs were created to model participant 

(de-meaned) accuracy in identifying whether the presented faces were male or 

female. In addition to the mean contrasts for each of the EVs, differential contrasts 

were also created for activity in response to fearful faces greater than that for 

happy faces.   

 

Group level analysis 

Mean voxelwise difference in activity were calculated for the words > non-words, 

non-words > words and fearful faces > happy faces, happy faces > fearful faces 

contrasts between groups of participants (corresponding to high and low symptom 

load) identified within the hierarchical cluster model at the participant stratification 

stage. Demeaned age and sex values were modeled as regressors of no interest. 

Significance testing was performed using FSL’s Randomize tool [24] – which 

carries out rigorous permutation testing, with threshold free cluster enhancement 

(TFCE) at p<0.05. Based on a priori hypotheses a region of interest approach, 

examining differential activity specifically within the amygdala (including 10mm 

radius spherical masks of a left amygdala region (-14/-6/-8) and its right 

hemisphere counterpart) was also taken.  
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Results 

 

Of the 23 variables entered into the hierarchical cluster model (Figure 1), 14 were 

found to significantly contribute to a description of the variance within the COPD 

population. Significant variables included: Anxiety, Depression; St George – Impact, 

D12, Catastrophising, Vigilance, Fatigue, St George – Symptom, MSWT HR change, 

MSWT Distance, St George – Activity, MRC, Avoidance – Alone and MRC 

Avoidance - Accompanied. These groups of measures are demonstrated in Figure 1.  

 

The final 4 factor model (shown overlaid onto Figure 1) was validated after testing for 

models of 2, 3 and 4 factors, (X2 = 65.85, df = 41, p<0.008; TLI=0.9; RMSEA=0.05). 

The factor diagram shown in Figure 2 shows how 4 latent factors emerged from the 

14 variables. Factor 1 is made up of vigilance, catastrophising, fatigue, St George – 

Symptoms, St George – Impact and D12. Factor 2 was made up of MSWT Distance, 

MSWT HR change and St George – Activity. Factor 3 is composed of two of the 

Avoidance sub-scales and MRC scale. Finally Factor 4 consists depression and trait-

anxiety). The covariance between factors is illustrated by the curved lines in Figure 2, 

with Factors 1 and 4 demonstrating the strongest covariance. 

 

The factors identified by EFA model fitting were then used to stratify the patient 

population via their composite scores on these 4 major factors in a hierarchical 

cluster model. A scree plot (Supplementary Figure 3) confirmed that a 2-group 

solution was the most distinct. The groupings of participants seems to correspond to 

high symptom load and low symptom load across the four factors - with significant 

paired distance across the two groups between each factor at p<0.001. This 

difference was not driven by differences in spirometry scores (p=0.32). 
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Figure 1. Clustergram: a correlation matrix of measured behavioural and physical 

variables, where strength of the correlation is measured as a Pearsons’ R-value. 

Variables are reordered such that more closely related measures are placed proximal 

to each other. The relationship between groups of measures is demonstrated by the 

height of the dendrogram branches and distance between neighbouring branches (in 

arbitrary units). Clusters identified by the EFA as significant are highlighted by black 

boxes.  
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Figure 2. Factor Loadings: The relationship between each variable (rectangles) and its 

parent factor (ellipses) is shown here. Loadings (straight lines) can be interpreted as 

correlation coefficients. The covariance between factors (curved lines) is also shown.  
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Figure 3. Clustergram: a matrix of each participants score across the 4 key factors 

identified by EFA. Factor score is measured in arbitrary units (au). Subjects form the y-

axis, while each of the 4 factors is shown along the bottom. Factors 1 and 2 

correspond to the mood and symptom burden, while Factors 3 and 4 correspond to the 

two of capability measures (physical and perceived, respectively). A dendrogram is 

displayed along the left side, highlighting the division of subjects into 2 clear groups.  
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 MRI results  

Mean group differences - word task 

Robust significant group differences were found in response to the breathlessness-

related word cues compared to non-words in the anterior insula (Figure 4) when 

using non-parametric permutation testing alongside stringent threshold-free cluster 

enhancement. The BOLD response within the low symptom group was found to be 

higher in this key region in response to breathlessness words versus non-words. No 

significant difference was observed within the small volume correction analysis of the 

amygdala. Further, more exploratory analysis is presented in Supplementary Figure 

6. Participant ratings of the breathlessness-related words were found to be 

significantly higher in the high symptom load (p<0.01) compared to the low symptom 

load group for both anxiety (wA) (high load 36.7 ± 19.2, low load 10.3 ± 11.2) and 

breathlessness (wB) (high load 56.0 ± 11.8, low load 35.4 ± 14.8), measures that 

were not used in the classification of the participants into groups.  

 

Mean group differences – faces task 

No difference in activity between groups in the condition of fearful versus happy 

faces survived. No significant difference was observed within the small ROI analysis 

of the amygdala. Additionally no significant difference was found in participant 

reaction times to happy (high load 758.57 ± 137.92 (ms), low load 782.09 ± 107.72 

(ms)) or fearful faces (high load 742.71 ± 141.87 (ms), low load 773.70 ± 125.71 

(ms)) (p>0.05).  
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 Low symptom load 

(mean ± SD)  

High symptom load 

(mean ± SD)  

Anxiety (wA) 10.3 ± 11.2 36.7 ± 19.2 

Breathlessness (wB) 35.4 ± 14.8 56.0 ± 11.8 

Table 3. Group word cue anxiety and breathlessness scores 

 

 

 

 

 

Figure 4.  Blood Oxygen Level Dependent (BOLD) activity in response to 

breathlessness-related words compared to non-words between the two behavioural 

clusters of participants identified by the hierarchical cluster model (corresponding to 

high and low symptom load). Significant regional activity in the low symptom group 

than the high symptom group, was observed in anterior insula cortex with a non-

parametric tfce p < 0.05.    
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4. Stroop results 

Group mean  

 Masked 

(mean ± SD (ms)) 

Unmasked 

(mean ± SD (ms)) 

Breathlessness Negative – Neutral 22.5 ± 100.4 40.0 ± 114.9 

Social Negative - Neutral 30.4 ± 109.5 2.6 ± 87.7 

Table 4. Reaction times of social and breathlessness-related anxious words compared 

to neutral words  

 

 

Group differences 

Masked 
Group 1 (N=26) 

(mean ± SD (ms)) 

Group 2 (N=29) 

(mean ± SD (ms)) 

Breathlessness Negative – Neutral 36.8 ± 98.6 25.0 ± 120.1 

Social Negative - Neutral 62.1 ± 115.3 6.4 ± 132.7 

 

Unmasked 
Group 1 (N=26) 

(mean ± SD (ms)) 

Group 2 (N=29) 

(mean ± SD (ms)) 

Breathlessness Negative – Neutral 50.1 ± 158.5 26.3 ± 113.0 

Social Negative - Neutral -13.3 ± 110.3 5.3 ± 81.5 

Table 5. Reaction times of social and breathlessness-related anxious words compared 

to neutral words between the two groups 
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In the masked condition, where emotional words were presented and then quickly 

followed by a symbol string mask, there was no significant difference between 

socially negative words and breathlessness-related words F(1,65)=0.09, p=0.76. 

However, in the unmasked condition, where emotional words were clearly visible and 

remained unmasked, there was a significant difference in reaction time in response 

to socially negative and breathlessness negative words F(1,65)=8.41, p<0.005. In 

this unmasked condition, participants responded significantly more slowly to 

breathlessness-related words.  

 

Group identity was not found to be a significant predictor of difference in reaction 

time between socially negative words and breathlessness-related words in either the 

masked (F(1,53)=2.41, p=0.13) or unmasked conditions (F(1,53)=1.68, p=0.20)), nor 

were there any differences in reaction time in the neutral condition between the two 

groups (p>0.05). 

 

Significant activity was observed in response to the breathlessness-related words 

compared to non-words, but not the fearful faces compared to happy faces. To 

address whether this could reflect specific breathlessness-related anxiety processing 

in this population, a direct contrast between the two conditions is shown in 

Supplementary Figure 8. This difference did not survive TFCE.        
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Discussion 

Key findings 

In this study we have stratified a group of people with COPD and found differences in 

their symptom perception, psychological profiles and brain activity in response to 

breathlessness-related word cues. Behaviourally, the two groups can be divided into 

high and low scorers on four key factors. These factors could loosely be considered 

to consist of one mood factor (Depression & Anxiety), one symptom burden factor 

(Vigilance, Catastrophising, Fatigue, St George – symptom, St George – impact, 

D12), and two capability factors – one physical (MSWT Distance, MSWT HR & St 

George – activity) and one anticipated (Avoidance – alone & accompanied & MRC). 

Importantly, no clear patho-physiological basis could be found to explain this group 

difference, based on the spirometry and oxygen saturation measures collected in this 

study. 

 

Key differences in breathlessness-related brain activity were also found between the 

groups. These differences were observed within the anterior insula, a region that has 

previously been associated with the processing of bodily sensations and perceptions 

[3]. Interestingly, the differences in functional brain activity were only found in relation 

to specific breathlessness-related anxiety, with a more general anxiety paradigm 

utilising emotional faces revealing no significant differences between the groups, 

even when applying a region of interest approach within the amygdala, an area 

known to respond to threatening facial stimuli in highly anxious individuals. Indeed, 

across the whole group of participants, there was no significant difference in the 

brain response to fearful versus happy faces (Supplement Figure 7).  

 

A behavioural profile for chronic breathlessness 

Accurate breathing perception is now thought to rely upon the carefully balanced 

integration of top down signals, which themselves arise from complex 
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communications between different brain networks, and bottom up sensory 

information [6, 7]. Because of the multiple points of entry into this system, when the 

system is tipped out of balance, as can be the case in chronic breathlessness, 

aiming to pinpoint a single cause of disruption to the system is unlikely to reveal a 

universal mechanism in this individualised perception. If we accept that maladaptive-

breathlessness can arise as a result of small shifts across a number of domains, 

including sensory, psychological and neurophysiological, a broad range of targeted 

measures are required to investigate these axes. 

 

While each individual perceives breathlessness differently, based on this data, there 

may be subgroups of patients with similar underlying mechanistic disruptions to their 

symptom perception. An important first step towards subgroup stratification is to 

identify the best combination of measures capable of capturing the dimensions of the 

individual breathlessness experience. In the bourgeoning field of computational-

psychiatry, big-data approaches are being applied to multimodal datasets. Where the 

conclusions of small sample size studies have been limited by cross population 

noise, the increased sensitivity afforded by machine learning techniques and larger 

sample sizes is now revealing neuro and behavioural phenotypes in conditions such 

as depression [25] and schizophrenia [26]. Such phenotypes may facilitate patient 

stratification, predict treatment outcomes and ultimately improve treatment success 

rates with personalised treatment plans. While our dataset cannot compare to these 

truly “big data” studies, where thousands of measures are available, the techniques 

employed here have been appropriately tailored from these studies for our purposes. 

In combination with detailed neuroimaging techniques, here we collected behavioural 

data from a population of people living with COPD. We sought to capitalise on this 

high-dimensionality to better understand breathlessness by uncovering data-trends 

ordinarily hidden by noise. While single measures may each offer a partial 

description of breathlessness, a more powerful approach is to combine relevant 
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measures and draw out common factors. Variation across these factors may then 

link to neural networks or explain differences between individuals with objectively 

similar disease severity. 

 

In this study, unsupervised machine learning algorithms indicated that 14/23 

behavioural measures were important descriptors of the population. Collapsing 

across these measures revealed 4 key factors, which could loosely be considered to 

consist of one mood factor, a symptom burden factor and two capability factors – one 

physical and one anticipated. These measures paint an intuitive picture of the lived 

experience of breathlessness – what a person feels they can and cannot do, how 

their symptoms impact their lives and their general mood. Combining measures, 

where each addresses a small part of a larger, potentially biologically relevant factor, 

is perhaps the only way to access these concepts, and thus the neural activity that 

underlies the system.   

 

The psychological impact of breathlessness-related cues was highlighted by the 

significant differences in reaction time observed in response to breathlessness-

related words compared to socially negative words in an unmasked condition of the 

Stroop task. Participants responded more slowly to the breathlessness words, which 

could indicate that the salience of the breathlessness words were sufficiently 

attentionally demanding to absorb cognitive resources away from the task. This may 

reflect the greater attentional load of the breathlessness-related words compared to 

the socially negative related words. The finding was restricted to the unmasked 

condition suggesting that this may be a conscious process. This effect was not found 

to be group specific, although group difference was run on only a sub-sample of the 

participants, limiting direct comparisons. However, the absence of a group difference 

may also suggest that the impact of the breathlessness does not arise as a result of 

aberrant attentional processes.  
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Interestingly, physiological measures such as spirometry, pack-years and baseline 

oxygen saturation were not influential enough within the data variance to be included 

in the model, [1]. These findings lend further support to the strong impact of 

psychology and associated neural activity on the perception of breathlessness, and 

the importance of multimodal assessments.  

 

Stratifying patients based on behaviour  

We then considered whether these four behavioural factors could be used to stratify 

the study population. The experience of chronic breathlessness is extremely 

heterogeneous, and a key question was whether evidence for subgroups could be 

revealed after the number of data dimensions were reduced down to just four core 

factors. Employing the technique of hierarchical cluster modelling, participants were 

grouped according to their scores on the four factors. Two clear groups were 

identified and validated via a scree plot, corresponding to high and low symptom 

load. Within each group, additional sub-groups could be observed, but participant 

numbers were such that these groups could not be easily interrogated further. Such 

groupings could of course be considered as existing as part of a broader distribution, 

where people fall onto a spectrum of symptoms. However, providing clear 

boundaries in this case enables us to initially consider the differences between 

people, which may relate to treatment options.   

 

Following on from this, we were interested as to whether these behavioural groups 

corresponded to differences in brain activity patterns related to breathlessness. As 

part of the study, participants had completed two functional MRI scans – one a 

breathlessness-related word-cue task, to probe breathlessness specific expectation, 

and one a faces task, to probe general anxiety brain activity. Differences were 

observed across the two groups only for the word task. This finding mirrors those of 
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Rosenkranz et al. [27], who noted that the insula was only activated by disease-

related negative cues compared to generally-negative cues in a population of asthma 

patients.  

 

Greater activity in response to word cues was observed within the anterior insula for 

the low symptom burden than high symptom burden. This area is part of the wider 

brain network thought to be involved with the affective perception of internal 

sensations and stimulus valuation [7]. Furthermore, the anterior insula has been 

linked to the processing of subjective feelings [3], and therefore, the greater activity 

within the network of Group 1 may be linked to a more coherent representation of 

internal sensations, leading to lower anxiety and general symptom burden. Indeed, 

the specificity of this group difference to breathlessness supports the theory that this 

network is specific and potentially related to sensory interpretations. However, further 

studies utilising measures that directly measure symptoms against breathlessness 

perceptions would be required to investigate this hypothesis.   

 

To tease apart the mechanisms of breathlessness, the study of perception is 

beginning to take on lessons from Bayesian theories to frame itself in terms of priors, 

predictions and likelihoods. From this perspective, recent work suggests a complex 

interplay between descending top down control from stimulus valuation areas such 

as the anterior insula, anterior cingulate cortex, orbitofrontal cortex and ventromedial 

prefrontal area, and ascending sensory signals received by areas such as 

periaqueductal gray, thalamus and posterior insula [9] [5]. Such models could explain 

why pulmonary rehabilitation is such an effective treatment for breathlessness, 

despite the lack of any effect on lung function Furthermore, reductions in 

breathlessness anxiety resulting from pulmonary rehabilitation have been found to 

correlate with activity in the insula and anterior cingulate cortex; key areas identified 

for stimulus evaluation [9].     
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Further considerations and limitations 

Although the techniques employed here draw upon the big data techniques of 

machine learning, the acceptable ratio between variables and participants must be 

carefully considered when scaling down these techniques. Factor analysis requires 

between 2 and 5 times the number of samples per variable tested and ideally more 

than 100 observations.  With further subjects it may also be possible to gain sufficient 

statistical power to further probe further sub-groups, such as those visible within 

Figure 3. Another important caveat of cluster methods is that they examine shared 

variance, and so we must remain aware that any of the measures not included in this 

model could be highly relevant – but not share any common features with the other 

measures.  

 

Incorporating psychological variables into models of breathlessness to investigate 

the influence of mood and previous experience enriches our ability to explain 

potential influences towards breathlessness perceptions. However, in this cross-

sectional work, the direction of causality is impossible to infer - are people with low 

mood more susceptible to breathlessness anxiety, or do they become low in mood as 

a result of their greater symptom burden? Longitudinal population studies would thus 

need to be employed to understand any predominating direction within this 

relationship. 
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Conclusion 

Breathlessness perception in people living with COPD is highly heterogeneous and 

frequently does not match their medically diagnosed disease status. Given the 

relatively high prevalence of COPD within the general population addressing this 

discrepancy has the potential to meaningfully impact hundreds of thousands of lives. 

The results from the current study thus move us towards a more comprehensive 

understanding of the contributing components influencing breathlessness perception. 

We have identified both perceptual and breathlessness-related brain activity 

differences within two subgroups of our COPD patients, demonstrating distinctive 

neuro-psychological profiles between those with high and low symptom loads. While 

further work is required to elucidate more nuanced subgroups and components 

relating to individualised breathlessness perception, we have demonstrated that 

incorporating behavioural and neuroimaging measures into enriched models can 

offer new perspectives on breathlessness, and move us towards the goal of tailoring 

treatment programs for the individual and their lived experience of breathlessness. 
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Disclosure	

This body of work was collected as part of a larger project investigating the effect of 

D-cycloserine (a partial NMDA receptor agonist, with target sites that include the 

amygdala) on outcome measures of pulmonary rehabilitation. This population forms 

the baseline component of this study and full results of the trial will be published 

separately and at a later date.  

 

 

Recruitment 

 

Figure S1. Consort diagram illustrating participant progression through the study. Key 

analysis points, shown in orange, were MR analysis (91 participants), behavioural 

analysis (91 participants) and Stroop analysis (66 participants).  

 

 

 

 

 

 

Unsuitable for MR: 9  

Reasons for exclusion 
Previously undisclosed surgery: 3 
SATS drop when lying down: 3 
Claustrophobia: 2 
Potential metal contraindication: 1 

Recruited: 100 

Completed MR: 91  

Completed MR and Stroop: 60  Completed Stroop and  
behavioural measures: 6 

Stroop analysis: 66 

Completed MR and 
behavioural measures: 91 

Behavioural analysis: 
91 
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Participants 

Study inclusion criteria included a diagnosis of COPD and admittance to pulmonary 

rehabilitation. Exclusion criteria included inadequate understanding of verbal and 

written English, significant cardiac, psychiatric (including depression under tertiary 

care) or metabolic disease (including insulin controlled diabetes), stroke, 

contraindications to d-cycloserine (including alcoholism), epilepsy, claustrophobia, 

regular therapy with opioid analgesics or oxygen therapy. Of the 100 participants 

recruited, 91 completed the MRI component of the study. Reasons for non-

compliance with the MRI component of the study included claustrophobia, 

unchecked surgical implants, concern regarding potential previous metal injury and 

inability to lie supine for 40 minutes.   

 

Behavioural Measures  

 

Questionnaire Measures 

Dyspnoea-12 (D12) Questionnaire: This is a 12-item questionnaire designed to 

measure the severity of breathlessness and has been validated for use in patients 

with respiratory disease [1].  

Centre for Epidemiologic Studies Depression Scale (CES-D): Depressive 

symptoms are commonly observed in patients with respiratory disease. This brief 

questionnaire consists of 20 items investigates the symptoms of depression across a 

number of factors [2]. 

Trait Anxiety Inventory (TRAIT): This questionnaire assesses participant’s general 

level of anxiety in particular scenarios via 20 questions asking “how anxious you 

generally feel” [3]. 

Fatigue Severity Scale: This 9-point questionnaire quantifies patient fatigue, which 

is well documented in its association with COPD [4]. 
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St George’s Respiratory Questionnaire (SGRQ): There are 50 questions in this 

questionnaire, which has been developed and validated for use in COPD and 

asthma. The questions measure the impact of overall health, daily life and well-being 

[5].  

Medical Research Council (MRC) breathlessness scale: The MRC scale 

quantifies perceived difficulty due to respiratory restrictions on a scale of 1 to 5 [6].  

Mobility Inventory (MI): This questionnaire collects data regarding the extent to 

which a participant avoids certain situations, either alone or accompanied (21-items 

in each category) [7]. 

Pittsburgh Sleep Quality Index: The 17 items of this questionnaire examine self-

reported quality, duration and regularity of sleep [8].  

Anxiety Sensitivity Index Questionnaire (ASI): This 16-item questionnaire probes 

the somatic, cognitive and social facets of anxiety and its harmful consequences. 

The ASI has been validated in distinguishing between clinical and non-clinical 

populations and demonstrates high test-retest reliability [9].  

Catastrophic Thinking Scale in Asthma: This 13-point questionnaire was modified 

for this study by substituting the word “asthma” for “breathlessness” in order to 

measure catastrophic thinking [10] [11].   

Pain Awareness and Vigilance Scale: This questionnaire was modified by 

substituting the word “breathlessness” for the word “pain”. The 16-point scale 

measures how much a participant focuses their attention onto their breathlessness 

[12] [11]. 

 

Emotional Stroop 

Biased cognitive processing relating to perceived threatening stimuli may relate to 

the phenotype of breathlessness in COPD. Attentional bias has been observed in 

panic disorder [18], as well as in anxiety and depression, [19], which are highly co-

morbid with chronic breathlessness. Indeed, in their 2019 paper Sucec and 
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colleagues suggest that the threat of breathlessness may affect attentional 

processing by absorbing the available resources [20]. We assessed whether these 

findings could be replicated within the COPD population using an emotional Stroop 

task. Emotional words were selected on the basis of patient interactions. The valence 

of these words was then tested in a population of 14 control participants and 17 

COPD patients. From this pool of words, 12 breathlessness-negative words were 

selected and were combined with the 12 socially-negative and 12 neutral words from 

[18].  Due to technical issues with the emotional Stroop task (data loss due to 

computer malfunction), data was collected from a subgroup of 66 of the 100 

participants. Analysis for this task was kept separate from the behavioural correlation 

analysis due to the large number of missing data points. Of the 66 participants who 

completed the Stroop task, complete MRI data was available for 55 participants. 

 

Stimuli were programmed using e-prime (Psychology Software Tools, 2002) and 

consisted of 12 neutral words (e.g. Vase), 12 social-threat words (e.g. Stupid) and 12 

breathlessness-threat words (e.g. Choking) presented at font size 24. Stimuli were 

presented in six experimental blocks; one for each word type (neutral, social-threat 

and breathlessness-threat) in both masked and unmasked conditions. In the masked 

condition, target stimuli were presented and then replaced by a symbol string 

matched for font size, colour and length after 17ms. Block order was 

counterbalanced across participants. Participants were instructed to name the colour 

of the word (red, blue or green) as quickly and accurately as possible, with the word 

remaining visible to the participant until a response was made. Participant responses 

were recorded using a microphone, which was connected to a laptop via a serial 

response box. The serial response box converted the initiation of a vocalisation into a 

temporal signal, enabling reaction time to be established, while the experimenter 

recorded accuracy with a button press. 
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Physiological Measures 

A trained respiratory nurse collected spirometry measures of FEV1 and FVC using 

Association for Respiratory Technology and Physiology standards. Participants 

performed two incremental shuttle walk tests (MSWT), and heart rate and oxygen 

saturations (SpO2) were measured immediately before the MSWT and subsequently 

every minute until 10 minutes post-exercise (or until participants returned to their 

baseline state) using a fingertip pulse oximeter (Go2; Nonin Medical Inc). Before and 

after the IWST participants also rated their breathlessness on a modified Borg scale 

[21].  

 

Imaging Measures 

Word Task 

Learned associations can be employed to indirectly probe related brain networks and 

the cognitive dynamics of emotional states such as anxiety and fear. A relevant 

example could include a healthy person needing to walk up several flights of stairs, 

who may think nothing of the experience, whereas for a person with a lung condition 

the stairs may be associated with memories of fearful breathlessness. Given 

sufficient repeated threatening exposures, the thought alone of climbing stairs may 

trigger the networks sub-serving the corresponding anxiety response. In such cases, 

the presentation of a cue in the form of a word has been shown sufficient to activate 

brain networks related to the action or emotional state associated with this cue. This 

task was developed and published by Herigstad and colleagues in 2016 for use in 

the COPD population [13]. Word cues were developed in three key stages; firstly in 

collaboration with respiratory practitioners, academics and physiotherapists, a set of 

30 word cues associated with breathlessness were created. Next, these cues were 

provided to patients with COPD alongside a VAS rating scale, allowing patients to 

rate how breathless and anxious the situations identified by the cues would make 

them feel. Following adjustments based on participant feedback, the word cues were 
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then computerised and tested in a larger population of COPD patients [13]. Further 

validation was carried out in the fMRI environment and by for clinical sensitivity with 

comparisons between changes in key questionnaire measures and word-cue rating. 

In the first scan, participants were shown a set of breathlessness-related word cues 

in a pseudo-randomised order. During the task, participants were presented with a 

word cue in white text on a black background for 7 seconds. Participants were then 

asked, “how breathless would this make you feel” (wB) and “how anxious would this 

make you feel” (wA). To each question participants responded within a 7 second 

window using a button box and visual analogue scale (VAS). The response marker 

always initially appeared at the centre of the scale, with the anchors “Not at all” and 

“Very much” at either end. Before the scan session, participants were given the 

opportunity to practice using the button box with a set of test words. A control 

condition, used as a baseline measure of activity in response to the presentation of a 

visual stimulus was presented 4 times over the course of the scan, consisting of a 

string of “XX” with fixed length of 15 characters, and each time was presented for 7 

seconds. No rating period followed these control blocks. Subtracting activity in 

response to the control condition (i.e. simply the response to any visual stimulation) 

from conditions of interest enabled us to examine stimulus-specific activity. 

 

Faces Task 

Emotional facial expressions are widely recognised to activate the same neural 

pathways as the behavioural emotion conveyed by the expression itself [14]. Fearful 

facial expressions, for example, have been shown to correspond to activity within the 

amygdala, a region known to modulate fear processing [15]. The speed and 

accuracy of task completion, which in this instance was the recognition of facial 

gender, under different emotional conditions can be used probe whether response 

bias exists. This draws upon work suggesting that the threat of breathlessness may 

absorb cognitive resources and affect the processing of new information via 
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attentional bias [16, 17]. Biased attentional processes, either towards or away from 

potentially threatening situations, may be mirrored by activity patterns within threat 

and fear brain networks.  

 

MRI Acquisition  

Prior to each MRI session participants were screened for standard MRI 

contraindications including metal in or about their person, epilepsy and 

claustrophobia.  

 

Sequence Parameters 

T1 sequence parameters: TR, 2040ms; TE, 4.68ms; voxel size, 1 x 1 x 1 mm; FOV, 

200mm; flip angle, 8°; inversion time, 900ms; bandwidth 130 Hz/Px).  

T2*-weighted (functional) sequence parameters: TR, 3000ms; TE 30ms; voxel size 3 

x 3 x 3 mm; FOV, 192mm; flip angle 87°; echo spacing 0.49ms. 

Functional scan durations: word-task - 215 volumes, 10 minutes and 27 seconds 

duration and faces task - 168 volumes, 8 minutes and 24 seconds duration. 

Field map sequence parameters: TR, 488ms; TE1, 5.19ms; TE2, 7.65ms; flip angle 

60°; voxel size, 3.5 x 3.5 x 3.5 mm. 

 

Analysis 

Cluster Analysis 

When calculating the full correlation matrices for the hierarchical clustergrams, 

scoring was reversed for the following measures: MSWT Distance, MSWT starting 

oxygen saturation, MSWT heart rate change and spirometry. This ensured that 

higher scores were associated with worse symptomatology across all measures. 

 

Hierarchical cluster models reorder variables based on their correlation strengths so 

that groups of related measures sit closer to each other than non-related measures. 
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This allows natural relationships to be easily visualised. The modeling process 

formalises not only the relationship between pairs of variables, but also the manner 

by which shared variance can be described as part of larger, related clusters. The 

clustering algorithm initially considers pairs of variables in terms of their similarity or 

“distance” (in arbitrary units). Linked pairs are then incorporated into larger clusters 

with the goal of minimizing a cost function (distance to be bridged), a process that 

can be thought of as minimizing the dissimilarity within clusters. As pairs become 

clusters, a cluster tree or dendrogram is created. The distance between neighbouring 

branches indicates the relative similarity of two measures, while advancing up the 

hierarchical cluster tree moves further away in terms of link distance, and therefore 

similarity. 

 

Hierarchical models are useful as a descriptive tool for examining and visualising the 

structure of the dataset as a whole. However, they do not provide information as to 

the significance of any given cluster of behavioural measures. In contrast, 

exploratory factor analysis (EFA), which falls under the umbrella of structural 

equation modeling, can be used to formalise the relationships observed in the 

hierarchical models. This allows the researcher to establish the presence of 

underlying shared constructs via a number of fit statistics without applying a 

preconceived structure on the result. 

 

For the EFA analysis, the smallest number of uncorrelated clusters that maximally 

explain the variance of the dataset was estimated. In this instance, parallel analysis 

with oblique rotation was employed to calculate this value and the results were 

visualised using a scree plot (Supplementary Figure 3). In a second step, the number 

of variables to be retained within the model was determined. A maximum likelihood 

estimation approach was applied, where variables that did not load significantly onto 

a particular factor, or demonstrated significant cross loading (i.e. loaded onto more 
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than one factor) were excluded from further testing. Finally, the model statistics were 

interrogated to formalize the shared variance across latent factors and the extent to 

which each variable contributed to its factor as a whole. The smallest number of 

factors that significantly explained the variance across the dataset was then 

accepted as the model of best fit. Model selection criteria included loading variables 

above 0.4 with no cross loading or freestanding variables, and significant X2/df ratio 

with Tucker-Lewis Index (TL-index) close to 1 and RMSEA < 0.06. Models were fit 

using Lavaan version 0.6-1 [22] in R version 3.2.1 (R Core Team).  

 

Imaging Analysis 

MRI Preprocessing 

The data were corrected for movement using MCFLIRT (Motion correction using 

FMRIB’s Linear Image Registration Tool [23]). Non-brain structures were removed 

using BET (Brain Extraction Tool [24]). Spatial smoothing was carried out using a 

full-width-half-maximum Gaussian kernel of 5mm, while high-pass temporal filtering 

(Gaussian-weighted least squares straight line fitting; 90 s) removed low frequency 

noise and slow-drift.  

 

Distortion correct of EPI data was carried out using a combination of FUGUE 

(FMRIB’s Utility for Geometrically Unwarping EPI’s [25, 26] and BBR (Boundary 

Based Registration; part of the FMR Expert Analysis Tool, FEAT version 6.0 [27]).  

 

Data denoising was carried out as follows: Before the first level analysis, each 

functional scan was decomposed into maximally independent components using 

FMRIB’s MELODIC tool (Multivariate Exploratory Linear Optimised Decomposition 

into Independent Components). “Noise” components were identified by FIX (FMRIB’s 

auto-classification tool, [28, 29]) using the WhII.Standard.RData [30] trained classifier 

with aggressive clean up option. A Principle Component Analysis (PCA) was run on 
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the FIX identified components to retrain 99% of the variance. Separately, the cardiac 

and respiratory related physiological signals (recorded via a pulse oximeter and a 

respiratory bellows) were transformed into a series of regressors, (three cardiac and 

four respiratory harmonics) as well as an interaction term and a measure of 

respiratory volume per unit of time (RVT), using FSL’s physiological noise modeling 

tool (PNM). The signal associated with these waveforms (modeled using 

retrospective image correction (RETROICOR) [31, 32]) was then used to form 

voxelwise noise regressors.  

 

The confounds identified by FSL’s FIX and PNM tools, along with sources of noise 

arising from motion, were then combined into a single model. This single noise model 

approach builds upon the technique outlined by [33]; and fully detailed by [34]. In 

these preceding works we employed a step-wise technique whereby physiological 

noise (identified by PNM) and FIX-identified noise were each removed from the data 

in separate steps prior to data entry into the lower level model. In the new cleanup 

pipeline, a single text file containing time-course information relating to FIX identified 

noise components along with white matter or CSF related noise was included as 

additional confound EV’s within the lower level model, while the PNM-identified noise 

was entered into the model as a standard voxel-wise confound list. In this updated 

de-noising pipeline, confounds identified above are added to model at the stage of 

first-level analysis and thus the functional dataset can be corrected for sources of 

noise arising from motion, scanner and cerebro-spinal fluid artefacts, cardiac, and 

respiratory noise in a single step, rather than three. 

 

Image Registration 

The functional scans were registered in a two-step process to the MNI152 (1x1x1 

mm) standard space brain template. Firstly, each subject’s EPI was registered to 

their associated T1-weighted structural image using BBR (6 DOF) with nonlinear field 
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map distortion correction [27]. In the second step the subject’s structural image was 

registered to 1mm standard space via an affine transformation followed by nonlinear 

registration (using FNIRT: FMRIB’s Non-linear Registration Tool [35]).  

 

Statistical Thresholds  

This study was originally powered to test for significance at z>2.3, p<0.05, prior to 

the adoption of the now standard cluster correction threshold of z>3.1 or threshold 

free cluster enhancement. Therefore, we have additionally provided a supplementary 

demonstration (Supplementary Figure 6) of the significant activity at this reduced 

threshold.   

 

Results 

The value of combining EFA with a hierarchical cluster model can be visualised by 

comparing Supplementary Figure 2 with Figure 3. In Supplementary Figure 2 all 

available behavioural measures have been included in a hierarchical cluster model. 

As a result, while a colour gradient top-bottom (red to blue respectively) is roughly 

visible, no clear structure can be seen in the dendrogram shown left of the figure. In 

contrast, once the number of dimensions have been reduced, as shown in Figure 3, 

clear groups can be observed in the dendrogram – shown left of the central 

correlation matrix    

 

Further characterization of the fMRI results can be found in supplementary Figure 5, 

where the response to breathlessness-related words compared to non-words in all 

participants (A), and in the high and low symptom load groups is shown. The contrast 

of activity in response to breathlessness-related words compared to non-words 

between the two behavioural clusters of participants is shown in Supplementary 

Figure 6. Supplementary Figure 7 shows the activation for fearful and happy faces 

across all participants (no significant difference between groups was found).  
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In a direct comparison of the two tasks across the groups of participants (high and 

low symptom load), significant activity was observed within the anterior insula, middle 

frontal gyrus and post-central gyrus in the low symptom load group to the 

breathlessness-related fear cues (Supplement Figure 8). This difference did not 

survive the correction with more rigorous thresholds now expected of neuroimaging 

studies.    

 

 

Figure S2. Clustergram: a matrix of each participants score across the all measures 

(shown within the table). Factor score is measured in arbitrary units (au). Participants 

form the y-axis, while each variable is shown along the bottom. A dendrogram is 

displayed along the left side with no clear subject grouping.  
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Figure S3.  Scree plot - where within cluster distance (y-axis, au –arbitrary units) is 

plotted as a function of cluster number (x-axis). The point at which the addition of 

further clusters no longer significantly explains more of the dataset variance can be 

visualized as an “elbow” in the plot. Each of the coloured lines represents a single 

trial. The thicker black line represents the average of all trials (N=10). The dashed line 

highlights the elbow point of the graph, in this instance at 2 clusters.      
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Figure S4.  Scree plot – Created using parallel analysis, where the eigenvalues of the 

real data (blue solid line) are shown for each factor extracted compared to extracting 

the same number of factors from a similarly sized random dataset (red dotted line). 

Eigenvalues are shown on the y-axis, while factor number is plotted on the x-axis. The 

point at which the Eigenvalues of the real dataset are no longer greater than that drawn 

from the random dataset indicates the most distinct number of factors.       
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Figure S5.  Blood Oxygen Level Dependent (BOLD) activity in response to 

breathlessness related words compared to non-words in (A) across all participants, 

and (B) for high and low symptom load groups separately. Significant regions, active 

in the group mean, including Inferior Frontal Gyrus (IFG), Posterior Cingulate (PC), 

Anterior Cingulate Cortex (ACC) and Insula (Ins) are displayed with a non-parametric 

tfce p < 0.05. Inferior frontal and middle front gyri demonstrated significant activity in 

the high symptom group. In the low symptom group, ParaCingulate Cortex (PCC), 

ACC, insula, Thalamus (Thal) and Superior Frontal Gyrus (SFG) all demonstrated 

significant activity. For both high and low symptom groups, significant regions are 

displayed with a non-parametric tfce p < 0.05.  
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Figure S6.  Blood Oxygen Level Dependent (BOLD) activity in response to 

breathlessness related words compared to non-words between the two behavioural 

clusters of participants identified by the hierarchical cluster model (corresponding to 

high and low symptom load). Significant regions demonstrating greater activity in the 

low symptom group than the high symptom group include Anterior Insula (AIS), Medial 

Frontal Gyrus (MFG), Post Central Gyrus (PCG) and Cerebellum. Significance is 

expressed at Z>2.3, p<0.05.   
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Figure S7.  Blood Oxygen Level Dependent (BOLD) activity in response to happy faces 

(A) and fearful faces (B) across all participants. Significant (Z>2.3, p<0.05) activity was 

observed within the anterior cingulate cortex (ACC), amygdala (Amg), insula (Ins) and 

temporal and prefrontal thalamus (Thal) in response to happy and fearful faces. The 

contrast of the two conditions did not reveal any significant differences.    

 

 

 

 

 

 

 

AmgThal
Ins

ACC

Ins

x=80 y=125 x=65

2.3 13.8

13.82.3

A

B

Z-score

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted September 23, 2019. ; https://doi.org/10.1101/19006684doi: medRxiv preprint 

https://doi.org/10.1101/19006684
http://creativecommons.org/licenses/by/4.0/


	 48	

 

Figure S8.  Blood Oxygen Level Dependent (BOLD) activity in response to 

breathlessness related words (greater than non-words) compared to fearful faces 

(greater than happy faces) between the two behavioural clusters of participants 

identified by the hierarchical cluster model (corresponding to high and low symptom 

load). Significant activity (Z>2.3, p<0.05) was observed within the Anterior Insula (AIS), 

Medial Frontal Gyrus (MFG), Post Central Gyrus (PCG) in the low symptom load greater 

than the high symptom load.    
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