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ABSTRACT 

Patients with major depressive disorder (MDD) show heterogeneous treatment response and 

highly variable clinical trajectories: while some patients experience swift and enduring 

recovery, others show relapsing-remitting or chronic disease course. Predicting individual 

clinical trajectories at an early disease stage is a key challenge for psychiatry and might 

facilitate individually tailored interventions. So far, however, reliable predictors at the single-

patient level are absent. 

Here, we evaluated the utility of a machine learning strategy – generative embedding – which 

combines an interpretable generative model with a discriminative classifier. Specifically, we 

used functional magnetic resonance imaging (fMRI) data of emotional face perception in 85 

MDD patients from the multi-site longitudinal NEtherlands Study of Depression and Anxiety 

(NESDA) who had been followed up over two years and classified into three subgroups with 

distinct clinical trajectories. Combining a generative model of effective (directed) connectivity 

with support vector machines (SVMs), it was possible to predict whether a given patient will 

experience chronic depression vs. fast remission with a balanced accuracy of 79%. Gradual 

improvement vs. fast remission could still be predicted above-chance, but less convincingly, 

with a balanced accuracy of 61%. Importantly, generative embedding outperformed 

conventional (descriptive) measures such as functional connectivity or local BOLD activity, 

which did not predict clinical trajectories with above-chance accuracy. Furthermore, the 

predictive performance of generative embedding could be assigned to a specific network 

property: the dynamic modulation of connections by the emotional content of the trial-by-trial 

stimuli. Our findings suggest that a mechanistically informed generative model of a neuronal 

circuit underlying emotional face perception may have predictive utility for distinguishing 

disease courses in MDD patients. 

 

KEYWORDS 

Computational psychiatry, clinical neuromodeling, effective connectivity, emotional face 

perception, major depressive disorder 
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1 INTRODUCTION 

Major depressive disorder (MDD) is one of the most burdening mental disorders worldwide 

with a lifetime prevalence of 10-30% (Andrade et al., 2003; Kruijshaar et al., 2005; de Graaf 

et al., 2012). Of those patients suffering from MDD, up to a fourth are at risk of developing a 

chronic disease (Penninx et al., 2011), characterized by severe negative impact on quality of 

life, high rates of psychiatric comorbidities and unfavorable treatment courses (Kohler et al., 

2019). The diagnostic criteria of MDD (DSM-5; American Psychiatric Association, 2013) are 

not grounded in pathophysiology, but refer to symptoms and signs (e.g., depressed mood, 

anhedonia, fatigue, changes in weight and sleep) that could have various causes. The diagnostic 

label MDD likely subsumes patients with different disease mechanisms and has limited 

predictive validity: patients with MDD show highly variable clinical trajectories over time 

(Uher et al., 2010; Gueorguieva et al., 2011; Muthen et al., 2011; Musliner et al., 2016), and 

the absence of mechanistically interpretable measurements or predictors turns therapy into a 

trial-and-error procedure (Rush et al., 2006; Kapur et al., 2012; Cuthbert and Insel, 2013). This 

is not only costly and frustrating for patients, but also bears the risk of long-term adverse events 

(McMahon and Insel, 2012) and reduced treatment adherence by the patient (Velligan et al., 

2010). 

This emphasizes the need for novel prognostic approaches to depression that furnish predictors 

for clinical trajectories and treatment outcomes. Predicting symptom trajectories in MDD at an 

early stage is of high clinical relevance because identifying patients at risk of chronic disease 

might guide the deployment of intensified early interventions (MacQueen, 2009). To achieve 

this, successful tools may benefit from being grounded in biology in order to enable a 

mechanistically relevant stratification of the heterogeneous MDD spectrum (Stephan et al., 

2017). Using modern neuroimaging techniques, in particular magnetic resonance imaging 

(MRI) and positron emission tomography, some studies demonstrated that short-term treatment 

response prediction may be possible (Mayberg et al., 1997; Phillips et al., 2015; Dunlop et al., 

2017). By contrast, it has proven more challenging to predict long-term clinical outcome, such 

as symptom trajectories over several years. 

Schmaal et al. (2015) assessed the prognostic value of structural and functional MRI to classify 

disease trajectories in MDD patients from the NEtherlands Study of Depression and Anxiety 

(NESDA; Penninx et al., 2008), a multi-site longitudinal study in a large naturalistic cohort. 

The authors demonstrated that fMRI data from a facial emotion recognition paradigm allowed 

discriminating patients who, over the course of two years, showed a chronic disease trajectory 
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from patients showing rapid remission of depressive symptoms, with up to 73% accuracy. This 

result was obtained by applying a supervised machine learning (ML) method (Gaussian Process 

Classifiers; Rasmussen and Williams, 2005) to contrast images. 

While an encouraging initial result, developing this approach further with conventional ML 

approaches and towards clinically required levels of accuracy faces several challenges 

(Brodersen et al., 2011). First, achieving high classification accuracy robustly from whole-brain 

fMRI data can be difficult, given the high dimensionality of the data relative to the small sample 

sizes. Second, the results from “black box” ML operating on descriptive features (e.g., contrast 

images) do not easily allow for mechanistic interpretations. The latter, however, is increasingly 

recognized as critical for clinical applications of ML (e.g., Woo et al., 2017; Itani et al., 2019), 

both to derive novel treatment ideas from successful predictions but also to detect cases when 

ML goes awry, e.g., predictions that derive from artefacts in the data. 

Generative embedding (GE) represents a potentially attractive alternative to “classical” ML 

(Shawe-Taylor and Cristianini, 2004). The idea is simple but powerful: instead of selecting 

features from the original data, one applies a generative model to the data and uses the ensuing 

model parameter estimates as features. Generative models describe how observed data may 

have been “generated” from latent (hidden) states or causes and thus often embody some degree 

of mechanistic interpretability. For example, in neuroimaging, GE uses model-based estimates 

of physiological or cognitive parameters, such as connection strengths (Brodersen et al., 2011; 

2014), ion channel conductances (Symmonds et al., 2018), or response inhibition (Wiecki et 

al., 2016) to predict clinical states. More technically, GE views a generative model as a theory-

driven dimensionality reduction device that projects high-dimensional (neuroimaging) data 

onto neurobiologically meaningful parameters that define a low-dimensional and interpretable 

space for classification. Provided one has a reasonable model, GE frequently yields more 

accurate results than conventional ML (e.g., Brodersen et al., 2011; 2014), likely because the 

generative model separates signal (reflecting the process of interest) from (measurement) noise. 

Model-based estimates of brain connectivity might be particularly informative for predicting 

clinical trajectories in MDD, given that dysconnectivity has been postulated as a hallmark of 

depression (e.g., Mayberg, 1997; Greicius et al., 2007; Wang et al., 2012). Here, we used a 

generative model of fMRI data, dynamic causal modeling (DCM; Friston et al., 2003), to infer 

effective (directed) connectivity and test the utility of GE for predicting individual clinical 

trajectories in MDD patients from the NESDA study. For this purpose, we combined DCMs of 

the facial emotion recognition network with linear support vector machines (SVMs). We then 
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compared the cross-validated predictive accuracy of GE with more conventional approaches, 

such as classification based on functional connectivity and local BOLD activity. We 

hypothesized that a biologically plausible generative model would be superior for predicting 

naturalistic disease courses from fMRI data.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 18, 2019. ; https://doi.org/10.1101/19006650doi: medRxiv preprint 

https://doi.org/10.1101/19006650


6 

2 MATERIALS AND METHODS 

2.1 Participants 

The data used in this study were acquired in the NESDA study (Penninx et al., 2008). NESDA 

is a multi-site longitudinal study to characterize the long-term course of depression and anxiety 

disorders in a large naturalistic cohort. In total, 2981 participants (18-65 years) were recruited 

from community, primary care and specialized mental health organizations. From this cohort, 

301 participants (156 with MDD diagnosis) were included in the MRI experiment (for detailed 

descriptions of the full sample, see van Tol et al., 2010). For the current study, only those 

participants were included that had: (i) a DSM-IV diagnosis of MDD, as established using the 

structured Composite International Diagnostic Interview (CIDI; Robins et al., 1988) in the 6 

months prior to baseline, (ii) reported symptoms in the month before baseline as confirmed by 

either the CIDI or the Life Chart Interview (LCI; Lyketsos et al., 1994), (iii) availability of 2-

year follow-up of depressive symptoms from the LCI, and (iv) no other exclusion criteria 

related to, e.g., poor data quality, non-compliance with task instructions, or deficient 

performance (for details, see Schmaal et al., 2015). This resulted in a final sample of 85 

participants (for an overview of the demographic and clinical characteristics, see Table 1). 

Based on the two-year follow-up clinical trajectories derived from CIDI and LCI information, 

MDD patients were divided into different categories with distinct courses of symptom severity. 

This division was informed by a latent class growth analysis (Rhebergen et al., 2012), as 

reported by Schmaal et al. (2015). The three classes were: (i) MDD-remitted, showing a rapid 

remission of symptoms (REM: n=39), (ii) MDD-improved, showing a slow but gradual 

improvement of symptoms from baseline to follow-up (IMP: n=31), and (iii) MDD-chronic, 

showing no improvement of symptoms from baseline to follow-up (CHR: n=15). 

 

2.2 Experimental procedure 

For fMRI, an event-related emotional face perception paradigm was used. Participants viewed 

color images of angry, fearful, sad, happy, and neutral facial expressions, as well as scrambled 

faces. Stimuli were taken from the Karolinska Directed Emotional Faces System (Lundqvist et 

al., 1998) and shown on the screen for 2.5s, with an inter-stimulus interval varying between 

0.5-1.5s. Participants were instructed to indicate the gender of the presented face via button 

press. For scrambled images, participants had to press buttons in accordance with an arrow 

pointing to the left or right. Stimuli were presented using E-prime software (Psychological 
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Software Tools, Pittsburgh, PA; https://pstnet.com/products/e-prime/). For details, see 

Demenescu et al. (2011). 

 

2.3 Functional magnetic resonance imaging 

2.3.1 Image acquisition 

For NESDA, structural and functional MRI data were acquired at the University Medical Center 

Groningen (UMCG), Amsterdam Medical Center (AMC), and Leiden University Medical 

Center (LUMC). Participants were scanned on 3-Tesla MR scanners (Philips Healthcare, Best, 

The Netherlands) with SENSE 8-channel (LUMC, UMCG) or 6-channel (AMC) receiver head 

coils. For details, see Supplementary Material S1. 

 

2.3.2 Image data processing 

Some of the functional images were affected by a “column” or “pencil beam” artifact caused 

by imperfect fat suppression pulses in the Philips scanners. The artifact was most apparent in 

temporal signal-to-noise ratio (tSNR) maps and manifested as vertical stripes, primarily in 

frontal gyrus and anterior temporal lobe (see 

https://github.com/dinga92/stripe_cleaning_scripts). This was corrected by regressing out 

artifact-related independent components prior to the routine preprocessing steps. Artifact 

correction was done within FSL (FMRIB’s Software Library; Smith et al., 2004; 

http://www.fmrib.ox.ac.uk/fsl) as follows: First, the Multivariate Exploratory Linear Optimized 

Decomposition into Independent Components (melodic) algorithm was used to identify 

independent components associated with the artifact, and second, regfilt was used to regress 

out the artifact-related components. 

After artifact correction, functional images were analyzed using SPM12 (Statistical Parametric 

Mapping, version R7487, Wellcome Centre for Human Neuroimaging, London, UK, 

http://www.fil.ion.ucl.ac.uk) and Matlab (Mathworks, Natick, MA, USA). Individual images 

were realigned to the mean image, coregistered with the high-resolution anatomical image, and 

normalized to the Montreal Neurological Institute (MNI) standard space using the unified 

segmentation-normalization approach (Ashburner and Friston, 2005). During spatial 

normalization, functional images were resampled to a voxel size of 2×2×2mm3. Finally, 

normalized functional images were spatially smoothed using an 8mm FWHM Gaussian kernel. 
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Preprocessed and artifact-corrected functional images of every participant entered first-level 

General Linear Model analyses (GLM; Friston et al., 1995) to identify brain activity related to 

the experimental manipulation. Each condition (i.e., angry, fearful, happy, sad, neutral, and 

scrambled faces) was modeled as an individual regressor, consisting of a train of stimulus 

onsets, which was convolved with the standard canonical hemodynamic response function 

(HRF). Additionally, temporal and dispersion derivatives of the canonical HRF were included 

to account for variability in shape and timing of hemodynamic responses (Friston et al., 1998). 

Realignment parameters were included as nuisance regressors to control for movement-related 

artifacts. Additionally, low-frequency fluctuations in the data were removed using a high-pass 

filter (cut-off 1/128Hz). 

 

2.3.3 Time series extraction 

We selected six regions of interest (ROIs) that represent key components of the extended face 

perception network (Haxby et al., 2000). These ROIs were located bilaterally in the occipital 

face area (OFA; Puce et al., 1996), fusiform face area (FFA; Kanwisher et al., 1997), and 

amygdala (Breiter et al., 1996). To account for inter-subject variability in the exact location of 

these regions, center coordinates were defined for each participant individually: First, we 

identified the most likely MNI coordinates of these regions from a meta-analysis of 720 studies 

using Neurosynth (Yarkoni et al., 2011) with the search criterion “face”. Relying on this 

external information from Neurosynth helped ensure complete independence of feature 

selection (i.e., definition of ROI coordinates) and subsequent prediction. Generally, we 

prevented any cross-talk between training and test samples which might otherwise positively 

bias classification accuracy (see Supplementary Material S2 and Brodersen et al., 2011). 

Second, individual peak activation coordinates were defined as the subject-specific local 

maximum closest to the Neurosynth coordinates within a 12mm sphere. The ensuing 

distribution of individual coordinates is illustrated in Supplementary Figure S1. Third, BOLD 

signal time series were extracted from the subject-specific ROIs as the first eigenvariate of all 

voxels within an 8mm sphere centered around the individual coordinates. Time series were 

mean-centered and movement-related variance was removed (by regression using the 

realignment parameters). 
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2.4 Dynamic causal modeling 

Dynamic causal modeling (DCM; Friston et al., 2003) is a generative model that enables 

inference on hidden (latent) neuronal states from measured neuroimaging data. For fMRI, 

dynamics of neuronal activity are described as a function of the effective (directed) connectivity 

among neuronal populations using a bilinear differential equation: 

!"
!# = %& +()(+)-+

+
. " + /- (1) 

where " defines the neuronal states, & encodes the endogenous connectivity among brain 

regions in the absence of experimental manipulations, )(+) represents the modulatory influence 

that input -+ exerts on endogenous connections, and / quantifies the strength of experimentally 

controlled inputs (perturbations) on brain regions. Integrating Eq. (1) yields a predicted 

neuronal time course which is then passed through a nonlinear hemodynamic model that 

translates neuronal signal into predicted BOLD signal (Buxton et al., 1998; Friston et al., 2000; 

Stephan et al., 2007). This yields a complete forward mapping from hidden neuronal states to 

observable fMRI data and, under Gaussian assumptions about the measurement noise, specifies 

the likelihood function. By specifying prior distributions over model parameters (neuronal, 

hemodynamic) and hyperparameters (measurement noise), DCM becomes a fully generative 

model. Model inversion then proceeds with approximate Bayesian schemes, most commonly 

variational Bayes under the Laplace approximation (VBL; Friston et al., 2007). 

 

2.4.1 Definition of model space 

Inference on effective connectivity is conditional on the underlying model (e.g., assumptions 

about the network architecture). However, there typically exist several a priori hypotheses about 

the likely network structure. This model uncertainty leads to defining a model space – a set of 

plausible candidate models that are compared. Here, a total of seven models were constructed, 

representing different hypotheses of the effective connectivity in the above-mentioned network 

mediating perception of emotional faces. For all models, the endogenous and driving input 

connectivity (A- and C-matrix) were identical. Driving inputs were set to elicit face-sensitive 

activation (regardless of whether an emotional or neutral face was presented) in left and right 

OFA, consistent with their proposed role as the first stage in the face perception network (Haxby 

et al., 2000; Pitcher et al., 2011). The stimulus-evoked activity then propagated through the 

network via intra- and interhemispheric connections. We assumed forward and backward 
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intrahemispheric connections between OFA and FFA, and between FFA and amygdala, but not 

between OFA and amygdala – consistent with the notion of a hierarchy in the face perception 

network (Haxby et al., 2000; Fairhall and Ishai, 2007). Additionally, reciprocal 

interhemispheric connections were set between homotopic regions (Zeki, 1970; Van Essen et 

al., 1982; Clarke and Miklossy, 1990; Zilles and Clarke, 1997; Catani and Thiebaut de Schotten, 

2008), but omitted between heterotopic regions as these were found to be less pronounced 

(Hofer and Frahm, 2006; Catani and Thiebaut de Schotten, 2008). 

For this basic structure, seven different modulatory connectivity patterns were defined (Figure 

1), representing distinct hypotheses of how emotion processing could modulate intra- and 

interhemispheric connections in the extended face perception network (Fairhall and Ishai, 2007; 

Frässle et al., 2016). Emotion processing could modulate either (i) forward, (ii) backward, or 

(iii) forward and backward intrahemispheric connections. Similarly, emotion processing could 

modulate interhemispheric connections among homotopic regions or not. This yielded six 

different models, representing all possible combinations of the above effects. Furthermore, we 

included a “null” model (model 7) where none of the connections were modulated. 

Driving and modulatory inputs were not mean-centered. Model inversion was performed using 

DCM12 (SPM12, version R7487). For details, see Supplementary Material S3. 

 

2.4.2 Bayesian model averaging 

We computed individual parameter estimates by means of Bayesian model averaging (BMA; 

Penny et al., 2010) across all models in our model space within a pre-specified Occam’s 

window (0122 = 0.05). For details, see Supplementary Material S4. BMA parameter estimates 

represent a weighted average across the considered models, where each model contributes 

according to its posterior model probability. Importantly, in order to prevent any potential cross-

talk between training and test sample, BMA parameters were computed for each participant 

individually. 

 

2.5 Generative embedding 

The ensuing means of the posterior densities of BMA parameters from each participant were 

used to create a generative score space for a discriminative classification method. In total, this 

yielded 78 parameters/features. Within this space, a linear kernel representing the inner product 

67"8, "+: = 〈"8, "+〉 was used to compare two instances (participants). A support vector machine 
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(SVM) was then applied for binary classification of pairwise combinations of the three MDD 

groups (i.e., REM, IMP, and CHR). Specifically, we used the fitcsvm routine in Matlab. An 

estimate of classification performance was obtained by means of a leave-one-out cross-

validation procedure. Here, in each fold, the classifier is trained on = − 1 participants (the 

training set) and tested on the left-out participant. Using the training set only, the 

hyperparameters of the SVM (i.e., box constraint and kernel scale; see Supplementary Material 

S5) were optimized using in-built routines of fitcsvm. This computes the Bayes-optimal 

hyperparameters using the expected improvement acquisition function (Frazier, 2018) based on 

an (inner) five-fold cross validation. This approach is known as nested cross-validation (Stone, 

1974; Cawley and Talbot, 2010). By default, fitcsvm solves SVMs using the Sequential 

Minimal Optimization algorithm (SMO; Fan et al., 2005). Significance of the classification 

result was assessed by means of permutation tests. Here, an empirical null distribution of the 

balanced accuracy is computed by randomly permuting the participant labels and re-fitting the 

entire classification model (i.e., training and testing) based on these new labels (Good, 2000; 

Ojala and Garriga, 2010). For each permutation, the balanced accuracy is re-evaluated. Here, 

we used 1,000 permutations. The p-value is then computed as the rank of the original balanced 

accuracy in the distribution of permutation-based balanced accuracies, divided by the total 

number of permutations. 

 

2.6 Data availability 

The data utilized in this study are available as part of the NESDA consortium upon request. 
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3 RESULTS 

3.1 Classification of clinical trajectories 

3.1.1 Predictive accuracy of effective connectivity parameters  

Our results suggest that DCM parameter estimates discriminated patients with a chronic disease 

trajectory from patients that show fast remission with a balanced accuracy of 79% (p<0.001; 

Figure 2, blue). We then evaluated the underlying receiver-operating characteristic (ROC) and 

precision-recall (PR) curves (Figure 3A+B). From the ROC curve, the respective area under 

the curve (AUC) for discriminating chronic from remitting patients evaluated to 0.87 (blue 

curve). Notably, high recall (sensitivity) might come at the expense of low positive predictive 

value (PPV; also known as “precision”) – particularly, in the presence of class imbalances. This 

is problematic for clinical applications where one strives to maximize sensitivity while at the 

same time keeping PPV uncompromised. In reality, there is always a trade-off between the two. 

Hence, we also inspected the PR curves and found that our classifier achieved 97% sensitivity 

at a PPV of 86% when discriminating chronic from remitting patients. 

Effective connectivity parameters further discriminated between patients that showed gradual 

improvement of depressive symptoms and patients with fast remission with a balanced accuracy 

of 61% (p=0.03; Figure 2), although this did not reach significance when correcting for multiple 

comparisons (αBonf=0.0056). The AUC was 0.63 (Figure 3A+B; red curve). In contrast, chronic 

patients could not be differentiated from those with gradual improvement above-chance level 

(balanced accuracy: 47%, p=0.92; Figure 2), corresponding to an AUC of 0.35. Table 2 

provides a comprehensive summary of all classification results. 

Since groups differed significantly in age (but no other variable; Table 1), we repeated the 

analysis after regressing out age as a confound from the DCM parameters. We found results to 

be highly consistent (although with slightly decreased accuracies), suggesting that results are 

not simply caused by age (Supplementary Material S8). 

 

3.1.2 Comparison to functional connectivity and fMRI activity 

We compared the GE results to an alternative approach in which the classifier operates on 

estimates of functional connectivity. Following standard practice, functional connectivity was 

computed in terms of Pearson’s correlations among the same BOLD signal time series that had 

previously been used for the DCMs. However, functional connectivity measures did not 

discriminate between the different clinical trajectories above chance, with balanced accuracies 
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of 50% (p=0.77) for CHR vs. REM patients, 42% (p=0.996) for CHR vs. IMP patients, and 

50% (p=0.37) for IMP vs. REM patients (Figure 2, light grey). Importantly, for discriminating 

chronic from fast remitting patients, GE significantly outperformed functional connectivity 

measures (p=0.01; asymptotic McNemar test1 as implemented in MATLAB’s testcholdout 

function). 

In addition, we tested whether the different clinical trajectories could be distinguished based on 

measures of local BOLD activity within the same regions utilized above. Local BOLD activity 

was quantified in terms of the regional mean and standard deviation of the contrast estimates 

within the 8mm spheres for all face-related contrasts (i.e., contrasts representing the individual 

regressors in the first-level GLM encoding angry, fearful, happy, sad, and neutral faces; see 

Methods). Again, the different clinical trajectories were indistinguishable based on mere 

estimates of local BOLD activity, with balanced accuracies of 50% (p=0.72) for CHR vs. REM 

patients, 48% (p=0.81) for CHR vs. IMP patients, and 48% (p=0.51) for IMP vs. REM patients 

(Figure 2, dark grey). As for functional connectivity, GE significantly outperformed local 

BOLD activity for distinguishing chronic patients from those that showed fast remission, 

(p=0.01). 

 

3.2 Assessment of predictive confidence 

Next, we computed accuracy-reject curves for the two binary classifiers that achieved above-

chance balanced accuracies (i.e., CHR vs. REM, IMP vs. REM) to assess the predictive 

confidence of our GE approach. Accuracy-reject curves demonstrate the accuracy of a classifier 

when only predictions greater than a certain (relative) confidence threshold are considered 

(Nadeem et al., 2010). Hence, this resembles classification with a reject option (Bishop, 2006), 

where cases that do not meet a certain confidence criterion can be deferred to a clinician for 

further inspection. We found that for distinguishing chronic patients from those with fast 

remission, the classifier yielded perfect classification accuracy at a rejection threshold of 60% 

of participants (Figure 3C; blue curve). Furthermore, the accuracy-reject curve overall 

increased as function of the rejection rate, suggesting that participants that lie further from the 

decision hyperplane were more likely to be assigned correctly to their respective class. In 

contrast, for distinguishing gradually improving patients from those showing fast remission no 

                                                
1The McNemar test is, strictly speaking, only valid when applied to a completely independent test set. Hence, 
comparing cross-validated classifiers might yield somewhat optimistic results. Having said this, for the present 
scenario, it is unclear what a statistically rigorous way would be to compare classifiers. For a discussion around 
this issue, see Dietterich (1998). 
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such cut-off could be identified and the curve did not reveal a steady increase as a function of 

the rejection rate (Figure 3C; red curve).  

 

3.3 Inspection of the generative score space 

One benefit of GE is that features represent model parameter estimates, which, depending on 

the model, may be neurobiologically interpretable. Hence, in a next step, we interrogated our 

generative score space to illustrate which features contributed most to the classification 

performance.  

 

3.3.1 Inspection of individual predictive features 

In a first step, we aimed to pinpoint the individual contribution of each feature (i.e., DCM 

parameter) separately for the two significant classifiers (i.e., CHR vs. REM, IMP vs. REM). 

Importantly, individual feature weights of linear classifiers are not directly interpretable 

because high magnitudes of feature weights might indicate an association with the label or a 

“suppressor” variable that cancels out noise or mismatch in other colinear variables (Naselaris 

et al., 2011; Haufe et al., 2014). Therefore, we followed the procedure described by Haufe et 

al. (2014) and first transformed all feature weights into patterns based on a corresponding 

forward mapping. 

For both classifiers, the features that received the highest average (across cross-validation folds) 

scores were situated along the dimension of modulatory (emotional) influences (Figure 4, top), 

whereas the endogenous connectivity and driving input parameters did not score highly and 

thus did not distinguish strongly between the groups. Importantly, since averaging over cross-

validation folds might artificially smooth the weights due to correlations among folds, we 

inspected the variability of the observed results across the individual cross-validation folds. 

This suggested that the observed pattern was highly consistent for both classifiers (Figure 4, 

bottom). 

In brief, for distinguishing chronic from fast remission patients, the modulatory influence of 

happy faces on the connection from right amygdala to right FFA received the highest score 

(Figure 4A). Furthermore, scores were high for modulatory influences of negative emotions 

(i.e., fear, anger, and sadness) on the functional integration among face-processing regions and 

emotion-sensitive regions. For instance, modulatory influences by angry faces on the 

connection from right amygdala to right FFA and left amygdala, and on the connection from 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 18, 2019. ; https://doi.org/10.1101/19006650doi: medRxiv preprint 

https://doi.org/10.1101/19006650


15 

left OFA to left FFA showed high loads. Similarly, the modulation of connections from right 

OFA and left FFA to right FFA, as well as the connection from right FFA to right amygdala by 

fearful faces received high scores. 

For distinguishing gradually improving patients from those that showed fast remission, the 

modulatory influence of happy faces on the connection from right FFA to right OFA received 

the highest score (Figure 4B). Modulatory influences by angry and sad faces on this connection 

also showed high loads. Similarly, modulation of connections among FFA and amygdala in 

both hemispheres by angry faces scored highly, as well as modulation of various endogenous 

connections (e.g., left amygdala to left FFA, left to right OFA, left FFA to left OFA) by happy 

faces. 

In summary, chronic and gradually improving patients could be differentiated from patients 

with a benign clinical trajectory (i.e., fast remission) primarily in terms of how emotions 

modulated the functional integration within the extended face perception network. 
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4 DISCUSSION 

The analyses presented in this paper demonstrate the utility of GE for predicting individual 

clinical trajectories of MDD patients over a two-year period. Using fMRI data from the NESDA 

study and DCM to infer effective connectivity within the facial emotion perception network, 

model parameter estimates served as features for supervised learning. This GE approach 

enabled the prediction of whether a given patient would show a chronic disease course or fast 

remission, with a balanced accuracy of 79%. Additionally, patients with gradual improvement 

in symptom severity could be distinguished from those who remitted quickly with a balanced 

accuracy of 61%. Notably, GE outperformed more conventional (descriptive) measures, i.e., 

functional connectivity or local BOLD activity within the network of interest. Similar to 

previous studies (Brodersen et al., 2011; 2014), these findings demonstrate that using a 

plausible generative model as the basis for classification can enhance classification accuracy 

significantly. 

Apart from the superior classification accuracy, another advantage of GE is that results can be 

interpreted in terms of the mechanisms represented by the underlying generative model. To this 

end, one can interrogate the generative score space to identify the (sets of) features that are most 

discriminative between the different classes (Brodersen et al., 2011). Here, we addressed this 

by first transforming the feature weights of the linear SVM into patterns, following previous 

recommendations (Haufe et al., 2014). Inspecting these scores then allowed to pinpoint the 

features that contributed most strongly to the classification between the different naturalistic 

courses (Figure 4). This analysis suggested that groups differed primarily along the dimension 

encoded by the modulatory parameters, which represent changes in the endogenous 

connectivity by emotional valence of the face stimulus presented. Put differently, it is the 

dynamic (trial-by-trial) modulation of connections by the emotional contents of the faces that 

allows for predicting which clinical trajectory an individual patient will experience – not the 

average connectivity across all trials. In conclusion, our analysis implies that it is the reactivity 

of the face processing network to emotional stimuli – in terms of reconfiguring its connection 

strengths in a trial-wise fashion – which enables prediction of the future clinical trajectory of 

an individual patient. 

These results are consistent with our findings from group comparisons of the connectivity 

patterns (see Supplementary Material S7), which, however, do not allow for single-subject 

predictions. Our results are also consistent with previous work suggesting aberrant processing 

and regulation of emotions as a key pathology underlying MDD (Harmer et al., 2009; Rive et 
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al., 2013). For instance, an fMRI meta-analysis demonstrated valence-dependent effects of 

emotional stimuli on amygdala and fusiform gyrus in depression, with hyperactivation for 

negative and hypoactivation for positive stimuli (Groenewold et al., 2013; but see Muller et al., 

2017). Along these lines, reduced amygdala activity to positive emotional stimuli has been 

associated with anhedonia (Stuhrmann et al., 2013). Similarly, functional integration among 

key components of the emotion processing network has been found to be altered in MDD 

(Mayberg, 1997; Greicius et al., 2007; Almeida et al., 2009). Alterations in emotion processing 

have also been suggested to have some clinical utility. For instance, implicit processing of 

affective facial expressions predicted a diagnosis of MDD (Fu et al., 2007), and longitudinal 

neuroimaging studies have reported normalization of aberrant activation in the neuronal circuit 

supporting emotion processing in response to pharmacotherapy, in particular SSRIs (Sheline et 

al., 2001; Fu et al., 2004; Anand et al., 2007; Robertson et al., 2007; Murphy et al., 2009; 

Godlewska et al., 2012; Ai et al., 2019). 

The classification accuracies we found are comparable to the results obtained by Schmaal et al. 

(2015). For chronic versus swiftly remitting patients, our GE procedure yielded a higher 

predictive accuracy than the best result reported by Schmaal and colleagues (balanced accuracy: 

73%) when not accounting for age. For the other two classifiers, our procedure yielded 

somewhat complementary results to Schmaal et al. (2015): While the previous work could 

distinguish between chronic and gradually improving patients but not between gradually 

improving and fast remitting patients, the opposite held for GE. This may be due to differences 

in classification procedure and features: Schmaal et al. (2015) used Gaussian Process Classifiers 

(Rasmussen and Williams, 2005) on whole-brain contrast images, whereas the present study 

applied linear SVMs to DCM parameter estimates from a small (six-region) network. 

Furthermore, their analysis was still based on the artifact-confounded MR data (see Methods); 

hence, it remains to be tested whether classification accuracy would change when the artifact-

corrected images are used. 

Previous attempts to obtain single-patient predictions in MDD have almost exclusively 

concerned short-term treatment responses to specific interventions. For instance, pioneering 

PET studies demonstrated that cingulate metabolism predicts treatment responses (Mayberg et 

al., 1997). For fMRI, Fu et al. (2008) showed that brain activity during the processing of sad 

facial expressions allows predicting treatment outcome to antidepressant medication in 

individual patients with major depression. Graph-theoretical measures based on functional 

connectivity in the default mode network at baseline were predictive of changes in symptom 

severity after two weeks of medication (Shen et al., 2015). Furthermore, activation (Siegle et 
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al., 2012) and functional connectivity measures (Crowther et al., 2015; Walsh et al., 2017) were 

predictive of psychotherapy outcome. Similarly, functional connectivity of the subcallosal 

cingulate cortex with insula, dorsal midbrain and ventromedial prefrontal cortex was 

differentially associated with remission and treatment failure to cognitive-behavioral therapy 

and antidepressant medication (Dunlop et al., 2017). Finally, Nord et al. (2019) showed that 

neural activity at baseline was predictive of clinical responses to transcranial direct current 

stimulation (tDCS) to left prefrontal cortex in unmedicated MDD patients. 

Arguably, the attempt to predict outcome after two years in a naturalistic setting, as in NESDA, 

represents a greater challenge than predicting short-term response to a particular treatment. 

NESDA (1) recruited patients from a wide spectrum, including community, primary care and 

specialized mental health organizations, (2) encompassed a wide range of depressive 

phenotypes from very mild to severe, and (3) did not standardize treatments or occurrence of 

life events over the 2-year follow-up period (Penninx et al., 2008). This represents a strength 

of the NESDA dataset since it allows testing the course of MDD in a naturalistic and realistic 

setting where the patient sample reflects the clinical heterogeneity that physicians face on a 

day-by-day basis. 

Existing attempts to predict MDD trajectories have focused on clinical or cognitive features 

(Vreeburg et al., 2013; Vogelzangs et al., 2014; Kessler et al., 2016). Recently, Dinga et al. 

(2018) systematically assessed the predictive value of non-imaging data, using clinical, 

psychological and biological measures from the NESDA study. They found that clinical 

measures performed best with balanced accuracies around 66%, while endocrine and 

immunological measures (e.g., cortisol, inflammatory markers, metabolic syndrome markers) 

did not distinguish between clinical trajectories. Interestingly, consistent with our GE results, 

Dinga and colleagues could primarily discriminate remitted patients from the other two groups. 

Few studies also attempted to predict the onset of MDD. For instance, Pan et al. (2017) showed 

that aberrant functional connectivity of the ventral striatum was predictive of the onset of 

depression in a community sample of adolescents. Similarly, functional connectivity during the 

resting state predicted onset of MDD (Hirshfeld-Becker et al., 2019). 

Our study is subject to several limitations. First, while our sample size (n=85) does not fare 

badly compared to other imaging-based prediction studies on MDD, the sample size is still 

modest for attempts to obtain individual predictions, and we do not have access to a separate 

validation set at the present time. Second, the classical DCM approach employed here is 

restricted to small networks that comprise only a small number of regions to keep model 
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inversion computationally feasible (Daunizeau et al., 2011; Frässle et al., 2018b). 

Consequently, we focused on a six-region network comprising only core regions of the 

extended face perception network (i.e., OFA, FFA and amygdala; see Haxby et al., 2000). 

However, depression is often characterized in terms of widely distributed alterations in network 

organization (Mayberg, 1997; Greicius et al., 2007; Wang et al., 2012) and, hence, inferring 

effective connectivity in MDD patients at the whole-brain level might be an appealing next 

step. This could be achieved by exploiting recent advances in generative models that are 

computationally extremely efficient and can provide whole-brain estimates of effective 

connectivity (Frässle et al., 2017; 2018a). 

Another potential limitation is the two-step procedure of GE where the inversion of the 

generative model is independent of the subsequent ML step. An alternative is to construct a 

fully hierarchical generative model that describes individual data generation and 

simultaneously assigns participants to clusters. Such a model has recently been introduced to 

neuroimaging as “hierarchical unsupervised generative embedding” (HUGE; Raman et al., 

2016; Yao et al., 2018). This framework might be beneficial for predicting distinct disease 

courses because model inversion at the single-subject level can be informed by group-level 

results and, vice versa, the formation of clusters takes into account the full posterior distribution 

of single-subject estimates. 

Furthermore, in line with Schmaal et al. (2015), we used binary classifiers which can only 

distinguish between two disease trajectories. However, this approach does not allow for single 

class predictions, which would rest on multi-class classification (Bishop, 2006). Extending our 

classification scheme beyond binary classification is likely to be of clinical relevance, as multi-

class prediction more faithfully resembles the decision process that physicians routinely engage 

in. 

Finally, on a more general note, any biomarker in psychiatry will always yield imperfect 

predictions. This is because the course of psychiatric disorders is affected by a plethora of 

environmental factors, which cannot be foreseen from physiological data; e.g., the occurrence 

of stressful life events like loss, bereavement, or trauma (Horesh et al., 2008). Such external 

perturbations likely upper-bound the predictive accuracy of any biomarker, whether derived 

from neuroimaging or genetics. 

Despite these limitations, the present study demonstrates the potential of GE for addressing 

important clinical problems in psychiatry in a way that combines enhanced accuracy with 

biological interpretability of predictions. More generally, as illustrated by recent successful 
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clinical applications (e.g., Symmonds et al., 2018), generative models offer an attractive 

strategy for establishing computational assays that could inform clinical decision-making in 

psychiatry (for review, Frässle et al., 2018b). A critical condition for the future success (or 

failure) of this strategy will be the availability of large prospective patient datasets that, like 

NESDA, offer clinically relevant outcome data and allow for testing the generalizability and 

robustness of model-based clinical predictions in real-world settings.  
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9 FIGURES 

Figure 1 

 

Figure 1: Different plausible hypotheses of the effective connectivity pattern in the network 

mediating emotional face perception. Forward and backward intrahemispheric endogenous 

connections were set between OFA and FFA, and between FFA and amygdala (Amy). 

Additional, reciprocal interhemispheric connections were set between bilateral OFA, bilateral 

FFA and bilateral amygdala. Driving inputs comprised all faces, regardless of the emotional 

valence, and were allowed to drive neuronal activity in the left and right OFA. While 

endogenous connectivity and driving inputs were identical for all models, they differed in the 

assumed modulatory influences of emotion processing. Emotion processing could either 

modulate (i) forward (models 1&4), (ii) backward (models 2&5), or (iii) forward and backward 

intrahemispheric connections (models 3&6). Additionally, emotion processing (i) modulated 

(models 1-3) or (ii) did not modulate interhemispheric connections among homotopic brain 

regions (models 4-6). Systematically varying all combinations resulted in six distinct models. 

Finally, we also included a “null” model (i.e., model 7, not shown) where none of the intra- and 

interhemispheric connections was modulate by emotion processing.  
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Figure 2 

 

Figure 2: Balanced accuracy for the binary classifiers as assessed using leave-one-out cross 

validation for the three different subgroup comparisons – that is, CHR vs. REM (left), CHR vs. 

IMP (middle), and IMP vs. REM (right). Balanced accuracies are shown for the different 

features – namely, effective connectivity parameters (DCM; blue), functional connectivity (FC; 

light grey), and local BOLD activity (CI, dark grey). Asterisks above the bars indicate 

significant classification performance as assessed by means of permutation tests where an 

empirical null distribution of the balanced accuracy is computed by randomly permuting the 

participant labels and re-evaluating the classifier based on these new labels. Additionally, 

asterisks above the lines connecting two bars indicate significant differences in classification 

performance between different data features as assessed using the asymptotic McNemar test. 
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Figure 3 

 

Figure 3: Performance curves for the two binary classifiers that achieved above-chance 

balanced accuracies – that is, CHR vs. REM (blue curve) and IMP vs. REM (red curve). (A) 

receiver-operating characteristic (ROC) curves, illustrating the trade-off between the true 

positive rate (sensitivity) and the false positive rate (1-specificity) across the entire range of 

detection thresholds, (B) precision-recall (PR) curves, illustrating the trade-off between the 

precision (positive predictive value) and recall (true positive rate) for different thresholds, and 

(C) accuracy-reject curves, representing the accuracy of a classifier as a function of the rejection 

rate (Nadeem et al., 2010). For a comprehensive summary of all classification results, see Table 

2.  
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Figure 4 

 

Figure 4: Illustration of the relevance of individual features. First, feature weights were 

transformed into feature patterns to allow for interpretability (Haufe et al., 2014). The 

respective score of each individual feature (DCM parameter) is then shown as a polar plot for 

the classifier distinguishing (A) patients with a chronic disease trajectory from patients that 

showed fast remission (CHR vs. REM), and (B) patients with gradual improvement of symptom 

severity from patients that showed fast remission (IMP vs. REM). (Top) Magnitude of scores 

computed as the average across all cross-validation folds, (bottom) magnitude of scores for each 

cross-validation fold individually, normalized to the maximum score within each fold for 

displaying purposes. The grey area represents endogenous connectivity and driving input 

parameters, showing less pronounced scores as the modulatory parameters. Endogenous 

connectivity is colored in blue, modulatory influences of happy faces in red, modulatory 
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influences of angry faces in yellow, modulatory influences of fearful faces in violet, modulatory 

influences of sad faces in green, and driving inputs (related to all faces regardless of the 

emotional valence) in cyan. 
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10 TABLES 

Table 1: Demographic and clinical characteristics of participants included in the generative embedding analyses. 

Characteristic REM (n=39) IMP (n=31) CHR (n=15) Statistic p-value 

Age, Years 35.90 (11.50) 35.03 (10.00) 44.00 (10.01) F=3.92 0.02 

Gender, n (%)      

 Female 28 (72) 20 (65) 9 (60) χ2=0.83 0.66 

 Male 22 (28) 11 (35) 6 (40)   

Education, Years 11.74 (3.30) 12.26 (3.00) 12.00 (2.36) F=0.25 0.78 

Scan Location, n (%)      

 AMC Amsterdam 5 (13) 5 (16) 4 (27) χ2=3.81 0.43 

 LUMC Leiden 13 (33) 15 (48) 5 (33)   

 UMCG Groningen 21 (54) 11 (35) 6 (40)   

IDS Total T1 31.44 (10.76) 32.77 (8.35) 33.72 (7.91) F=0.37 0.69 

IDS Total T2 14.72 (9.06) 22.29 (9.93) 29.60 (7.17) F=15.87 < 0.001 

IDS Change (T2-T1) -16.72 (11.33) -10.48 (10.56) -4.13 (8.10) F=8.35 < 0.001 

BAI Total T1 14.90 (9.25) 15.77 (9.42) 14.27 (6.93) F=0.16 0.85 

Antidepressant Use T1, n (%)      

 No 27 (69) 22 (71) 8 (53) χ2=1.58 0.45 

 Yes 12 (31) 9 (29) 7 (47)   

Antidepressant Use T2, n (%)      

 No 25 (64) 22 (71) 9 (60) χ2=0.64 0.73 

 Yes 14 (36) 9 (29) 6 (40)   
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Table 2: Classification results for the generative embedding procedure. Shown are key 

performance measures of the classification algorithm, including: balanced accuracy, area under 

the curve, sensitivity (recall), specificity, positive predictive value (precision), and negative 

predictive value. Performance measures are shown for the three different binary classifications 

(i.e., CHR vs. REM, CHR vs. IMP, and IMP vs. REM).  

Classification 
CHR (n=15)  

vs. REM (n=39) 
CHR (n=15)  

vs. IMP (n=31) 
IMP (n=31) vs. 
 REM (n=39) 

 Accuracy 0.87 0.63 0.63 

 Balanced accuracy 0.79 0.47 0.61 

 Area under the curve (AUC) 0.87 0.35 0.63 

 Sensitivity (recall) 0.97 0.94 0.77 

 Specificity 0.60 0 0.45 

 Positive predictive value (Precision) 0.86 0.66 0.64 

 Negative predictive value 0.90 0 0.61 
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SUPPLEMENTARY MATERIAL 

 

Predicting individual clinical trajectories of depression with generative embedding 

Stefan Frässle, Andre F. Marquand, Lianne Schmaal, Richard Dinga,  

Dick J. Veltman, Nic J.A. van der Wee, Marie-José van Tol, Dario Schöbi,  

Brenda W.J.H. Penninx, & Klaas E. Stephan 

 

Supplementary Material S1: Image acquisition  

For NESDA, data were acquired at the University Medical Center Groningen (UMCG), 

Amsterdam Medical Center (AMC), and Leiden University Medical Center (LUMC). 

Participants were scanned on 3-Tesla MR scanners (Philips Intera, Best, The Netherlands) with 

SENSE 8-channel (LUMC, UMCG) or SENSE 6-channel (AMC) receiver head coils. A T2*-

weighted gradient-echo echo-planar imaging sequence was used to provide blood oxygen level 

dependent (BOLD) contrast. The scanning parameters differed slightly across sites: UMCG (39 

slices, TR=2300ms, TE=28ms, matrix size 64×64 voxels, voxel size 3×3×3mm3, slice gap 

0mm, flip angle 90°), AMC (35 slices, TR=2300ms, TE=30ms, matrix size 96×96 voxels, voxel 

size 2.29×2.29×3mm3, slice gap 0mm, flip angle 90°), and LUMC (35 slices, TR=2300ms, 

TE=30ms, matrix size 96×96 voxels, voxel size 2.29×2.29×3mm3, slice gap 0mm, flip angle 

90°). Slices were acquired with an interleaved acquisition schedule parallel to the 

intercommissural (AC-PC) plane. Additionally, a high-resolution anatomical image was 

acquired for each participant using a T1-weighted imaging sequence (170 slices, TR=9ms, 

TE=3.5ms, matrix size 256×256, voxel size 1×1×1mm3) 

 

Supplementary Material S2: Unbiasedness of generative embedding procedure 

When performing classification, it is critical to avoid any optimistic bias in assessing the 

classification performance (Brodersen et al., 2011). To this end, a classifier must be applied to 

test data that have not been used during training. In the case of generative embedding (GE), this 

implies that the specification of the generative model (e.g., the definition of the regions of 

interest) cannot be treated in isolation from its use for classification. In the present paper, we 
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prevented any cross-talk between training and test samples using the strategy outlined below 

(for a graphical illustration of our workflow, see Supplementary Figure S2): 

First, preprocessing of the functional magnetic resonance imaging data as well as first-level 

General Linear Model (GLM; Friston et al., 1995) analysis were performed for each participant 

individually, thus, avoiding any potential cross-talk between training and test samples at this 

stage. 

Second, we ensured that the individual center coordinates of the regions of interest (ROIs) were 

unbiased (cf. Figure 2, Brodersen et al., 2011). The typical strategy for defining individual 

center coordinates would be to search for the nearest maximum from the group-level maximum. 

However, this approach is problematic since the group-level maximum would be based on data 

from all participants, including the left-out test participant in a subsequent leave-one-out cross-

validation scheme. Consequently, training and testing samples would no longer be independent; 

thus, violating the fundamental assumption of cross-validation. This scenario is known as 

peeking (Pereira et al., 2009). To avoid this scenario, we used external (to the study) 

information from Neurosynth (Yarkoni et al., 2011). Specifically, we identified the most likely 

MNI coordinates from a meta-analysis of 720 studies using Neurosynth with the search criterion 

“face”. Individual peak activation coordinates were then defined as the subject-specific local 

maximum closest to the Neurosynth coordinates within a 12mm sphere. 

Third, model inversion of each DCM is performed for each participant separately, thus, 

avoiding any potential cross-talk between training and test samples at this stage. 

Fourth, parameter estimates from all DCMs are averaged using Bayesian model averaging 

(BMA; Penny et al., 2010). Again, the conventional strategy of performing random-effects 

BMA to infer group-level and single-subject BMA parameter estimates would result in the 

above-mentioned phenomenon of peeking and thus to positive bias in the classification 

performance. To avoid this scenario, BMA parameter estimates were computed for each 

participant individually, thus, preventing any bias. The ensuing DCM parameter estimates can 

then be safely used in subsequent classification procedures. 

 

Supplementary Material S3: Model inversion of DCMs 

Model inversion (inference) of DCMs proceeded in a fully Bayesian framework using the 

default VBL scheme in SPM (Friston et al., 2007). This approach yields both the posterior 

distribution over model parameters and hyperparameters, as well as an estimate of the negative 
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free energy which serves as a lower bound approximation of the log model evidence (i.e., the 

probability of the data given the model). Notably, VBL rests on a gradient-based optimization 

of the negative free energy and is therefore susceptible to local extrema in the objective function 

(Daunizeau et al., 2011). This can lead to suboptimal inference on both parameters and model 

evidence. Indeed, the effect of local extrema became apparent in our analysis in the form of 

some “flat-lined” DCMs for which the VBL algorithm converged almost immediately without 

notable deviations of the posterior from the prior mean. To address this issue, we performed a 

multi-start approach where inversion of each model in every participant was performed for 100 

random starting values (not to be confused with the priors). In brief, we sampled 99 starting 

values from the prior density. One additional starting value corresponded to the default starting 

value of the gradient ascent in SPM12 (i.e., the prior mean of the parameters). The same starting 

values were used for all participants and models tested. Notably, model parameters representing 

modulatory influences were not included in the multi-start procedure, but started always from 

the prior means. This was necessary to ensure identical starting values across the seven models 

(which differed in their modulatory connectivity patterns). The best solution for each participant 

and model was then chosen as the one that maximized the negative free energy. 

 

Supplementary Material S4: Bayesian model averaging 

We computed individual parameter estimates by means of Bayesian model averaging (BMA; 

Penny et al., 2010). BMA allows obtaining model parameter estimates that represent a weighted 

average across the considered models, thus taking into account model uncertainty. Specifically, 

each model contributes to this average according to its posterior model probability. For 

instance, the BMA posterior for participant !, marginalized over all models " of the model 

space #: 

$(&'|)," ∈ #) = . /(&'|0'," ∈ #)$("'|))

1∈2

 (S.1) 

where /(&'|0'," ∈ #) ≈ $(&'|0'," ∈ #) is the Variational approximation /(∙) to the true 

subject-specific posterior density $(∙). Furthermore, $("'|)) is the posterior model 

probability. More technically, BMA allows to marginalize over models – that is, average out 

any dependency of the parameter estimates on the assumptions about any particular model. 

BMA provides access to the full posterior density on model parameters, from which MAP 

estimates can be harvested for subsequent machine learning steps (e.g., classification). 
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In line with standard procedures, BMA parameter estimates in the present paper were computed 

by averaging across all models in our model space within SPM12’s default Occam’s window 

(5677 = 0.05). This means that models with a low posterior model probability in relation to the 

most likely model are excluded from the BMA estimation (Madigan and Raftery, 1994). This 

Occam’s window is chosen for computational expedience only. Importantly, in Eq. S.1, the 

BMA posterior depends on the entire dataset ) = 0;…=, including the left-out test participant 

in a subsequent leave-one-out cross-validation scheme. In order to prevent this cross-talk 

between training and test sample, BMA parameters were computed for each participant 

individually: 

$(&'|0'," ∈ #) = . /(&'|0'," ∈ #)$("'|0')

1∈2

 (S.2) 

yielding a BMA posterior that depends only on the data 0' from the respective participant (see 

Supplementary Figure S2). 

 

Supplementary Material S5: Support vector machine implementation in fitcsvm 

In the present paper, binary classification was performed using a linear support vector machine 

(SVM) as implemented in the fitcsvm routine in Matlab. For the non-separable case (i.e., 

whenever the training data is not perfectly separable), also called soft-margin SVM, the 

mathematical formulation of the SVM takes the form: 

min
A,B,C

D
1

2
GHG + J.KL

L

M 								s. t.				0LQRL
HG + ST ≥ 1 − KL				and				KL ≥ 0 (S.3) 

where G is the weight vector S is the bias, and KL is the j-th slack variable, which causes a 

penalty weighted by the parameter J. Hence, J controls the maximum penalty imposed on 

margin-violating observations and larger values lead to a stricter separation. In the machine 

learning literature, J is typically referred to as the “cost” parameter of the SVM (Hastie et al., 

2009); in fitcsvm, the parameter is referred to as the “box constraint”. The reason for this name 

is that in the formulation of the dual optimization problem, the Lagrange multipliers are 

bounded to be within the range [0, J]. Hence, J poses a box constraint on the Lagrange 

multipliers.  

In addition to the box constraint, fitcsvm routinely optimizes another hyperparameter that can 

impact the performance of the classifier: the kernel scale. All elements of the predictor matrix 
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are divided by the kernel scale before the linear kernel norm is applied to compute the Gram 

matrix. 

 

Supplementary Material S6: BOLD activity during perception of emotional faces 

Face-sensitive activity was assessed by means of a random effects group analysis (Friston et 

al., 1995) yielding brain regions that responded more strongly to faces than to scrambled images 

(p<0.05, family-wise error (FWE)-corrected at the peak level). In line with previous literature 

(Haxby et al., 2000), we found face-sensitive BOLD activity to be primarily located within the 

inferior occipital lobe and the fusiform gyrus in both hemispheres, referring to OFA and FFA, 

respectively (Supplementary Figure S3 and Supplementary Table S1). We also observed 

pronounced activity to faces in the left and right amygdala, a key region involved in emotion 

processing (e.g., Adolphs, 2002; Murray, 2007; Duvarci and Pare, 2014; Janak and Tye, 2015). 

Additionally, face-sensitive activation was observed in several other regions (see 

Supplementary Table S1), including the inferior frontal gyrus. 

 

Supplementary Material S7: Effective connectivity analysis 

Sanity check: Accuracy of model fits 

Effective connectivity among the regions of the extended face perception network was assessed 

using DCM for fMRI (Friston et al., 2003). We here focused on effective connectivity among 

OFA, FFA and amygdala (each in both hemispheres) given their well-established role as the 

core network mediating the perception of emotional faces (Haxby et al., 2000). Prior to 

harvesting the inferred connectivity parameters for group comparisons (see below) and 

classification analyses (see main text), we verified that the DCMs accounted for a reasonable 

amount of variance in the empirical fMRI data and that no group differences in the quality of 

model fit were present. To this end, we computed for each model in every participant the 

Pearson correlation between the predicted and measured time series of the entire BOLD signal 

– that is, collapsed across all regions of interest (Supplementary Figure S4A). The correlation 

coefficient ranged on average from r=0.32 (p<0.001) for model 7 (i.e., no modulation) to r=0.51 

(p<0.001) for model 3 (i.e., modulation on all intra- and interhemispheric connections), which 

was the model with the highest negative free energy in most participants. Note that correlation 

coefficients were Fisher z-transformed to assess statistical significance. This suggests that the 

DCMs captured – at least to some degree – the characteristics of the empirical fMRI data and 
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did not produce “flat-lines” without notable deviations of the posterior from the prior. 

Importantly, we did not find evidence for pronounced differences in the accuracy of the model 

fit across patient subgroups (one-way between-subject ANOVA with the factor group; all 

F(2,82)<0.82, p>0.45). 

 

Effective connectivity patterns 

Random-effects Bayesian model selection (Stephan et al., 2009; Rigoux et al., 2014) suggested 

model 3 to be the winning model at the group level with an expected posterior probability of 

0.49 and a protected exceedance probability close to 1 (Supplementary Figure S4B). 

Nevertheless, at the single-subject level, other models received non-negligible posterior mass 

as well. To account for this variability, individual connectivity parameters were estimated using 

Bayesian model averaging (BMA; Penny et al., 2010) over all seven models in the model space 

within the default Occam’s window (5677 = 0.05). Importantly, to avoid cross talk between 

training and test sample in the leave-one-out cross validation procedure (see Supplementary 

Material S2), average posterior densities were computed for each participant individually. 

Individual BMA parameter estimates entered into summary statistics at the group level (one-

sample t-tests, FDR-corrected for multiple comparisons). Supplementary Figure S5 

summarizes the group-level effective connectivity patterns (averaged across all patient 

subgroups). In brief, we found excitatory driving inputs by the presentation of faces (regardless 

of the emotional valence) to the left and right OFA, consistent with its role as an early face-

sensitive region in the brain (Puce et al., 1996; Rossion et al., 2012). Additionally, we observed 

excitatory intrahemispheric forward connections from OFA to FFA and from FFA to the 

amygdala, in both hemispheres. We also observed pronounced interhemispheric connectivity 

from left to right FFA, as well as from right to left FFA and from left to right OFA (although 

the latter two did not survive multiple comparisons correction).  

With regard to modulatory influences by the emotional valence of the faces, we found several 

endogenous connections to show a significant modulation (see Supplementary Figure S5). In 

brief, modulatory effects of emotional valence were primarily observed for the feedforward 

intrahemispheric connections both between OFA and FFA, as well as between FFA and 

amygdala. This is consistent with previous work on effective connectivity within the face 

perception network (Fairhall and Ishai, 2007). In contrast, almost none of the feedback 

intrahemispheric connections was modulated by emotional valence; the only notable exception 

being the inhibitory modulation of the connection from right amygdala to right FFA by sad 
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faces. Additionally, emotional valence modulated interhemispheric connections at the 

hierarchical level of the FFA (although this was significant only at an uncorrected threshold).  

In summary, the effective connectivity patterns were rather consistent with previous findings 

of functional integration in the (extended) face perception network. 

 

Group differences in effective connectivity 

In a next step, we tested whether there are significant differences in the effective connectivity 

patterns across the different patient subgroups (two-sample t-tests). However, under appropriate 

multiple comparisons correction based on the false discovery rate (Benjamini and Yekutieli, 

2001), no significant group differences were observed. At a more liberal threshold (p<0.05, 

uncorrected), some differences between the MDD subgroups were observed (see 

Supplementary Figure S6). In brief, effective connectivity patterns differed mainly in how 

emotions modulated functional integration among the face-processing (i.e., bilateral OFA and 

FFA) and emotion-sensitive regions (i.e., bilateral amygdala). More specifically, patients with 

a chronic disease trajectory differed from patients with gradual improvement of symptoms in 

the inhibitory self-connection of the left amygdala (p=0.005), in the modulatory influence of 

happy faces on the connection from right amygdala to right FFA (p=0.02), in the modulatory 

influence of angry faces on the connection from right to left amygdala (p=0.03) and left OFA 

to left FFA (p=0.04), in the modulatory influence of fearful faces on the connection from right 

FFA to right amygdala (p=0.01) and right OFA to right FFA (p=0.003), as well as in the 

modulatory influence of sad faces on the connection from left to right amygdala (p=0.02) and 

right FFA to right amygdala (p=0.01). Furthermore, patients with a chronic disease trajectory 

differed from patients showing fast remission in the inhibitory self-connection of the left 

amygdala (p=0.04), in how fearful faces modulated the connection from right FFA to right 

amygdala (p=0.03) and right OFA to right FFA (p=0.02), as well as in how sad faces modulated 

the connection from left FFA to left amygdala (p=0.047). Finally, patients with a gradual 

improvement in symptom severity differed from patients showing fast remission in the 

modulatory influence of happy faces on the connections from left amygdala to left FFA 

(p=0.049) and right FFA to right OFA (p=0.03), in the modulatory influence of fearful faces on 

the connections from right to left amygdala (p=0.03) and from right OFA to right FFA (p=0.02), 

as well as in the modulatory influence of sad faces on the connection from left to right amygdala 

(p=0.008). 
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While – as highlighted above – none of these group differences survived multiple comparisons 

correction, our findings suggest that some (small) alterations in effective connectivity exist 

between chronic, gradually improving and fast remitting patients, which might enable 

classification when jointly considering all DCM parameters as input features. 

 

Supplementary Material S8: Classification of clinical trajectories accounting for age 

Since the three MDD groups (i.e., REM, IMP, and CHR) differed significantly in age (but no 

other variable; see Table 1 in the main text), we repeated the classification analysis when 

regressing out age as a confound from the DCM parameters.  

Again, we found that DCM parameter estimates discriminate patients with a chronic disease 

trajectory from those showing fast remission with a balanced accuracy of 72% (p=0.001; 

Supplementary Figure S7, blue), corresponding to an area under the curve (AUC) of 0.83 

(Supplementary Table S2). Furthermore, effective connectivity parameters discriminated 

between patients that showed gradual improvement of depressive symptoms and patients with 

fast remission with a balanced accuracy of 60% (p=0.04; Supplementary Figure S7). Again, 

this did not survive multiple comparisons correction (αBonf=0.0056). The AUC was 0.66 

(Supplementary Table S2). In contrast, chronic patients could not be differentiated from 

gradually improving patients above-chance level (balanced accuracy: 50%, p=0.63; 

Supplementary Figure S7), corresponding to an AUC of 0.28 (Supplementary Table S2). 

As in the main text, we compared the GE results to measures of functional connectivity and 

local BOLD activity. First, we found that functional connectivity measures did not discriminate 

between any of the clinical trajectories above chance, with balanced accuracies of 49% for CHR 

vs. REM patients, 52% for CHR vs. IMP patients, and 49% for IMP vs. REM patients (all p > 

0.05; Supplementary Figure S7, light grey). Similarly, estimates of local BOLD activity did not 

distinguish the different clinical trajectories, with balanced accuracies of 47% for CHR vs. 

REM patients, 47% for CHR vs. IMP patients, and 54% for IMP vs. REM patients (all p > 0.05; 

Supplementary Figure S7, dark grey).  

Again, for discriminating patients with a chronic disease trajectory from those showing fast 

remission, GE significantly outperformed functional connectivity (p=0.02) and local BOLD 

activity measures (p=0.01). 

In summary, the classification results obtained when accounting for age as a confounding 

variable are highly consistent to the ones reported in the main text – although balanced 
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accuracies were slightly decreased. This suggests that classification was not simply caused by 

group difference in age. 
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Figures 

Supplementary Figure S1 

 

Supplementary Figure S1: Individual locations of the regions of interest, given by the center 

coordinates of the spheres. Individual center coordinates were given as the nearest local 

maximum close to the MNI coordinates provided by Neurosynth (see Methods) with a 12mm 

sphere. Location of individual center coordinates were visualized using the BrainNet Viewer 

(Xia et al., 2013), publicly available for download (http://www.nitrc.org/projects/bnv/). 

Homotopic regions in the left and the right hemisphere are shown in the same color. L = left 

hemisphere; R = right hemisphere; A = anterior; P = posterior.  
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Supplementary Figure S2 

 

Supplementary Figure S2: Schematic illustration of the generative embedding workflow 

utilized in the present study to ensure unbiased classification estimates. sMRI = structural 

magnetic resonance imaging; fMRI = functional magnetic resonance imaging; GLM = general 

linear model; DCM = dynamic causal model.  
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Supplementary Figure S3 

 

Supplementary Figure S3: BOLD activity during perception of faces across all clinical groups 

(N=85). Activation pattern shows regions that were more activated during the perception of 

faces (regardless of the emotional valence) compared to scrambled faces. Top: Thresholded 

activation patterns were displayed on an anatomical template volume (p<0.05; family-wise 

error (FWE)-corrected at the peak level and a minimal cluster size of 5 voxels). Bottom: 

Unthresholded activation patterns displayed on a flat map of the cerebral cortex. Results were 

visualized using the Human Connectome Workbench (https://www.humanconnectome.org), 

and its predecessor Caret (http://brainvis.wustl.edu/wiki/index.php/Caret:About). L = left 

hemisphere, R = right hemisphere. 
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Supplementary Figure S4 

 

Supplementary Figure S4: (A) Accuracy of model fit of the different DCMs for the face 

perception dataset from the NESDA study. Shown is the correlation between the measured and 

predicted time series across the entire BOLD signal (i.e., collapsed across all regions of 

interest). The small red circles represent the individual participants, whereas the black circle 

indicates the average across all participants. (B) Random-effects Bayesian model selection 

(BMS) results, illustrating (left) the expected posterior probability and (right) the protected 

exceedance probability. 
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Supplementary Figure S5 

 

Supplementary Figure S5: Group-level effective connectivity patterns (averaged across all 

patient subgroups). Significance of all group-level endogenous, modulatory and driving input 

parameters was assessed using one-sample t-tests based on the individual BMA parameter 

estimates of all 85 participants. Green arrows represent excitatory influences, whereas red 

arrows indicate inhibitory influences. Significant (FDR-corrected for multiple comparisons) 

parameters are shown in full color, parameters significant at an uncorrected threshold (p<0.05) 

are shown in faded colors. Furthermore, endogenous parameters that were not significant even 

at an uncorrected threshold are displayed in faded grey. lAmy = left amygdala, rAmy = right 

amygdala, lFFA = left fusiform face area, rFFA = right fusiform face area, lOFA = left occipital 

face area, rOFA = right occipital face area.  
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Supplementary Figure S6 

 

Supplementary Figure S6: Differences in the effective connectivity patterns between the 

different MDD patient subgroups with distinct disease trajectories. Significance of group 

differences of all endogenous, modulatory and driving input parameters was assessed using 

two-sample t-tests. No significant group differences were observed when correcting for 

multiple comparisons (FDR-correction), but only at an uncorrected threshold (p<0.05). (Left) 

Blue arrows indicate parameters that were higher in CHR patients compared to REM patients. 

Red arrows indicate parameters that were higher in REM patients compared to CHR patients. 

(Middle) Blue arrows indicate parameters that were higher in CHR patients compared to IMP 

patients. Red arrows indicate parameters that were higher in IMP patients compared to CHR 

patients. (Right) Blue arrows indicate parameters that were higher in IMP patients compared to 

REM patients. Red arrows indicate parameters that were higher in REM patients compared to 

IMP patients. lAmy = left amygdala, rAmy = right amygdala, lFFA = left fusiform face area, 

rFFA = right fusiform face area, lOFA = left occipital face area, rOFA = right occipital face 

area, CHR = chronic disease trajectory, IMP = gradual improvement of symptom severity, REM 

= fast remission. 
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Supplementary Figure S7 

 

Supplementary Figure S7: Balanced accuracy for the binary classifiers as assessed using 

leave-one-out cross validation for the three different subgroup comparisons – that is, CHR vs. 

REM (left), CHR vs. IMP (middle), and IMP vs. REM (right) – when accounting for age as a 

confound. Balanced accuracies are shown for the different features – namely, effective 

connectivity parameters (DCM; blue), functional connectivity (FC; light grey), and local BOLD 

activity (CI, dark grey). Asterisks above the bars indicate significant classification performance 

as assessed by means of permutation tests where an empirical null distribution of the balanced 

accuracy is computed by randomly permuting the participant labels and re-evaluating the 

classifier based on these new labels. Additionally, asterisks above the lines connecting two bars 

indicate significant differences in classification performance between different data features as 

assessed using the asymptotic McNemar test. 
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Tables 

Supplementary Table S1: MNI coordinates, cluster sizes and T scores for face-sensitivity 

activations (all faces > scrambled images). Shown are brain regions where activation is greater 

during the perception of faces (regardless of the emotional valence) as compared to the 

perception of scrambled images. Results are thresholded at a voxel-level threshold of p<0.05, 

FWE-corrected and a minimal cluster size of 5 voxels. Anatomical localization of the BOLD 

activations was performed using the Anatomy toolbox extension (Eickhoff et al., 2005). 

Cortical region Hemisphere 
MNI coordinates 

Cluster size T-score 
x y z 

Faces > scrambled   

 Amygdala (Amy) R 20 -8 -16 642 11.69 

 Amygdala (Amy) L -20 -6 -16 396 10.50 

 Fusiform gyrus (FFA) R 40 -52 -20 1097 10.50 

 Inferior occipital (OFA) R 46 -80 -8  7.70 

 Fusiform gyrus (FFA)  L -40 -48 -22 343 9.41 

 Inferior frontal gyrus R 50 28 16 148 7.77 

 Inferior frontal gyrus R 28 34 -12 23 6.14 

 Precentral gyrus R 44 2 30 34 6.01 

 Inferior occipital (OFA) L -44 -82 -6 5 5.91 

 Superior medial gyrus R 8 60 14 12 5.87 

 Medial occipitotemporal gyrus L -22 -94 -18 6 5.65 

 Inferior occipital L -38 -84 -16 11 5.56 
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Supplementary Table S2: Classification results for the generative embedding procedure when 

regressing out age as a confound from the DCM parameters. Shown are key performance 

measures of the classification algorithm, including: balanced accuracy, area under the curve, 

sensitivity (recall), specificity, positive predictive value (precision), and negative predictive 

value. Performance measures are shown for the three different binary classifications (i.e., CHR 

vs. REM, CHR vs. IMP, and IMP vs. REM).  

Classification 
CHR (n=15)  

vs. REM (n=39) 
CHR (n=15)  

vs. IMP (n=31) 
IMP (n=31) vs. 
 REM (n=39) 

 Accuracy 0.83 0.67 0.61 

 Balanced accuracy 0.72 0.50 0.60 

 Area under the curve (AUC) 0.83 0.28 0.66 

 Sensitivity (recall) 0.97 1.00 0.74 

 Specificity 0.47 0 0.45 

 Positive predictive value (Precision) 0.83 0.67 0.63 

 Negative predictive value 0.88 0 0.58 
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