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Abstract 
 
Background and Objective: Paralytic Ileus (PI) is the pseudo-obstruction of the intestine 
secondary to intestinal muscle paralysis. PI is caused by several reasons such as overuse of 
medications, spinal injuries, inflammation, abdominal surgery, etc. We have developed an early 
mortality prediction framework that can help intensivist, surgeons and other medical 
professionals to optimize clinical management for PI patients in terms of optimal treatment 
strategy and resource planning. 
 
Methods: We used publicly available ICU database called MIMIC III v1.4, extracted patients 
that had paralytic ileus as primary diagnosis over the age of 18 years old. We developed FLAIM 
Framework a two-phase model (Phase I: Statistical testing and Phase II: Machine Learning 
application) that was compare to traditional methods of machine learning. We used five different 
machine learning algorithms to test the validity of our Framework. We evaluated the 
effectiveness of the proposed framework by comparing accuracy, sensitivity, specificity, 
Receiver Operating Characteristic (ROC) curves, and area under the curve (AUC) for each 
model. 
 
Results: The highest improvement in AUC of 7.78% was observed due to application of the 
proposed FLAIM method. Additionally, almost for all the machine learning models, 
improvement in accuracy was also observed. With the FLAIM framework, we recorded an 
accuracy of 81.30% and AUC of 81.38% under support vector machine (with RBF kernel) model 
in predicting mortality during a hospital stay for the PI patients 
 
Discussion: Our results show promising clinical outcome prediction and application for 
individual patients admitted to the ICU with paralytic ileus after the first 24 hours of admission. 
 
Key Words: Paralytic Ileus, mortality prediction, machine learning, MIMIC III 
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1. Introduction and Background 
 
Paralytic ileus (PI) or intestinal pseudo-obstruction is a rare disorder of the intestine which is 
characterized by the paralysis of the intestinal peristalsis without any machinal cause. This leads 
to an impaired movement of food or fecal matter along the gastrointestinal tract [1]. Diagnosis is 
made clinically and it can present with symptoms like abdominal bloating, pain, nausea, 
vomiting and constipation as initially described by Dudley et al [2]. PI is caused by either 
primary or idiopathic dysfunction of gastrointestinal motility (acquired or inherited mutations) 
[3]. Additionally, it could be due to abdominal and/or pelvic surgery [4], systemic lupus 
erythematosus [5], scleroderma [6], Parkinson’s disease [7], infections [8], medications like 
opioids and antidepressants [9], radiation to the abdomen [10] and malignancies lung cancer 
[11]. Unfortunately, paralytic ileus has a poor clinical outcome [12] and an early prediction could 
be helpful for care delivery. 
 

The mortality of patients with PI can be as high as 40% [13] in the ICU setting. Patients 
admitted to the intensive care are especially at risk of dying because of the seriousness of their 
condition. Some of these ICU may have additional risks associated when these patients undergo 
colonic decompression [14] and while providing bowel rest with reduced food intake [15]. With 
this in mind, it becomes important to have an approach that can predict the risk of mortality in 
these patients and help clinicians in making a decision faster and allocate adequate resources to 
these patients. 
 

The MIMIC-III (Medical Information Mart for Intensive Care III) database is a freely-
available, large database that has de-identified patient data associated with more than forty 
thousand patients that were admitted to the critical care units of the Beth Israel Deaconess 
Medical Center between 2001 and 2012 and developed by the Massachusetts Institute of 
Technology (MIT) [16]. This dataset has been used to predict mortality for multiple diseases  
[17]. In this paper, we utilized risk factors that are based on laboratory test results in order to 
predict mortality in PI patients. 
 

To obtain an optimal mortality risk prediction performance, we proposed an automated 
framework called FLAIM. The proposed FLAIM framework works in two phases. In the first 
phase, it uses Cox-regression (univariate and multivariate) and Kaplan-Meier analysis based 
statistical methods to find out a relevant (reduced) set of risk factors while the second phase 
explores the feasibility of different machine learning models which are used for classification 
purposes. Machine learning models are provided with some training data, the model learns a 
hypothesis i.e. a fitting function denoted by h(x) by optimizing error achieved on the training 
data. Thus, the model learns the behavior of the distribution of the data by analyzing the training 
data set. The model performance i.e. the performance of the learned hypothesis function is tested 
on the unseen testing data. The main objective is to construct such a model that would show 
better performance on the training data and would also generalize to unseen data i.e. the testing 
data. Hence, such a constructed model can be deployed in hospitals for predictions in future. 
 

In this paper, we have explored the hybridization of six different machine learning 
models with the above-mentioned statistical models that are utilized for evaluating most relevant 
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(reduced) set of risk factors. The machine learning models used for mortality prediction of PI 
patients include linear discriminant analysis (LDA), (GNB), Decision Tree (DT) model (also 
known as CART in literature), K nearest neighbors (KNN) and support vector machines (SVMs) 
with linear and radial basis functions (RBF). Linear Discriminant Analysis (LDA) is a method 
used in statistics, pattern recognition and machine learning (ML) to find a linear combination of 
features which characterizes or separates two or more classes of objects or events [18]. SVM has 
been used in bioinformatics fields for its excellent performance in classification by drawing a 
hyperplane [22] [23]. A hyperplane is a line that divides two classes where each labeled data lay 
on one side. To separate classes, there may be many possible hyperplanes that can differentiate 
instances, however, the goal is to find an optimal hyperplane that has a maximum margin or 
maximum distance from the data points of both classes [20,24]. When the samples are not 
separable then an error term is considered as cost function that leads to poor classification. 
Regularization methods are used to deal poor classification issues such as overfitting and 
underfitting. 
 

In addition to the classification models stated above, in FLAIM we have also used 
Decision Tree model. A decision tree has nodes (attributes) and edges which make a machine 
processable tree-like structure which helps to build a parseable logic that leads to a decision, 
where edges are the outcomes of the split to the next node. The root node performs the first split, 
whereas leaves, terminal nodes predict the outcome. Entropy and information gain are the 
mathematical methods that have been used for the splitting of nodes [25]. Another machine 
learning model used for mortality prediction of PI patients is GNB model. It uses Bayes theorem 
of probability for prediction of unknown class. Usually, three approaches have been used for 
classification in Naive Bayes. 1) Gaussian: It assumes that continuous features follow a normal 
distribution, 2) Multinomial: When features are discrete, 3) Bernoulli: When features are binary 
[26,27][28] is most frequently non-parametric methods used in data science. In kNN, (k) is the 
number of nearest neighbors where unknown instances or data-points are classified based on the 
nearest known instances in the feature space. The instances which are close to each other are 
more likely of the same class. Distance between instances is commonly measured using the 
Euclidean distance [29]. The principal of kNN during training is to store all data points then the 
prediction algorithm calculates the distance from new data-point (x) to all points in the data and 
finally assigns the instance to that class which has the shortest distance. 
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2 Methods 
 
2.1 Study Type: Retrospective investigation of clinical electronic health records  
2.2 Participants: The data was obtained from a publicly available database to researchers called 
MIMIC III. The was collected by many different intensive care units including surgical, trauma 
surgery, medical, coronary and cardiac surgery at Beth Israel Deaconess Medical Center 
(BIDMC), Boston, Massachusetts from 2001-2012. All patients’ records are completely 
anonymous, and all the data collected has received a prior Institutional Review Board (IRB) 
approval from BIDMC and Massachusetts Institute of Technology (MIT). The institutional IRB 
requirement was waived because the database is HIPAA-complaint deidentified and our study 
complies with the ethical standards set by the Helsinki declaration (1964) and its amendments  
[16]. This database contains clinical parameters from de-identified ICU admission patients to the 
above mentioned. 
 
We selected all patients using the ICD-9 code for paralytic ileus (560.1) [30] from all and 
extracted all the data from the rest of the datasets including initial labs, demographic 
information, ICU stay data, microbiological reports, and prescription information. We excluded 
calculated the age using the date of birth and date of admission and remove all patients that were 
under the age of 18 for this analysis. 
 
2.3 Testing methods: Initial labs for the first day of ICU admission were extracted from the data 
set using the MIMIC code available for public access repository on GitHub, which included 
hemoglobin, hematocrit, white blood cells, platelets, serum electrolytes (sodium, potassium, 
chloride, bicarbonate), blood urea nitrogen (BUN), creatinine, glucose, anion gap, lactate, 
bilirubin, albumin, prothrombin time (PT), partial-thromboplastin time (PTT) and international 
normalization ratio (INR). All of these labs were expressed as minimum and maximum values 
for each blood marker, we calculated the average and subdivided the values into either normal 
range and abnormal values. Reference ranges were used to calculate these values and can be seen 
in Table 2. 
 
2.4 Analysis: We have developed the FLAIM (Fahad-Liaqat-Ahmed Intensive Model) a 
machine learning framework for the early mortality risk prediction of patients with the PI 
disease. Our proposed framework works in two phases (Figure 1). 
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Figure 1. Consort diagram and the FLAIM Framework elaboration. 
 
This proposed hybrid model can be considered as a black-box that hybridizes the risk survival
statistical methods with machine learning-based predictive models. The first stage/phase is
significant as it improves the predictive capabilities of machine learning-based predictive models
(phase II) as well as reduces the time complexity of the predictive models by reducing the
number of risk factors that need to be processed by the machine learning models. 
 
Phase I: For the initial data extraction, we used PostgreSQL (version 11.2, www.postgresql.org)
and data analysis was done with IBM SPSS (version 24.0.0.0) [31] for demographic, univariate,
multivariate and Kaplan Meier curves for outcome assessment. A p-value of <0.05 was
considered statistically. Statistical analysis is carried out on all the variables, this includes
univariate and multivariate (covariates with age, gender, and ethnicity) cox-regression analysis
followed by Kaplan-Meier survival analysis (Figure 2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. FLAIM Phase I (statistics phase). once day is extracted from MIMIC-III database,

univariate, multivate Cox-regression analysis is done followed by a Kaplan Meier analysis to 
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generate two lists of risk factors i.e. full-risk-factors list (22 variables) and reduced-risk-factors 
list (15 variables) based on the statistics that were performed. 
 
The cox-regression analysis [32] gives us the hazard ratio for these risk factors which can be 
used in conjunction with the Kaplan-Meier analysis [33] to make a rank order list of these 
variables ranked from highest to lowest; two lists were generated full-risk-factors list (22 
variables) and reduced-risk-factors list (only statistically significant results were used, 15 
variables). The reduced set of risk factors that are obtained based on the statistical methods, they 
are supplied to different machine learning models for classification. The outcome of this phase 
can be viewed in Figure 3. 
 
Phase II: In this phase, different machine learning models are applied to risk factors that have 
been found significant in Phase I, and higher weight can be given to the variables/risk factors 
based on hazard ratios as shown in Table 3. During the second phase, the data (risk factors) is 
partitioned in two parts i.e., training and testing datasets (Figure 4). The training dataset with risk 
factors or feature vectors denoted by X_train along with the label information denoted by 
Y_train are supplied to the machine learning models. The machine learning models analyze the 
distribution of the training data and tries to learn a hypothesis function i.e., a fitting function that 
would represent the behavior or distribution of the whole dataset. In the next step, the 
performance of the trained or learned machine learning model is tested by considering the testing 
dataset. During the testing process, only feature vector or risk factors denoted by X_test is 
supplied to the trained or learned machine learning model, the model predicts the label based on 
the learned knowledge or rules from the training data. The predicted labels are compared with 
the true labels of samples of the testing dataset and based on the comparison, the prediction 
accuracy is evaluated.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. FLAIM Phase II machine learning 
 
3. Results 
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3.1 Participants: We used the complete list of risk factors (full list) and a selected list of risk 
factors (reduced list) (Table 3.) to predict outcome in the test-set using Linear Discriminant 
Analysis, Gaussian Naive Bayes, Decision Trees, K-Nearest neighbor and support vector 
machines (Supp 1.) In order to evaluate the effectiveness of the proposed method, we used the 
publicly available MIMIC III dataset. A total of 1021 patients’ data were extracted from the 
original dataset of the MIMIC III database that were diagnosed with PI. All the patients were 
above the age of 18 years of age at their first admission. The median age of patients was 63.2 
years, most of the people that were admitted to the ICU were women (63.8%) and mostly 
Caucasian (74%) from all the ethnic groups. These patients had a median stay of 14.5 ± 16.2 
days of hospital stay and 4.2 ± 10.7 days of intensive care stay. Emergency admission comprised 
of most admission making 76.7% of all patients that were admitted to the ICU while most 
admissions came through referrals around 490 patients (48%). Mortality among these patients 
was 16.8% (173), while 441 (43.2%) were transferred out to different health facilities and 407 
(40%) patients were discharged home. All of this can be seen in Table 1.  
 

Demographics   
  Median ± SD Range 
Age  63.2 ± 15.4 years 19-89 years 
Hospital stay (days)  14.5 ± 16.2 days 0-133 days 
ICU stay (days)  4.2 ± 10.7 days 0.03-57.4 days 
  n % 
Gender Male 370 36.2 
 Female 651 63.8 
ICU type on admission CCU 60 5.9 
 CSRU 125 12.2 
 MICU 452 44.3 
 SICU 215 21.1 
 TSICU 153 15 
Admission Type Elective 238 23.3 
 Emergency 783 76.7 
Admission Location Referrals 490 48 
 Transfers 197 19.3 
 ER admissions 334 32.7 
Discharge to Health care facility 441 43.2 
 Home 407 40 
 Dead 173 16.8 
Ethnicity African American 93 9.1 
 Asian 28 2.7 
 Hispanic 31 3 
 Others 29 2.8 
 Unknown 84 8.2 
 Caucasian 756 74   
Table 1. Patient demographics 
 
The univariate analysis showed that patients with abnormal blood levels for sodium, potassium, 
bicarbonate, BUN, creatinine, glucose, anion gap, lactate, bilirubin, platelets, PT, PTT, and INR 
had worse survival than those that had normal ranges of these blood related risk factors or 
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biomarkers. The multivariate analysis was also done so that we normalize these findings for age, 
gender and ethnicity and all these markers were still significant (Table 2.) 
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Labs  Reference ranges Units n (abnormal levels) %  Univariate   Multivariate  
      p-value HR 95%CI p-value HR 95%CI 

Chemistry Sodium 135-145 mEq/L 269 26.3 0.041* 1.39 1.02-1.89 0.008* 1.39 1.02-1.89 

 Potassium 3.5-5.5 mmol/L 120 11.8 0.025* 1.65 1.09-2.49 0.005* 1.67 1.11-2.53 

 Chloride 97-107 mEq/L 430 42.1 0.993 1.00 0.74-1.35 - - - 

 Bicarbonate 23-29 mEq/L 524 51.3 0.001* 1.69 1.22-2.33 <0.001* 1.73 1.25-2.39 

 Blood urea nitrogen 7-20 mg/dL 543 53.2 <0.001* 3.67 2.45-5.51 <0.001* 2.38 2.38-5.39 

 Creatinine 0.6-1.2 mg/dL 490 48 <0.001* 2.11 1.53-2.93 <0.001* 2.34 1.61-3.11 

 Glucose 72-99 mg/dL 895 87.7 0.014* 0.59 0.39-0.88 0.002* 0.53 0.35-0.80 

 Anion Gap 8-16 mEq/L 246 24.1 <0.001* 2.71 2.01-3.65 <0.001* 2.77 2.04-3.76 

 Lactate 0.5-1.0 mmol/L 675 66.1 0.003* 2.72 1.30-5.82 0.008* 2.63 1.22-5.65 

 Bilirubin 0.1-1.2 mg/dL 234 59 0.000* 1.81 1.31-2.53 <0.001* 1.93 1.38-2.71 

Hematological Hematocrit 37-52 % 847 83 0.696 0.92 0.60-1.41 - - - 

 Hemoglobin 13.5-15.5 g/dL 940 92 0.931 1.03 0.51-2.10 - - - 

 WBC 4.5-11 1000 cells/mL 585 57.3 0.066 1.34 0.98-1.85 - - - 

 Platelets 150-350 1000 cells/mL 417 40.8 0.007* 1.52 1.12-2.07 0.001* 1.64 1.20-2.23 

Bleeding profile PTT 25-35 Seconds 467 45.7 0.002* 1.65 1.20-2.28 0.003* 2.63 1.20-2.28 

 PT 11-13.5 Seconds 645 63.2 <0.001* 2.55 1.62-4.04 <0.001* 1.66 1.67-4.16 

 INR 0.8-1.1  726 71.1 0.020* 1.79 1.1-2.92 0.009* 1.81 1.11-2.95 

Albumin  3.5-5.5 g/dL 398 39 0.386 0.80 0.50-1.30 - - - 
 

Table 2. All the variables that were used in these analyses and the reference ranges we used as cut-off points to distinguish between 
normal and abnormal levels. Also show the univariate and multivariate analysis of these serum markers with their confidence intervals. * = 
significant (p-value <0.05). WBC = white blood cells, PTT = Partial Thromboplastin Time, PT = Prothrombin and INR = International 
Normalization Ratio. 
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3.2 Analysis Participants: Kaplan-Meier survival analysis of these blood markers revealed that
at the first 24 hours of ICU admission labs show a relationship between better overall survival
during these patient’s hospital stay. The largest difference between median patient survival was
seen with abnormal vs normal anion gap (37 vs 129 days(d)) a difference of 92 days. Serum
abnormal vs normal bicarbonate (55d vs 129d), PT (55 vs median not reached (MNR)), BUN
(51d vs MNR), bilirubin (37d vs 67d), creatinine (57d vs 78d), PTT (54d vs 67d) and platelets
(55d vs 66d) were also significant (Table 2, Figure 4 and Figure 5). Showing abnormalities of
these markers lead to worse patient survival during their hospital stay in these patients. 
 
These results were used to make an ordered list of risk factors that affect patient outcomes from
most to least as described in table 3. We used previously established machine learning
algorithms as shown in supplemental 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Left ROC curve is of conventional SVM RBF and right ROC curve is that of SVM

RBF model developed under FLAIM architecture. 
 
Subsequently, we used two third (2/3) i.e., n=684 samples for training the machine learning
models while one third of the dataset (n=337) for testing purposes. The results for each machine
learning model is presented in Table 3. Our assessment of the algorithm was based on testing set
accuracy sensitivity, specificity and area under the ROC curve (AUC) to assess for the best
algorithm. As in machine learning, the quality of output of a model is judged by AUC, hence, we
utilize the AUC and accuracy as the primary evaluation metrics for selecting optimal model
under the proposed FLAIM architecture. Our best algorithm SVM RBF on reduced risk factors
yielded highest AUC of 81.38%, testing accuracy of 81.30%, training accuracy of 83.18%,
sensitivity of 35.59%, a specificity of 91%. The second-best algorithm was LDA with AUC of
82.02%, testing accuracy of 70.32%, training accuracy of 69.59%, sensitivity of 83%, a
specificity of 58% using the reduced set of risk factors. 
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LDA (Baseline) 0.774 85.53 84.57 83 58 

    
 

LDA (Proposed) 0.817 84.94 84.87 90 63 

    
 

GNB (Baseline) 0.737 77.92 76.86 90 63 

    
 

GNB (Proposed) 0.798 76.75 78.64 84 62 

    
 

Decision Tree (Baseline) 0.554 100 74.48 24 87 

    
 

Decision Tree (Proposed) 0.626 98.09 75.67 40 86 

    
 

KNN (Baseline) 0.752 85.97 83.09 78 34 

    
 

KNN (Proposed) 0.790 85.97 85.46 83 65 

    
 

SVM (Lin) (Baseline) 0.636 83.33 82.49 59 60 

    
 

SVM (Lin) (Proposed) 0.810 84.65 83.38 90 63 

    
 

SVM (RBF) Model (Baseline) 0.673 83.33 82.49 80 38 

    
 

SVM (RBF) Model (Proposed) 0.810 84.65 83.38 90 63 

    
  

Table 3. Performance of different machine learning models on the current dataset. LDA = linear 
discriminant analysis, GNB = gaussian naive bayes, KNN = k-nearest neighbor, SVM = support 
vector machine, Lin = linear and RBF = radial basis functions. 

  
5. Discussion 

 
Paralytic ileus although a rare but a morbid and fatal condition [34] and almost 16.8% mortality 
to all patients that were admitted to the ICU in our patient population. For that reason, it becomes 
important to identify patients that may be at risk of dying during their ICU stay. Out dataset 
revealed that the majority of admitted patients are elderly individuals with a median age of 63 
years [34–36]. In this cohort of patients, we observed labs which were performed in the first 24 
hours to predict overall survival. The best predictors of patient survival were serum anion gap 
(37d vs 129d), bicarbonate (55d vs 129d), PT (55d vs MNR), BUN (51d vs MNR), bilirubin (37d 
vs 67d), creatinine (57d vs 78d), PTT (54d vs 67d) and platelets (55d vs 66d). While other labs 
like serum chloride, hematocrit, hemoglobin, white blood cells, and albumin were non-
significant. The abnormal initial anion gap is associated with adverse outcomes in admitted to 
the ICU [37] which is also seen in the study as well. Similarly, abnormal potassium[38] 
bicarbonate [39] , BUN [40] , bilirubin [41], creatinine [42], platelets [43]. Abnormal 
coagulation studies in a patient with sepsis have shown worse outcomes in ICU patients. We 
considered patients with age > years along with their demographic information such as gender 
and ethnicity and prepared a final list of all risk factors and further ranked them according to 
their severity (Table 3). 

 
In order to validate the effectiveness of the proposed hybrid model, we developed two 

types of experiments. In the first experiment, we utilized the conventional machine learning 
models such as LDA, GNB, DT, KNN, and SVM as baseline using full set of risk factors. In the 
second experiment, the same machine learning models were hybridized with the statistical 
models using the proposed FLAIM method (see Figure 1). The main objective of developing two 
different types of experimental settings was to validate the fact that the proposed hybrid method 
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is capable of reducing the complexity of machine learning models as well as enhancing their 
predictive performance. The performance comparison or evaluation of the two experiments were 
carried out from two aspects i.e. using mortality prediction accuracy and ROC curve to yield 
AUC. Both the accuracy and AUC are well used metrics to evaluate a model performance. 
Therefore, these two-evaluation metrics were exploited for comparison of the proposed methods 
with baseline methods. 
 

From Table 3, the improvement in AUC of conventional machine learning (baseline) 
models can be observed. The baseline models and their AUC have been reported in red and the 
AUC for the corresponding proposed or developed methods (under FLAIM architecture) have 
been reported in green color. It can be seen that the optimal performance is obtained with SVM 
RBF model as it yields accuracy rate of 81.30% and AUC of 81.38% which is better compared to 
the other baseline and proposed methods. Additionally, the constructed model has another 
benefit of lower complexity i.e., it uses reduced set of risk factors. This means if we provide risk 
factors (serum lactate, BUN, PT, anion gap, creatinine, INR, bilirubin, potassium, PTT, 
bicarbonate, platelets, sodium, glucose, Age more than 65 years and gender) the model will 
correctly predict ~81% of the time if the patient will die during their hospital stay or not. Other 
models that showed potential similar results but were less accurate than the optimal model, were 
LDA (reduced risk factors), DT (reduced risk factors) and SVM (Linear) with full risk factors 
and reduced set of risk factors. To effectiveness of the proposed SVM (RBF) under FLAIM 
architecture is validated by observing the AUCs in Figure 4 of conventional SVM (RBF) and the 
proposed version of SVM (RBF). The AUC of conventional SVM RBF is 78.89% while the 
AUC of the proposed SVM RBF is 81.38%, hence, the improvement of 2.49% can be observed. 
Similarly, the ROC charts for each model (conventional and proposed) are depicted in Figure 3 
(see supplementary section). For almost all the models, the improvement in AUCs can be 
observed due to application of the proposed FLAIM architecture. Hence, our proposed 
framework could potentially facilitate the critical care physicians in determining which patients 
are at the highest risk of mortality while their hospital stay and should be treated with more care. 
 

Our future direction is to develop a more sophisticated model that incorporates more 
clinical parameters and has a higher AUC and accuracy of predicting clinical outcome for 
paralytic ileus patients admitted to the intensive care unit. Further experiments are required to 
evaluate the performance of the proposed framework with different age groups in different 
clinical situations. 
 

 

6. Conclusion 
 
FLAIM is a statistically robust machine learning framework which is developed for clinical use 
to predict mortality risk in PI patients. The mortality prediction was modelled based on clinically 
relevant labs or risk factors that were collected from the PI patients during their first 24-hours of 
stay in the intensive care unit. Experimental results evidently show that the proposed method 
reduces the complexity of conventional learning models by effectively reducing the number of 
risk factors and also improves the predictive performance and output quality of conventional 
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machine learning models. From the simulation results, it can be safely concluded that the 
proposed method can also be expanded in the future to predict mortality and other risks 
associated with the ICU admitted patients for various diseases. 

 
Supplemental Figures and Table 

 
 

Unranked Full risk factors list   Rank Order Reduced Risk factors 
      

1 Lactate 16 Ethnicity 1 Lactate 
      

2 Blood urea nitrogen 17 Length of stay in the ICU 2 BUN 
      

3 PT 18 Age more the 65 years 3 PT 
      

4 Anion Gap 19 Hematocrit 4 Anion Gap 
      

5 Creatinine 20 Hemoglobin 5 Creatinine 
      

6 INR 21 White blood cells 6 INR 
      

7 Bilirubin 22 Albumin 7 Bilirubin 
      

8 Potassium   8 Potassium 
      

9 PTT   9 PTT 
      

10 Bicarbonate   10 Bicarbonate 
      

11 Platelets   11 Platelets 
      

12 Sodium   12 Sodium 
      

13 Glucose   13 Glucose 
      

14 Age   14 Age more than 65 years 
      

15 Gender   15 Gender 
      

 
Supplemental Table 1. Risk factors list. 1 to 22 (full list of risk factors) and 1 to 15 

(Reduced list of risk factors) 
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d)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e) 
 
Supplemental Figure 4. a) Left ROC: LDA Conventional Model (Baseline model), Right ROC: LDA  
Proposed. Improvement in AUC due to application of FLAIM architecture = 4.36%. b) Left ROC: GNB  
Conventional Model (Baseline model), Right ROC: GNB Proposed. Improvement in AUC due to  
application of FLAIM architecture = 5.96%. c) Left ROC: DT Conventional Model (Baseline model),  
Right ROC: DT Proposed. Improvement in AUC due to application of FLAIM architecture = 7.78%. d)  
Left ROC: KNN Conventional Model (Baseline model), Right ROC: KNN Proposed. Improvement in  
AUC due to application of FLAIM architecture = 1.41%. e) Left ROC: SVM (Lin) Conventional Model
(Baseline model), Right ROC: SVM (Lin) Proposed. Improvement in AUC due to application of FLAIM
architecture = 0.68%. 
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