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Abstract

Since the turn of the century, the global community has made great progress towards

the elimination of gambiense human African trypanosomiasis (HAT). Elimination

programs, primarily relying on screening and treatment campaigns, have also created a

rich database of HAT epidemiology. Mathematical models calibrated with these data

can help to fill remaining gaps in our understanding of HAT transmission dynamics,

including key operational research questions such as whether integrating vector control

with current intervention strategies is needed to achieve HAT elimination. Here we

explore, via an ensemble of models and simulation studies, which aspects of the

available data and level of data aggregation, such as separation by disease stage, would

be most useful for better understanding transmission dynamics and improving model

reliability in making future predictions of control and elimination strategies.

Author summary

Human African tryposonomiasis (HAT), also known as sleeping sickness, is a parasitic

disease with over 65 million people estimated to be living at risk of infection. Sleeping

sickness consists of two stages: the first one is relatively mild but the second stage is

usually fatal if untreated. The World Health Organization has targeted HAT for

elimination as a public health problem by 2020 and for elimination of transmission by

2030. Regular monitoring updates indicate that 2020 elimination goals are likely to be

achieved. This monitoring relies mainly on case report data that is collected through

medical-based control activities — the main strategy employed so far in HAT control.

This epidemiological data are also used to calibrate mathematical models that can be

used to analyse current interventions and provide projections of potential intensified

strategies.

We investigated the role of the type and level of aggregation of this HAT case data

on model calibrations and projections. We highlight that the lack of detailed

epidemiological information, such as missing stage of disease or truncated time series

data, impacts model recommendations for strategy choice: it can misrepresent the

underlying HAT epidemiology (for example, the ratio of stage 1 to stage 2 cases) and
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increase uncertainty in predictions. Consistently including new data from control

activities as well as enriching it through cross-sectional (e.g. demographic or

behavioural data) and geo-located data is likely to improve modelling accuracy to

support planning, monitoring and adapting HAT interventions.

Introduction 1

Human African trypanosomiasis (HAT) is a neglected tropical disease that affects 2

people in resource-limited settings in sub-Saharan Africa, with more than 65 million 3

people living at risk [1]. HAT is caused by a protozoan parasite and is transmitted 4

between humans by biting tsetse flies. The gambiense form of the disease, caused by 5

Trypanosoma brucei gambiense, is responsible for over 95% of human cases. This chronic 6

disease progresses through two stages. The first stage can last for several years with 7

relatively minor symptoms such as fever and headaches. Second stage patients show 8

neuropsychiatric disorders (including sleep disturbances that led to the common name, 9

sleeping sickness) and this stage is usually fatal without treatment. Currently available 10

treatments are stage-dependent and so assessment of a patient’s stage - by analysing the 11

cerebrospinal fluid for parasites and number of white blood cells - is a prerequisite for 12

appropriate treatment. 13

Since the start of the 21st Century, control activities against gambiense HAT have 14

had a substantial impact on reducing disease transmission and burden in the main 15

endemic regions [2]. These control efforts have raised expectations that elimination of 16

gambiense HAT may be achievable [1, 3]. The World Health Organization (WHO) has 17

therefore set indicators that target elimination of transmission (EOT) by 2030. 18

Although there were only 953 cases reported globally in 2018 [4], persistent foci of 19

disease transmission remain a potential challenge for achieving the EOT goal. The 20

Democratic Republic of Congo (DRC) has suffered from persistent infection, 21

contributing between 78–91% of all global cases since 2010 [4]. 22

Efforts to control HAT have mainly relied on screening, testing and treating the 23

human population using active and/or passive surveillance. This has been the only 24

intervention applied at large scale, and it seems likely that this is largely responsible for 25

the precipitous decline in global incidence, including a 97% reduction in HAT cases in 26
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the former Equateur province of DRC between 2000 and 2012 [5]. However, the screen, 27

diagnose and treat strategy has been unable to effectively control transmission to this 28

level in all endemic foci (e.g. some health zones of Kwilu province, DRC), probably due 29

to insufficient levels of coverage, imperfect diagnostics, or people at high risk of 30

transmission not participating in screening activities. 31

Where epidemiological and/or control campaign data of infectious diseases are 32

available, data-driven models have proved to be a valuable tool for quantitatively 33

assessing epidemiological assumptions about disease transmission dynamics or 34

evaluating the effectiveness of intervention measures [6–8]. For HAT, data arising from 35

several interventions implemented in recent years have enabled modelling and 36

quantitative analyses of the potential advantages of novel interventions in endemic 37

regions such as Kwilu and former Equateur province in DRC [9–11], Mandoul in 38

Southern Chad [12], and Boffa in Guinea [13]. Nonetheless, many epidemiological 39

aspects of HAT remain unclear, and additional data are needed to fill these knowledge 40

gaps. For example, the role of certain subpopulation groups in maintaining transmission 41

in endemic areas, such as those not covered by screening programmes or at unusually 42

high risk due to behavioral or geographical characteristics; or the potential existence of 43

reservoir animal hosts or asymptomatic human carriers is not fully understood [14]. 44

With the 2030 EOT goal on the horizon, it is crucial to determine which efforts in 45

which locations could maximise the potential benefits of any intervention against HAT. 46

Modelling could provide the HAT community with a better understanding of the 47

important factors affecting observed changes in intensity of disease reporting and 48

explain some of the variations in effectiveness of HAT control and surveillance activities 49

across different settings. 50

In this study we analyse a longitudinal human epidemiological data set of HAT from 51

former Bandundu province in the DRC to outline how the type of data and its level of 52

aggregation may affect projections of HAT transmission models. Four independent HAT 53

models, fitted to different data aggregation sets, are used to investigate how the level of 54

data aggregation impacts the projections of HAT incidence and likelihood of achieving 55

the EOT goal for current and intensified intervention strategies. Although the 2030 goal 56

is defined as EOT for the continent, and therefore meeting EOT within Bandundu is not 57

directly equivalent, failure to meet the goal in this high-endemicity region would imply 58
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failure to meet the global EOT target. Implications of data resolution on the estimated 59

effectiveness of strategy is analysed in order to suggest potential improvements in data 60

collection and availability that could contribute to robust assessment of control 61

programme effectiveness and reliable estimates of HAT elimination. 62

Materials and methods 63

Data description and assumptions 64

Former Bandundu province in the DRC has the world’s highest HAT burden despite a 65

significant coordinated effort between national and international HAT control 66

programmes [5]. This province covers an area of 296,500 km2 (12.6% of DRC) and 67

accounts for the largest number of cases reported since 2001 in the country 68

(approximately 47.6%). 69

In this study we used publicly available provincial level human case data from 70

Bandundu province [5] to calibrate models of HAT transmission. The data contains the 71

annual number of positive cases for each stage of the disease detected through active 72

screening and passive detection (the primary HAT control interventions implemented in 73

this area); and the total screened population across the province for the years 2000-2012. 74

Although the geographical scale of this province-level data is large, this data was chosen 75

because - to the authors’ knowledge - this is the only (either publicly or under-request) 76

available data providing details on the stage of reported cases for many consecutive 77

years. 78

Estimates of the population of Bandundu were taken from publicly available census 79

data [15] for 2000-2012 and a 3% annual growth rate was assumed for projections. 80

Although target populations are usually estimated prior to each active screening round, 81

this data was not publicly available and the target varies from year to year depending 82

on the health zones screened. To determine a consistent estimate over 13 years, each 83

model assumed a constant proportion of the population at risk over the entire period, 84

either fixed or estimated during model calibration (see details in S2 Text). 85
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HAT models 86

Four independent deterministic models of HAT transmission were used (hereafter 87

named as Model I, Model S, Model W and Model Y) to evaluate the effects of different 88

levels of data aggregation on forward projections. 89

All of them were based on models previously used in either simulation or data-driven 90

studies [9, 10,16–18] and include modifications, independently implemented by each 91

group, to improve calibration to the data analysed here. Differences in structural 92

assumptions (e.g. disease progression, heterogeneity in risk to infection) and 93

parameterisation reflect the variety of complexities and biological uncertainties typically 94

found in epidemiological models. Furthermore, a range of different fitting methodologies 95

were employed which also have implications on results. An overview of key aspects of 96

model structure, interventions and fitting procedure is given in Table 1 and more details 97

of each of the models can be found in S2 Text. 98
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Model fitting 99

The reported number of cases detected through active and passive screening and the 100

number of people tested were used to calibrate the models emulating the effects of a 101

typical medical control strategy. The data do not contain information on the timing and 102

duration of active screening, so each modelling group independently managed these 103

aspects (see Table 1). 104

The models were calibrated to three different configurations of the data to reflect the 105

diversity of data resolution usually available, allowing the analysis of the impact of data 106

detail on both uncertainty and reliability of model projections. The three configurations 107

were labelled: “unstaged data”, “staged data” and “subset staged data”. “Unstaged 108

data” informed the models using the number of HAT cases detected each year 109

(2000-2012), separated by active and passive detection. This type of longitudinal data - 110

where the disease stage is not noted - is typical of data available at smaller 111

administrative levels, such as health zones or health areas in DRC. “Staged data” 112

additionally partitioned the number of cases from the “unstaged data” by disease stage 113

(first or second). The “subset staged data” consisted of a temporal subset of the “staged 114

data”, covering only years 2000-2006. By cutting the data at this point, the 115

improvement observed after 2006 in the detection of stage 1 cases is not yet apparent, 116

and so we expected to see some effects of this in model estimations and projections. 117

Each group independently chose a calibration method adapted to their own model. 118

The list of fixed parameters used (either obtained from the literature or assumed) and 119

those estimated during the fitting are detailed in the description of each model in S2 120

Text. Fitting procedures included Bayesian inference using Markov Chain Monte Carlo 121

(MCMC) (Models I and W) and approximate Bayesian computation methods (Models S 122

and Y). In all cases, one thousand samples (i.e. parameter sets) were generated during 123

the fitting step for further estimations and projections. In all cases plots display the 124

median and associated 95% credible interval (CI). For further details on models’ 125

structure, assumptions and fitting procedure, see details in S2 Text. 126
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Simulated HAT interventions 127

Four interventions were considered for simulations. They consisted of three 128

medical-based interventions: “active screening”, “passive detection” and “enhanced 129

passive detection”; and “vector control”. A brief description of these interventions is 130

provided below. 131

• Active screening (AS). This is the screening of the population at large in 132

at-risk locations by mobile teams. Once detected, patients travel to medical 133

centres for treatment. In this study, the reported annual number of people 134

screened was used to estimate the mean active screening coverage. Models that 135

included population heterogeneity in exposure to tsetse (Models S and W) assume 136

that only low-risk people are screened actively. 137

• Passive detection (PD). This is the diagnosis and treatment of infected people 138

who self-present at medical facilities. HAT models usually assume that passive 139

surveillance detects mainly stage 2 cases, when symptoms are more severe and 140

specific to HAT. The data used in the present work reports a non-negligible 141

proportion of stage 1 cases detected through passive surveillance. For this reason, 142

both stages were assumed to have the potential to be detected in all models. 143

• Enhanced passive detection (EPD). This is passive screening where the time 144

to detection of infected people is reduced (i.e. improved detection rate per capita). 145

Such improvement could result from one or a combination of changes in current 146

control activities. For example, increasing the number of health facilities (thus 147

increasing the chances of picking cases), mobilising the population at risk or by 148

reducing the time to detection and treatment through improved HAT diagnostic 149

tools including rapid detection tests (RDTs). In DRC, RDTs have been used in 150

many endemic settings between 2013 and 2016 [19,20], although estimates of the 151

improvement on the associated detection rate have not yet been quantified. 152

• Vector control. This intervention focuses on increasing the mortality and 153

reducing the density of tsetse flies by, for example, deploying insecticidal baits 154

(e.g., insecticidal targets, insecticide-treated cattle) to attract and kill tsetse. In 155

particular, tiny targets [21] offer great promise for the large-scale and cost-effective 156
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control of the riverine tsetse species which transmit gambiense HAT [12,21–23]. 157

Tiny targets were first deployed in DRC in 2015, in Yasa Bonga health zone, and 158

they are currently being used in three health zones of former Bandundu province. 159

With these four interventions, three different strategies were investigated that reflect 160

either the current control and surveillance programmes or strengthened strategies to 161

accelerate the elimination of HAT. These are: 162

• Strategy 1: also referred to as “baseline”, this strategy represents the standard 163

control method in Bandundu consisting of continuing active screening and passive 164

detection at present rates. 165

• Strategy 2: consists of vector control in addition to the baseline strategy, as is 166

currently being implemented in Yasa-Bonga, Masi Manimba and Kwamouth 167

health zones of Bandundu. In the models, vector control was assumed to reduce 168

tsetse populations by 60% after one year, which is a conservative estimate from 169

intervention trials conducted in other HAT foci [12,21,22]. 170

• Strategy 3: assumes enhanced passive detection, in addition to the annual active 171

screening campaign. For this strategy, Models I and S doubled the passive 172

detection rate of both stages while models explicitly including underreporting 173

(Models W and Y) assumed both a doubled passive detection rate and halving of 174

underreporting. We also assumed that the treatment rate of detected cases 175

remained the same so that increased detection led to a corresponding increase in 176

the treatment rate. 177

The calibrated models were used to simulate the “future” effects of these three 178

strategies (Table 2) in order to compare, for each model, the effects of the different 179

types of data aggregation used for calibration, on projections and associated uncertainty 180

under different control strategies. In all cases the baseline strategy matched the period 181

corresponding to the data, and assumed a continuation of standard passive surveillance 182

and past mean active screening levels informed by the data for projections into the 183

future. 184

Model simulations estimated (i) annual stage-specific cases reported from both 185

active and passive screening; (ii) new transmissions by year; and (iii) year of EOT 186
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Table 2. Different types of future strategies considered in model
projections.

Strategy
Interventions

Passive Active Vector control
1 Standard Mean of historic data -
2 Standard Mean of historic data 60% reduction
3 Enhanced Mean of historic data -

(considering two thresholds: <1 new infection per 100,000 and <1 new infection per 187

1,000,000 individuals). 188

Results 189

Model fits 190

Reported cases 191

Fig 1 shows the data from 2000 to 2012 of the total reported HAT cases in Bandundu 192

and the calibrated simulations of the four models to three different data configurations 193

(median with the 95% credible interval (CI)) under the “baseline” control strategy. All 194

fits of all models consistently reproduced the decreasing trend observed in data. 195

However for most model fits, the 95% CI did not cover all the data points in time series, 196

as is often the case for peaky stage-specific data dominated by a decreasing trend (Fig 197

S1.1 in S1 Text). Models provided varying levels of uncertainty, mainly explained by 198

differences in fitting methods as well as model structure and parameterisations. Despite 199

all these differences, the fit to the longer, staged data set generated less uncertainty in 200

all four models, with worse and varying performance for the fits to the other data sets. 201

While for Model W the medians from the fit to staged data gave the lowest 202

estimation compared to the other two fits, for Model S this trend was the opposite for 203

most years. For Models I and Y such a clear trend was not observed among medians. 204

Proportion of stage 1 cases 205

The increasing trend in the proportion of stage 1 cases out of total reported cases across 206

years (Fig 2) indicates improved screening in Bandundu; this is observed in both active 207

and passive case data (S1 Fig and S2 Fig). Model fits not informed with staging ratios 208

produced the worst estimates of this proportion and the highest uncertainties (Fig 2), 209
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Fig 1. Former Bandundu province reported data and estimated reported
cases. Estimated reported cases from model calibrations to three different
configurations of the data for a baseline strategy composed of annual, pulsed active
screening and continuous passive detection. The median (as a point) and the
corresponding 95% CI (shaded region of the same color) are shown in each case. Dashed
lines indicate projections from the fit to the subset staged data.

reflecting a wide range of possible configurations of the proportion of stage 1 infections 210

compatible with such unstaged data either in active screening (S1 Fig), passive 211

detection (S2 Fig), or both. 212

The variety of assumptions in the models about intervention implementation, 213

including how annual active screening was applied (continuous vs. pulsed, one vs. 214

several per year) or which proportion of Bandundu province population was assumed to 215

be at risk of infection (Table 1), explain in part the variety of results in the proportion 216

of stage 1 cases for different fits. Model W fitted to the full staged data was the only 217

model that reproduced the increasing trend in active screening (S1 Fig); and only 218

Models S and W, which assumed an improvement in passive detection rate, reproduced 219

the increasing trend in passive detection, with systematic overestimation in Model S (S2 220

Fig). For these two models, it is clear how the fit to the subset staged data, where the 221

improvement in the passive detection is not yet apparent (contrary to the fit to the full 222
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Fig 2. Proportion of stage 1 cases. The estimates for the four models fitted to
three different configurations of the data under the baseline strategy are shown. The
posterior median is shown as a point and 95% CIs shaded. Dashed lines indicate
projections from the fit to the subset staged data.

staged data), conditions the models to project lower ratios of stage 1 to stage 2 cases 223

from 2007 onwards. 224

Projections for future case reporting and transmission 225

Model projections under all fits came to a consensus that continuing the baseline 226

medical strategy would lead to a sustained but slow reduction of the annual incidence; 227

however some simulations of Model S (86 out of 1000) fitted to unstaged data suggested 228

transmission would increase under baseline strategy (Figs A-D in S3 Text). The latter is 229

an example of how some parameters sets, although overall can reproduce unstaged data 230

trends, can have an underlying epidemiology promoting increasing transmission despite 231

continued active screening and passive detection levels. Note that these scenarios are 232

not observed when Model S is fitted to the more informative staged data that impose 233

further constraints to the posterior parameter distributions. 234

As expected, the models indicated that improved or complementary interventions 235
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would accelerate this path towards reduced incidence (S3 Text). Notably the longer 236

staged data set produced the least uncertainty in all models for projections on annual 237

incidence (Figs A-D in S3 Text) and associated reported cases (Figs A-D in S4 Text). 238

Assuming that projections under the staged data are most robust, the unstaged data 239

generated systematic overestimation in transmission and associated report case 240

projections for any strategy considered in three models (Models S, W and Y); for Model 241

I, a slight discrepancy in projections of new cases was observed, although values from 242

both fits were close and overlapped in projections of reported cases. Model I generated 243

the most optimistic scenarios, with a relatively homogeneous range of projections for 244

the different fits and small uncertainties compared to the other models, with and values 245

on the order of ≈100 new detected cases or fewer by 2030 for Bandundu province. 246

Table 3 presents the proportion of simulations (i.e. realisations of different 247

parameter sets) for different fits and models where the 2030 zero transmission goal was 248

achieved, and provides an alternative view on how adding or removing relevant data 249

impacts the models’ projections under different control strategies explored. Here 250

“elimination” is defined as <1 transmission case per million individuals per year as in 251

previous work using these deterministic models [18]. 252

Table 3. Probability of different strategies achieving elimination by 2030.

Fit Strategy Model
Baseline Vector control EPD

Unstaged 0.167 1 0.167
Staged 0 0.656 0 I

Subset staged 0 1 0
Unstaged 0 0.206 0

Staged 0 0.551 0 S
Subset staged 0 0.836 0

Unstaged 0 1 0
Staged 0 1 0.984 W

Subset staged 0 1 0
Unstaged 0 1 0

Staged 0 1 0 Y
Subset staged 0 1 0

EOT is defined in the models as <1 new transmission per 1,000,000 people. In each
case simulations of 1000 parameter sets were used.

In all but one case (Model I fitted to unstaged data), the models found that it was 253

extremely unlikely that elimination would occur by 2030 using the baseline strategy. All 254

fits for Models W and Y predicted elimination using vector control tools in addition to 255
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the baseline strategy. The least optimistic predictions were observed in Model S, in 256

accordance with higher values and slower reduction in transmission projections when 257

compared to other models’ predictions (Fig B in S3 Text). For Model I, the fit using the 258

staged data set showed less optimistic predictions, which is consistent with the 259

transmission projections generated by each fit under this model (Fig B in S3 Text). 260

Only two models under different fits (Model I fitted to unstaged data and Model W 261

fitted to staged data) showed that elimination was possible for enhanced passive 262

detection (167 and 984 out of 1000 samples, respectively). 263

For a weaker definition (<1 transmission case per 100,000 individuals per year), only 264

Model I suggested elimination could be achieved for the baseline strategy, and all 265

model-fit combinations agreed on vector control achieving elimination by 2030. 266

Substantial improvement in elimination probabilities under enhanced passive detection 267

in Models I and W contrasted to results of Models S and Y where no significant changes 268

were found (S1 Table). The higher disparity among models in predicting elimination 269

probabilities under enhanced passive detection reflects the influence of structural 270

assumptions, in both HAT transmission dynamics but also in modeling control activities 271

that can lead to such different projections. 272

Discussion 273

A suite of independent mathematical models of HAT transmission were calibrated to 274

publicly available data from Bandundu province, DRC, to evaluate the effects of 275

different levels of data aggregation on model performance and projections under current 276

and improved control strategies. 277

Informing staging data 278

Distinguishing cases by stage is inherent to HAT epidemiology due to the way treatment 279

is currently administered. The results here showcase the impact that neglecting staging 280

information in data reporting has on subsequent model estimates and predictions. 281

Although similar patterns of annual incidence can be obtained from models calibrated 282

to unstaged and staged data, the underlying HAT dynamics for such similar incidence 283

patterns can differ strongly (as indicated by the proportion of stage 1 cases detected), 284
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affecting any inference or projection on transmission risk. Contrasting projections 285

between staged and unstaged fits demonstrate how this aspect of HAT epidemiology can 286

impact our optimism about a particular strategy. A key example is that model 287

calibrations using staged data for Bandundu province strongly suggest that passive 288

detection rates have improved over time, whilst this is unobservable in the unstaged 289

data. 290

The data that countries use to determine their elimination policies for HAT are 291

usually limited and come mainly from screening activities. Our results emphasize the 292

need for incorporating staging information in data sets. With current screening 293

protocols, minimal additional effort in data recording is required to systematically 294

include staging, which would help to reduce uncertainties in assessing progress towards 295

elimination goals. 296

In the future, staging information may no longer be collected if new diagnostic tools 297

and treatments are stage-independent. For example, the new drug, fexinidazole [24], is 298

an all-in-one oral treatment for both stages recently approved by the European 299

Medicines Agency. However, until such tools become part of regularly implemented 300

policy, we emphasise the utility of making routinely collected staging data available. 301

Furthermore, if records of historically collected staging data exist, making these 302

available would substantially improve the reliability and predictive capability of 303

mathematical models. 304

Time scales and informing on time surveys of active screening 305

Over half of the total number of stage 1 cases reported between 2000 and 2012 come 306

from active screening. In general, as in this study, data is annually aggregated and so 307

the timing and the duration of active campaigns is unknown. As with current staging 308

data, this information is recorded at lower administrative levels, but is often lost in 309

higher level data sets. Systematically adding temporal data to current routine data 310

collection and collation would enable exploring a variety of case-specific time related 311

epidemiological factors such as the optimal frequency of interventions for achieving 312

specific local goals. 313
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Data delays 314

There are routinely delays between case detection in the field and the availability of the 315

data for modeling purposes. The extreme example of a six years delay between data 316

collection and availability considered in this study, though unlikely due to improvements 317

in data availability, is chosen to demonstrate how the absence of up-to-date data 318

impacts model predictions. One or two missing years would still provide less accurate 319

results than up-to-date data, especially due to the lack of information on recent active 320

screenings. Nevertheless, we expect that model predictions generated with fewer missing 321

years would generate predictions more similar to predictions using the full data set than 322

those generated with six missing years as investigated in this study. 323

As we approach elimination, including recent data sets is necessary to better assess 324

the actual trends, as our results have suggested. Use of most recent data sets can be 325

sufficient to reproduce current epidemiological trends and the absence of these data sets 326

could affect model projections, especially for short timelines. Improvements in the time 327

between data collection and availability could enable modelling to provide more 328

up-to-date guidance and monitor for early-warning signs of obstacles on the road to 329

elimination. 330

Province level data vs health zone level data 331

Aggregated province-level data for endemic HAT regions lose information on the 332

geospatial variation of HAT incidence and screening coverage at lower administration 333

levels that are more compatible with the epidemiological scale of HAT transmission and 334

control. This may explain why although all model fits could capture the decreasing 335

trend in the number of reported cases, they could not reproduce certain peaks observed 336

in stage 1 cases (in 2002 and 2009) from active screening. The models assumed a fixed, 337

spatially homogeneous risk of transmission in Bandundu province, even though large 338

differences between central and southern health zones of Bandundu province had been 339

estimated for this period [5]. Model W uses overdispersion parameters to capture the 340

variation in data between different years, so fitting to finer resolution data would likely 341

explain the source of this variation, and reduce the very large credible intervals from the 342

current results. 343
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The peaks observed in the data could arise due to differences in HAT prevalence in 344

the geographical areas in which the active screening occurs between years, due to 345

differences in the quality or coverage of the screening campaigns between years, or 346

reflect true inter-annual variation in HAT epidemiology. Only detailed case data at a 347

finer spatial scale could help models to explore alternative assumptions, capture spatial 348

heterogeneity to better identify geographic reservoirs and improve predictions in global 349

HAT status. Model calibrations at a health zone or finer spatial scale are needed to 350

directly guide practical strategy planning at a local level. The WHO HAT Atlas is one 351

such valuable source of geolocated data in DRC (available upon request from the 352

WHO); and although staging information is typically not available for cases before 2015, 353

recent entries are staged. 354

Complementary interventions to meet elimination goals 355

Projections suggest that, at the province level, the continuation of traditional active and 356

passive screening is unlikely to be sufficient to attain EOT by 2030 across most models 357

and fits. The groups therefore simulated other complementary strategies which built 358

upon these baseline interventions to examine if any were sufficient to achieve this goal. 359

Vector control 360

Our results agree with previous modelling work indicating that potential strategies that 361

integrate vector control with medical interventions could accelerate progress towards 362

elimination, particularly in high endemicity or persistent hotspots [10,11,13,17,18]. 363

This is consistent with reductions in HAT transmission reported after implementation of 364

cost-effective vector control methods in highly endemic locations in Guinea [22] and 365

Chad [12]. 366

Although integrating vector control with current medical interventions at large 367

spatial scales such as Bandundu province (around 296,000 km2) may not be 368

operationally feasible, extending tsetse control interventions to active foci of HAT 369

transmission is feasible and likely to be efficient, particularly as transmission decreases 370

and programmes reduce screening activities. Vector control is currently being 371

implemented in hotspots in Bandundu (totalling approximately 3000 km2) and in the 372
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West Nile region of Uganda (covering approximately 5000 km2). Regularly updated 373

epidemiological and entomological data from areas that have added this intervention to 374

HAT screening activities would facilitate the analysis of progress towards elimination 375

objectives, and provide an indication of protection against infection due to vector 376

control. 377

Additionally, secular changes, such as socio-economic development, urbanisation and 378

changes in land use, would likely lead to sustainable reductions in tsetse population 379

densities and consequently in HAT transmission, similarly to what has been reported for 380

other vector-borne diseases [25]. The impact of such secular changes was not addressed 381

in this study but will become more important as transmission reduces further. 382

Enhanced passive detection 383

This study found that, for passive detection, the increase in the ratio of stage 1 to stage 384

2 cases from 2006 onwards is an indicator of an already improving passive screening 385

system in this part of DRC. Although this is to be expected considering the increased 386

disease control efforts in the region, it is the first time that the improvement in the 387

passive detection rate has been quantified in a mechanistic modelling framework. 388

Furthermore, this trend is not observed in other former provinces of DRC for data from 389

the same period [5]. 390

An improvement in time to detection is likely to have been driven by a combination 391

of causes, including improvements in access to care from increased awareness by the 392

population at risk and an increase in the number of health facilities; and improvements 393

in diagnostic tools including the use of digital technologies and RDTs (FIND 394

2016, [20,26]). Moreover, new “test-and-treat” strategies combining RDTs with 395

fexinidazole could lead to earlier and more cases treated. 396

Although our results suggest that enhanced passive detection could not be sufficient 397

to achieve short-term reduction goals, its associated sustained effect on reducing 398

transmission, projected by all models, indicates this strategy should be considered for 399

areas in Bandundu where past activities did not reduce HAT transmission as expected. 400
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Reactive screening 401

As the number of reported cases decreases, reactive case detection, i.e., deploying active 402

screening in a given area following detection of a case by passive screening, may be a 403

potential cost-effective strategy. Such a complementary strategy has already been 404

implemented in some regions of Uganda, Chad, Kongo Central and Angola. The 405

inherent spatial aspect of reactive screening implies that modelling elimination would 406

benefit greatly from geolocated and timed case data from different settings. This would 407

allow for an improved assessment of spatially-related measures of HAT transmission risk 408

to inform the appropriate targeting of interventions in space and time to achieve 409

elimination and prevent resurgence. 410

Cost implications 411

Naturally each of the different strategies will affect the total cost of HAT interventions 412

in the region, with complementary strategies costing more than the baseline in the 413

short-term due to the extra resources used. Strategies which cost more in the 414

short-term could result in earlier EOT, and therefore may lead to earlier cessation of 415

active screening interventions compared to baseline. This could yield lower long-term 416

costs, but it is non-trivial to assess the costs of these interventions without simulating 417

cessation strategies and using a cost model. 418

Cost-effectiveness analyses using dynamic modelling frameworks require assessment 419

of health outcomes (such as years of life lost, and disability adjusted life years due to 420

disease) against a budget or willingness-to-pay threshold which can lead to strategies 421

which are not the least expensive being selected due to the relative gain in health 422

benefits [27]. This health-economic work is beyond the scope of the present study, which 423

primarily seeks to address the impact of data aggregation on model fitting and 424

projections. Assessment of cost-effectiveness is clearly an interesting and important 425

objective for future analyses which aim to provide specific, regional recommendations 426

for strategy selection. Such work would ideally provide more local strategy guidance 427

(smaller than the province scale considered here) so that only regions that require 428

complementary interventions include them rather than assuming blanket coverage of 429

additional strategies across large areas. 430
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Extrapolations to other aspects of data 431

Between 2011 and 2013, a study was performed to analyse the effects of coordinated 432

vector control (using tiny targets) and mass screening in an area of over 300 km2 in the 433

endemic focus of Boffa in Guinea [22]. This study recorded highly detailed 434

pre-intervention geo-referenced data of households and inhabitants (familial clustering 435

via a unique code; name, sex and age of family members); annual screening data; and 436

vector and vector control data (15 targets/km2, estimates of initial tsetse fly densities, 437

trap location, survey duration); as well as subsequent updates including new families 438

and seasonal workers. Although such a comprehensive and rich data set can provide a 439

much deeper understanding of HAT epidemiology and the quantitative impacts of 440

control interventions on transmission, scaling up such studies to cover larger areas is 441

likely to be too costly to be feasible. A potential alternative would be to enrich current 442

standard data collection/collation from screening activities with questionnaires 443

providing additional demographic information on infected individuals (e.g. age, gender, 444

occupation, characteristics of house location) to better assess people at risk, their 445

participation in screening and their impact on transmission. Although this too may be 446

costly in higher transmission areas, it may be feasible close to elimination, where case 447

numbers are low and such enriched data would be particularly useful in identifying 448

potential new cases, as programmes move from untargeted active surveillance to reactive 449

strategies. 450

Table 4 summarises different, but not exhaustive, data which, if available, could be 451

used in modelling studies to identify potential beneficial adjustments in future activities 452

and to develop new frameworks for evaluating the path towards elimination and 453

post-elimination scenarios. 454

Conclusions 455

We investigated the role of the type and level of aggregation of epidemiological data on 456

recommended control strategy by analysing publicly available HAT case data using four 457

different mathematical models. Our results show that the lack of detailed 458

epidemiological information, such as missing staging or truncated time series data, 459

impacts model recommendations for strategy choice: it can increase our prediction 460
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Table 4. Summary of relevant data and its potential use in HAT modelling.

Data type
Collected,

open access

Collected,
available

upon request

Not
routinely
collected

Potential use in HAT modelling

-First-final date of survey (AS)
-Date of presentation at health
care centre (PD)

x
Inform time, number and
duration of survey

Staging (province level) x x Inform staging ratios
Staging (village or
health zone level)

x Inform staging ratios

Geo-referenced x
Explore spatial-related
measures of HAT transmission
risk

Age x
-Identify at-risk population
-Assess heterogeneity in
screening participation

Gender x
-Identify at-risk population
-Assess heterogeneity in
screening participation

Occupation x
-Identify at-risk population
-Assess heterogeneity in
screening participation

Socio-economic indicators x Identify at-risk population

Presence of alternative sources
of blood meals (e.g. pigs)

x

Better understand feeding
behaviour of tsetse flies to
investigate potential roles of
animal reservoirs

Family clustering x
Spatial modeling to better
identify foci

The list is not exhaustive. Abbreviations: AS: active screening; PD: passive detection.

intervals and either over or underestimate effectiveness of interventions. Across all 461

models and configurations of data sets, the present study suggests that adding vector 462

control to current active and passive screening is likely to be the best strategy to reduce 463

transmission quickly in this region (former Bandundu province, DRC). For the other 464

strategies (including current active and passive detection, and enhanced passive 465

detection with active screening), the probability of achieving elimination and the 466

prediction of the time to elimination vary among models and depend on the data 467

configuration used for calibration. 468

Our study suggests that improved availability of epidemiological data, particularly 469

longer time series which include recent data and information on disease stage, would 470

reduce uncertainties in the prediction of future HAT dynamics. In particular, staging 471

data allow a better estimate of the improvements made in passive detection, and 472
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subsequent reduction in HAT transmission. Given the highly focal nature of HAT, we 473

expect that models fitted to recent staged data at smaller spatial scales (e.g. health 474

zone level) will provide valuable information for local planning, monitoring and 475

adapting HAT interventions to reduce transmission and achieve elimination. 476
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