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ABSTRACT 47 

Central nervous system (CNS) infections are important contributors to morbidity and 48 

mortality worldwide, but the causative agents for ~50% patients are never identified. Here we 49 

present the results of a spatial analysis of CNS infections in Lao PDR (2003 – 2011). 50 

Hospitalizations for suspected CNS infection were recorded at Mahosot Hospital in Vientiane 51 

and tests for a large panel of pathogens were performed. All home villages were geocoded using 52 

patient records and official Lao PDR census data. The spatial distributions of CNS infections 53 

were analyzed by major diagnoses. Summary statistics and logistic regressions were used to test 54 

for associations between geographic, environmental, and demographic variables and diagnoses. 55 

Out of 1,065 patients, 450 (42%) were assigned a confirmed diagnosis. Japanese encephalitis 56 

virus ((JEV); n=94) and Cryptococcus spp. (n=70) were the most common infections. Patients 57 

undergoing diagnostic LP for suspected CNS infections lived closer to major roads than would 58 

be expected by chance alone. JEV was the most spatially dispersed, peaked in the rainy season 59 

and was most common among children. JEV patients came from villages that had higher surface 60 

flooding during the same month as admission and, in comparison to the home villages of other 61 

patients, came from villages at higher elevation. Cryptococcus spp. infections clustered near 62 

Vientiane and among adults.  Geographic and financial access to healthcare may explain the 63 

close proximity of these patients to major roads and also suggest that these hospital data vastly 64 

underestimate the true community burden of CNS infections. As Lao PDR is undergoing major 65 

developmental and environmental changes, the space-time distributions of the causative agents 66 

of CNS infection will also likely change. There is a major need for increased diagnostic abilities; 67 

increased access to healthcare, especially for rural populations; and for increased surveillance 68 

throughout the nation.  69 
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INTRODUCTION 70 

Numerous illnesses go undiagnosed and the causative agents of many infections are never 71 

identified. In regions where access to healthcare facilities is limited and where diagnostic 72 

capabilities are few, a smaller proportion of diseases are objectively diagnosed. Diseases with 73 

mild symptoms may more frequently go untreated, but in some areas even severe illnesses 74 

commonly go undiagnosed and untreated. Infections of the central nervous system (CNS) can be 75 

particularly severe, affecting the brain and/or spinal cord and/or the surrounding meninges, 76 

frequently resulting in death.  77 

Pathogens that invade and infect the CNS include viruses, bacteria, fungi, parasites, and 78 

prions. As with other infections, the causative agent(s) of many CNS infections are never 79 

determined (frequently <50%) [1–3]. Symptoms of CNS infection can range widely, even for 80 

single causative agents, leading to further difficulties with diagnosis. Diagnoses are frequently 81 

presumptive and non-specific (i.e. meningitis is often presumed to be caused by bacteria whereas 82 

encephalitis is presumed to be caused viruses [2,4–6]). Some causative agents are specific to 83 

regions (e.g. Japanese Encephalitis, Saint Louis Encephalitis, Rift Valley Fever Viruses) and 84 

exhibit seasonal fluctuations (e.g. vector borne infections), therefore geography and seasonality 85 

can facilitate presumptive diagnosis of CNS diseases [4,7].  86 

In Southeast (SE) Asia, CNS infections are increasingly recognized as important 87 

contributors to morbidity and mortality [1,8,9]. However, detailed medical and epidemiological 88 

data are frequently lacking, especially for low income nations and from remote areas within 89 

middle-to-high income nations. Known important viral CNS infections in SE Asia include 90 

Japanese encephalitis, dengue, and rabies viruses [1]. Important bacterial CNS infections include 91 

Streptococcus pneumoniae, Haemophilus influenzae, S. suis, Mycobacterium tuberculosis and 92 
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Neisseria meningitidis. Orientia tsutsugamushi, Rickettsia typhi and Leptospira spp. are 93 

increasingly recognized as important causes [9]. Detailed analyses that confirm the cause of CNS 94 

related infections or assess their spatial and temporal distribution in the region are rare [8–11,14].  95 

We recently published the results of a study of the etiology and impact of CNS infections 96 

diagnosed among 1,065 patients at Mahosot Hospital, Vientiane, Lao PDR [14]. The goal of this 97 

secondary analysis was to investigate the spatial distribution(s) of CNS-related infections; to 98 

look for differential spatial distributions for major causative agents; and to explore potential 99 

geographic, demographic, and environmental correlates of these infections.  100 

 101 

DATA AND METHODS 102 

Data sources, processing and merging 103 

Data used in this research were compiled from four main sources (Supporting Figure 1). 104 

The epidemiological data come from an 8-year research project on CNS infections in Lao PDR 105 

from all patients who received diagnostic lumbar puncture (LP) at Mahosot Hospital in 106 

Vientiane, Lao PDR between January 2003 and August 2011 and consenting to participate [14]. 107 

All patients were admitted to the hospital because of suspected CNS infection and Mahosot 108 

Hospital is the only medical facility in Lao PDR capable of performing diagnostic LP and 109 

cerebral spinal fluid (CSF) analysis. Tests for a large panel of pathogens were performed at the 110 

Microbiology Laboratory following international standards (details provided in Supporting 111 

Materials I and [14]). Demographic (age, gender, ethnicity) and geographic (home village) 112 

characteristics of patients were recorded in the database. 113 

The epidemiological data were used to create two separate datasets: One aggregated at 114 

the village level (one row per location) and another was maintained at the individual level, with 115 
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one row per individual. The official Lao PDR censuses from 2005 and 2015 were used to 116 

geocode villages (based on village name and administrative units listed in patient records) and to 117 

assign village population estimates to each village (taking a mean population size between 2005 118 

and 2015). Village location and population sizes were then merged to both the individual- and 119 

village-level datasets. 120 

A subset of villages within the geographic region of the home villages of included 121 

patients was selected by overlaying a standard deviational ellipse with 3 standard deviations 122 

(calculations described in Supporting Materials II) around the patient home villages and then 123 

selecting all villages within that ellipse (Supporting Figure 2). These villages were then 124 

retained for village level comparisons between villages populated, and not populated, with 125 

patients admitted with CNS disease needing an LP. This subset of villages is hereafter referred to 126 

as the “study area”.  127 

Major road network data was taken from OpenStreetMaps 128 

(http://www.openstreetmap.la), selecting “primary”, “secondary”, and all major connecting roads 129 

(downloaded in February 2017,  Supporting Figure 3). Primary and secondary roads are the two 130 

largest road classifications for the nation. Primary roads link major towns and cities and 131 

secondary roads link mid-sized towns. Primary and secondary link roads are ramps or slip roads 132 

that connect other roads to primary or secondary roads. Together, these types of roads are 133 

hereafter referred to as “major roads”. Smaller roads were not included in this analysis as they 134 

are less likely to be accurately included in the OpenStreetMaps data. The Euclidian distance was 135 

then calculated from all villages in the census to the nearest point along a major road. These 136 

distances were merged to both the village- and the individual-level datasets.  137 
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Environmental predictor variables for vegetation and surface water were derived from 138 

Moderate Resolution Imaging Spectroradiometer (MODIS) products (MOD13Q1/MYD13Q1 139 

250 meter AQUA/TERRA 16 day composites). Since many infectious diseases, especially vector 140 

borne diseases, are strongly influenced by environmental factors we hypothesized that indicators 141 

of vegetation and surface flooding would correlate with some specific diagnoses. Three 142 

environmental indices were downloaded and considered in these analyses: a normalized flooding 143 

index (NFI) [15]; the normalized difference vegetative index (NDVI); and the enhanced 144 

vegetation index (EVI). NFI is indicative of surface water, NDVI is indicative of green surface 145 

vegetation, and EVI is an improved measure of green vegetation that is intended to account for 146 

dense forest canopies and atmospheric conditions that can lead to error in NDVI measurements. 147 

Data were downloaded for each of these environmental indices (EI) within each 16-day time 148 

period from February 2002 through December of 2011. The final analyses conducted in this 149 

research retained only the EVI and NFI for environmental predictors (summary statistics for 150 

NDVI are included) because NDVI and EVI were strongly correlated. The EIs are described in 151 

more detail in Supporting Materials III. 152 

The environmental raster data were then summarized and extracted based on varying 153 

buffer sizes (2km, 5km, and 10km) for each village in the individual- and village-level datasets. 154 

Permanent water bodies (such as the Mekong River and Nam Ngum Dam) were masked from the 155 

NFI calculations. For the village-level datasets, mean values of each environmental variable was 156 

calculated for the study period duration and used as an indicator of “average” vegetation or 157 

surface water characteristics of each village. For the individual-level dataset the values were 158 

extracted based on the admission date, using increasing durations of time prior to admission 159 

(within the same month, within the previous 2 months, within the previous year).  160 
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The final datasets include the village-level data, that is a subsample of 98% of all villages 161 

with patients included in the study and the other census designated villages within the same 162 

region (the study area), and the individual level dataset that includes all patients included in the 163 

study. Variables used in this analysis and their descriptions are listed in Table 1. 164 

Exploratory spatial data analysis 165 

Summary statistics (median; Q1:Q3; mean) were calculated for the distances between 166 

villages and the nearest major road, and aggregated by whether or not the village was home to 167 

included patients and by specific diagnoses. Summary statistics (mean and 95% confidence 168 

intervals) were also calculated for all environmental variables, at each buffer size and temporal 169 

resolution, and for each of the major diagnoses. Tukey’s post hoc range test was used to assess 170 

statistically significant differences in environmental indices across diagnoses.   171 

Standard distance deviations (SDDs) and standard deviation ellipses (SDEs) were 172 

calculated (details in Supporting Materials II) and mapped to measure and visually analyze the 173 

central tendency and spatial distributions for all patient home villages and by each of the major 174 

single (mono-infection) diagnoses.  175 

Formal analyses 176 

Multivariable regressions were used to calculate model-adjusted odds ratios and 177 

confidence intervals. The regressions at the village level focused on study patient villages and 178 

the home villages of JEV diagnosed patients. A multivariable regression was also done at the 179 

individual level focusing on JEV infected patients. Other diagnoses were not included in these 180 

analyses because of small numbers of cases per village. 181 

Logistic generalized additive models (GAMs) were used for variable selection and 182 

specification (detailed in Supporting Materials IV and in Table 1) for the final models. The 183 
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GAMs were used to examine different specifications of the continuous environmental, 184 

geographic, and demographic variables and for changes in model fit and strength of association 185 

across buffer sizes (i.e. 2km, 5km, or 10km buffers) and for different time durations for EI 186 

measurements (i.e. same month, 2 months prior, 12 months prior to hospital admission). The 187 

final model covariates were chosen based on a combination of a priori hypotheses, model fit 188 

(using the Akaike information criterion), and strength of association between the covariate and 189 

the model outcome variable.  190 

The final model for the individual-level analysis was a generalized logistic mixed model 191 

with a random effect for home village. The final model for the village-level analysis was a 192 

logistic regression.   193 

Software 194 

All maps were created using QGIS version 3.4.9. R cran version 3.5.2 was used for 195 

downloading, processing, and wrangling MODIS data (using the “MODIStsp”; “raster”; “rgdal”; 196 

and “maptools” packages) and for all regressions. The “mgcv” package was used for GAMs and 197 

the lme4 package was used for the generalized mixed models.  Euclidian distances between 198 

villages and major roads were calculated using QGIS. ArcMap version 10.5.1 was used to 199 

calculate SDDs and SDEs.  200 

Ethics approval 201 

Ethical clearance for the CNS study was granted by the Oxford University Tropical 202 

Ethics Research Committee and by the Ethical Review Committee of the Faculty of Medical 203 

Sciences, National University of Laos. Verbal consent (from 2003 – 2006) and written consent 204 

(from 2006 – 2011) were obtained from all recruited patients or immediate relatives.  205 

 206 
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RESULTS 207 

Summary statistics 208 

A total of 1,065 patients were recruited with no LP contraindications and consented to 209 

have a diagnostic LP; 450 (42%) were assigned a final laboratory diagnosis. The most common 210 

of these were Japanese encephalitis virus ((JEV) 94 individuals); followed by Cryptococcus spp. 211 

with 70 individuals (9 were C. gattii)); scrub typhus (Orientia tsutsugamushi) 31; Dengue virus 212 

27; Leptospira spp. 25; murine typhus (Rickettsia typhi) 24; Streptococcus pneumoniae in 22 and 213 

20 with Mycobacterium tuberculosis. 124 patients died prior to discharge (out of 893 with 214 

recorded discharge type recorded).  215 

The majority (666, 63%) of patients were male, with the lowest sex bias in cryptococcal 216 

infections (40/70, 57% male) and the highest among dengue infections (22/27, 82% male) 217 

(Table 2). Age patterns were evident in JEV and cryptococcal infections, with median ages of 13 218 

and 33 years, respectively (Table 2). Patients were linked to 582 different villages (multiple 219 

patients could come from the same village): 90 villages with JEV patients, 66 with cryptococcal 220 

patients, 31 with scrub typhus patients, 27 with dengue patients, 24 with leptospiral patients, and 221 

24 with murine typhus patients. The majority (870, 82%) of patients came from within Vientiane 222 

Prefecture (678, 64%) or Vientiane Province (192, 18%). 223 

A total of 6,416 villages (of 10,520 recorded in 2005 [16]) were selected as the study area 224 

for further village level analyses (Table 3). Villages that were home to study patients were 11 225 

times (0.7km versus 6.3km, from Table 3) closer to a major road when compared to other 226 

villages within the study area. Scrub typhus and JEV infected patient homes were further from 227 

major roads than other patients, but the difference was not statistically significant in univariate 228 

analyses.  229 
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The home villages of JEV patients were more broadly dispersed (Figure 1B) than for 230 

patients with other etiologies (Figure 1C), evident from the circular, larger SDE and SDD. The 231 

distribution of these JEV patient home villages was also relatively isotropic, with the SDE and 232 

SDD being nearly identical. Conversely, patients with cryptococcal infections were clustered 233 

near Vientiane City and along the road leading North/Northwest from the urban center (Figure 234 

1C). Scrub typhus and murine typhus infections were also both clustered around Vientiane City 235 

but showed perpendicular spatial distributions (Supporting Figures 4D and 4G) a pattern 236 

previously described from IgG seropositivity data from Vientiane City [17]).  237 

Characteristics of patient home villages 238 

Mean NFI values for the 2km radius tended to be higher than for either the 5km or 10km 239 

radius as surface flooding is heterogeneous and taking a mean across larger radii dilutes the 240 

measurement. The opposite pattern was observed for both vegetation indices. The 2km radius for 241 

both mean NDVI and mean EVI was usually smaller than at 5km or 10km radii (Figures 2 and 242 

3). 243 

Study patient villages had higher mean NFI values than non-study patient villages 244 

(Figure 2A) (non-study patient villages are those in the same study area as study patient villages 245 

but were not home to a study patient). The home villages of study patients diagnosed with 246 

dengue virus and cryptococcal infections had high mean NFI values over the duration of the 247 

study period when compared to other major diagnoses (Figure 2A). 248 

Conversely, the home villages of study patients tended to have lower mean EVI values 249 

than non-study patient villages (Figure 2C). Villages from which patients who were diagnosed 250 

with JEV were an exception to this general pattern. JEV patient home villages had higher mean 251 
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EVI when compared to home villages of patients with dengue and cryptococcal infections 252 

(Figure 2C).  253 

Home villages of patients with JEV diagnoses had lower mean NFI over the duration of 254 

the study period, but had higher NFI than other major diagnoses when looking specifically at the 255 

month of admission (especially when compared to cryptococcal infections and murine typhus 256 

(Figure 3A)). JEV patient home villages also had higher EVI during the month of admission 257 

than most other mono-infections, especially when compared to either cryptococcal infections or 258 

murine typhus (Figure 3C). Scrub typhus infections had higher EVI than cryptococcal infections 259 

when the measurement was taken at the 10km radius buffer (not detectable at smaller radii 260 

(Figure 3C)).  261 

Home villages of patients with dengue infections had higher NFI than murine typhus or 262 

Cryptococcus spp. patient home villages when considering the 2 months prior to admission 263 

(Figure 3D). Cryptococcus spp. patient home villages had particularly low EVI in the two 264 

months leading up to admission, especially when compared to JEV and Leptospira spp. patient 265 

home villages (Figure 3F).  266 

At one year prior to admission both Cryptococcus spp. patient home and dengue virus patient 267 

home villages had higher NFI than JEV patient home villages (Figure 3G).  268 

Logistic regressions for geographic, environmental and demographic predictors of CNS 269 

infections 270 

In agreement with univariate analyses, villages from which study patients came tended to 271 

be larger in population size (Supporting Figure 4), lower in elevation (Supporting Figure 5), 272 

and closer to a major road when compared to other villages within the study area (Table 4). They 273 

also had higher mean levels of surface flooding, with villages in the highest NFI quadrant having 274 
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over two times the odds (AOR: 2.21; CI: 1.49 – 3.31) of being a home village for study patients 275 

when compared to neighboring villages in the study area (Table 4 and Figure 2). Villages from 276 

which JEV patients originated had few defining characteristics in the logistic regression, other 277 

than being larger in population size (AOR: 1.74; CI: 1.55 – 1.96) and at lower elevations (AOR: 278 

0.69; CI: 0.46 – 0.97) than non-study patient villages (Table 5).  279 

In the individual-level analysis (Table 6), age and season were the strongest predictors of 280 

JEV infections among all patients. Patients who were admitted between July and September had 281 

over seven times the odds (AOR: 7.40; CI: 1.45 – 37.67) of being diagnosed with JEV when 282 

compared to patients who were admitted between January and March (Table 6). JEV was most 283 

common in children aged 5 through 14 (AOR: 2.74; CI: 1.31 – 5.69; ages 0 – 4 as the 284 

comparison group). NFI during the month of admission (10km buffer used in the regression) was 285 

also a strong predictor of JEV infection. Individuals who came from villages in the highest 286 

quadrant of NFI measurements had approximately 3 times the odds being diagnosed with JEV 287 

(AOR: 3.06; CI: 1.04 – 8.96). While study patients came from villages with lower mean 288 

elevations, patients who were diagnosed with JEV came from higher elevation villages in 289 

comparison to the other patients (AOR: 1.36; CI: 1.11 – 1.66). EVI was a significant predictor in 290 

models that did not include distance to road, village population, and elevation (Table 6 M1 and 291 

M2). 292 

 293 

DISCUSSION 294 

Patients from this study were recruited based on symptomology and a medical procedure 295 

that is only available at a single location in the nation (diagnostic LP at Mahosot Hospital, 296 

Vientiane). The home villages of all included study patients, regardless of diagnosis, were 297 
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approximately centered on Vientiane City and were closer to major roads than would be 298 

expected by chance alone. For many of the infections studied in this analysis, this association is 299 

likely more related to geographic and financial access to healthcare systems rather than exposure 300 

to environmental risk factors – especially for infections that are more associated with rural areas 301 

(e.g. JEV). This finding also suggests that the results here may be a vast underestimate of the true 302 

burden of CNS infections, with much of the Lao population not being in near proximity to a 303 

major road (Table 3). The causative agents of CNS infections differ in biology, ecology, and 304 

geography, and this is evident through the spatial distributions of the home villages of patients. 305 

The geographic, environmental, and demographic patterns exhibited by patients needing a 306 

diagnostic LP for suspected CNS infections, and for specific diagnoses, are the result of complex 307 

overlapping factors.  308 

A similar spatial pattern was described from an epidemiological analysis of CNS 309 

infections among children admitted to Ho Chi Minh City hospitals in Vietnam – with most 310 

patients coming from districts near the hospital [12]. While the majority of infections (55%) in 311 

the Vietnam study were presumed to be bacterial in origin, in this study from Lao PDR bacterial 312 

infections were identified in only 38% (170 out of 450 patients with diagnoses). 313 

JEV was the single largest identified cause of CNS infections in these data; it primarily 314 

affected children (median 13 years of age, Table 2), occurred predominantly during the rainy 315 

season (likely corresponding to peaks in mosquito vector populations), and in villages with 316 

recent high levels of surface water [18]. JEV is a vaccine-preventable disease, but the vaccine 317 

has historically been expensive and vaccine programs are frequently limited by access to remote 318 

communities. In 2013 the WHO approved a less expensive vaccine (produced in China by the 319 

Chengdu Institute of Biological Products) which has since been used in mass vaccination 320 
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campaigns in Lao PDR in 2013 and 2015 [19]. The vaccine is now routinely given to all children 321 

less than 9 months of age but coverage may be low in some areas.   322 

The second largest contributor to CNS diseases were cryptococcal infections, which are 323 

opportunistic fungal infections with high mortality [20]. Of the 70 patients with cryptococcal 324 

infections, 12 died prior to discharge and another 8 likely died at home after leaving the hospital. 325 

Cryptococcal infections are generally acquired after inhalation of the yeast-like form of the 326 

fungus which has been associated with several ecological habitats (Cryptococcus gattii has been 327 

associated with over 50 species of trees; Cryptococcus neoformans has been associated with bird 328 

droppings but is also suspected to be associated with plants [21,22]). This disease has a long 329 

incubation period [23,24] and while C. gattii infections commonly occur among 330 

immunocompetent individuals, C. neoformans infections are frequently associated with HIV 331 

infections [25,26]. In these data, 20 of the patients diagnosed with cryptococcal infections also 332 

had HIV infections. While several studies have shown that cryptococcal species exist in specific 333 

ecological habitats and have inferred environmental exposure, the long incubation period and 334 

complex natural history likely obfuscate ecological correlations.  335 

There are several limitations to this research. Diagnostic LPs are only conducted in 336 

Mahosot Hospital in the national capital. Logistical and financial difficulties in accessing 337 

healthcare facilities, and especially for etiological diagnostic capabilities, likely leads to severe 338 

under-reporting of meningitis, encephalitis, or in the diagnosing the causative agent in these 339 

conditions when the patient does access care. All of these factors ultimately lead to small case 340 

counts for numerous different causative agents. The spatial patterns in points (villages) and 341 

ellipses exhibited in these data are likely influenced by the shape of the nation and it is possible 342 

that the point patterns and ellipses would differ if we had data from neighboring nations. Spatial 343 
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and temporal patterns that differentiate different infections might be more obvious if the 344 

surveillance system instead focused on any symptomatic infections (rather than only suspected 345 

infections of the CNS). Some pathogens are neurotropic whereas others have tropism for other 346 

organs, while being capable of occasionally infecting the CNS. This may partially explain the 347 

higher case counts of JEV and why we were able to identify spatial, temporal, and environmental 348 

predictors for this causative agent.  349 

OpenStreetMaps data are volunteered data and may be prone to error. For this reason we 350 

focused on major roads, whose routes have changed very little over the last decades. For the 351 

regressions, the distances from all villages to the nearest major road was also rounded to the 352 

nearest 5km. Examination of satellite imagery in comparison with the major roads from 353 

OpenStreetMaps suggests that where error does exist, it is on a scale of +100 meters, meaning 354 

that measurements of distances, as used in this analysis, should not be strongly influenced. Some 355 

of these data now come from over a decade ago. Surveillance systems of this type (based on 356 

relatively vague symptomology), with a wide panel of possible contributing causative agents, 357 

and necessary intensive laboratory components are extremely labor and time intensive.  358 

Lao PDR is currently undergoing vast environmental, demographic, and economic 359 

changes. Road networks are increasing in range and density and several areas (i.e. Vientiane, 360 

Savannakhet) are undergoing expansive urbanization [27]. These environmental changes will 361 

most likely result in shifting patterns of infectious diseases. As the region undergoes urbanization 362 

(including both a decrease in urban landscape and movement of human populations to urban 363 

centers), pathogens that thrive in rural areas (e.g. JEV) may undergo reduced transmission, 364 

especially if vaccine campaigns are more capable of reaching rural populations. Conversely, 365 
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infections that cluster in urban and peri-urban areas (such as dengue and murine typhus) may 366 

increase in frequency.  367 

Several environmental indices from remote sensing instruments have shown potential for 368 

predicting disease risk, differentiating disease types, or for other surveillance efforts in SE Asia 369 

[28,29] and globally [30–34]. This analysis, and others like it, illustrates the ability to 370 

differentiate some infections (namely JEV when compared to other diagnoses) through the use of 371 

freely available data (i.e. MODIS) and software (R and QGIS) and routinely collected healthcare 372 

data. Surveillance systems and potentially diagnostic algorithms [35] in developing settings 373 

could benefit from inclusion of such resources. A far-reaching surveillance system that is 374 

representative of the entire nation and includes likely CNS infections would be beneficial in 375 

order to assess the true burden of CNS infections – many of which would benefit from primary 376 

and secondary prevention through increased provision of vaccines, vector control, and early 377 

diagnosis and treatment. Given the inherent difficulties in accurately diagnosing and treating 378 

CNS infections, the predictors reported here and from other epidemiological studies for major 379 

contributors to CNS diseases (i.e. age, seasonality, location, and environmental characteristics) 380 

could be considered alongside clinical symptomology when presumptive diagnoses are being 381 

made. However, it will be important to consider current and ongoing demographic, 382 

environmental, and economic changes in Lao PDR.  383 

Finally, increasing population access to vaccines, diagnosis, and treatment would have 384 

clear benefits to overall population health. As with other parts of the developing world, a large 385 

fraction of the Lao population must travel long distances in order to reach primary healthcare 386 

centers. In 2005 73% of the Lao population was reported to live in rural areas, 21% without 387 

roads. By 2015 67% of the population were reported to live in rural villages with 8% in villages 388 
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without roads [36]. For many communities, travel during the wet season remains difficult. Travel 389 

costs can also be prohibitive. Most of the CNS infections in this analysis occurred or developed 390 

symptoms during the wet season.  Public health initiatives that help to decrease the distances 391 

between communities and the healthcare services that they need are warranted.  392 
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Table 1: List of variables, their spatial and temporal scales, and transformations  586 

 587 

 588 

 589 

 590 

 591 

 592 

 593 

 594 

 595 

Variable description spatial scale temporal scale transformation

Village population

Population estimate of LP patient home village. 
This is calculated as a mean population value 
from the Lao PDR official census from years 2005 
and 2015.

For multivariable 
regressions, this variable 
was centered on its mean 
and standardized by its 
standard deviation.

Distance to major road

This is the distance in meters from the LP 
patient home village and the nearest point on a 
major highway network, from the 
OpenStreetMaps map layer. This distance was 
transformed into kilometers and rounded to the 
nearest 5 kilometers in order to account for 
measurement error.

This distance was 
transformed into kilometers 
and rounded to the nearest 5 
kilometers in order to 
account for measurement 
error.

For multivariable 
regressions, this variable 
was centered on its mean 
and standardized by its 
standard deviation.

Village elevation
This is the elevation of the LP patient home 
village, calculated from a digital elevation 
model. It is in meters above sea level. 

at village point

For multivariable 
regressions, this variable 
was centered on its mean 
and standardized by its 
standard deviation

NFI
This is the normalized flooding index, described 
in detail in the Supporting materials.

Mean values at 2km, 5km, 
and 10km buffers around 
each village.

For village level analysis: calculated as a mean 
value for the study duration.  For individual 
level analysis: Calculated for the same month 
(same 16 day time period); the previous 2 
months (mean of the previous 5 16 day 
intervals); and the previous year (mean of the 
previous 23 16 day intervals).

Aggregated into quartiles 
for multivariable 
regressions. 

NDVI
This is the normalized difference vegetation 
index, detailed in the Supporting materials.

Mean values at 2km, 5km, 
and 10km buffers around 
each village.

For village level analysis: calculated as a mean 
value for the study duration.  For individual 
level analysis: Calculated for the same month 
(same 16 day time period); the previous 2 
months (mean of the previous 5 16 day 
intervals); and the previous year (mean of the 
previous 23 16 day intervals).

EVI
This is the enhanced vegetation index, detailed 
in the Supporting materials.

Mean values at 2km, 5km, 
and 10km buffers around 
each village.

For village level analysis: calculated as a mean 
value for the study duration.  For individual 
level analysis: Calculated for the same month 
(same 16 day time period); the previous 2 
months (mean of the previous 5 16 day 
intervals); and the previous year (mean of the 
previous 23 16 day intervals).

Aggregated into quartiles 
for multivariable 
regressions. 

Gender
Binary for male or female, self reported in 
hospital records

Age Self reported age in years.
Aggregated into age groups 
for multivariable 

Year The year of admission to the hospital

For multivariable 
regressions, this variable 
was centered on its mean 
and standardized by its 
standard deviation.

Quarter
The calendar quarter of admission  (Jan - March; 
Apri - June; July - Sep; Oct - Dec)

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted September 11, 2019. ; https://doi.org/10.1101/19005884doi: medRxiv preprint 

https://doi.org/10.1101/19005884
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

Table 2: Age and gender of study patients. (Q1 and Q3 indicate the first and third quartiles, 596 
respectively). 597 

 598 

 male/femal
e 

M/F 
ratio 

median age 
in years (Q1 
–Q3) 

Total 
number 

all patients 666/399 1.67 23 (8 - 38) 1065 
JEV 55/39 1.41 13 (8 - 20) 94 
Cryptococcus spp. 40/30 1.33 33 (27 - 41) 70 
scrub typhus 22/9 2.44 16 (9 - 29) 31 
Dengue virus 22/5 4.4 20 (9 - 30) 27 
Leptospirosis spp. 17/8 2.13 25 (12 - 39) 25 
murine typhus 17/7 2.43 32 (16 - 51) 24 
 599 

 600 

 601 

 602 

Table 3: Distribution of distances (in km) to the nearest major road, by diagnosis type. Counts of 603 
villages are from within 3 standard deviational ellipses (SDEs) of all LP villages (referred to as 604 
the “study area” in text). In some cases, multiple patients came from the same village meaning 605 
that counts of villages will be smaller than counts of total patients. (Q1 and Q3 indicate the first 606 
and third quartiles, respectively). 607 

 608 

  n median distance in km (Q1 - 
Q3) 

All 6416 5.4 (0.5 - 15.2) 
Villages without 
study patient 

5847 6.3 (0.8 - 16.1) 

Villages with 
study patient 

569 0.7 (0.1 - 4.1) 

JEV 88 0.6 (0.1 - 8.0) 
Cryptococcus spp. 66 0.3 (0.1 - 1.4) 
scrub typhus 31 0.6 (0.2 - 3.5) 
Dengue virus 27 0.3 (0.1 - 1.1) 
Leptospirosis spp. 22 0.4 (0.1 - 1.9) 
murine typhus 24 0.3 (0.1 - 2.2) 
 609 
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Table 4: Logistic regression and model adjusted odds ratios (AOR) for village level analysis of 610 
LP villages 611 

 612 

covariate total LP count AOR (CI) 
NDFI Q1 1604 68 reference group 
NDFI Q2 1604 75 1.07 (0.73 - 1.56) 
NDFI Q3 1604 130 1.48 (1.03 - 2.16) 
NDFI Q4 1604 296 2.21 (1.49 - 3.31) 
EVI Q1 1604 311 reference group 
EVI Q2 1604 134 1.16 (0.86 - 1.57) 
EVI Q3 1604 74 1.12 (0.76 - 1.66) 
EVI Q4 1604 50 1.19 (0.74 - 1.91) 
Village population   2.22 (2.03 - 2.42) 
Elevation   0.52 (0.42 - 0.63) 
Distance to major road     0.68 (0.57 - 0.80) 
 613 

Table 5: Logistic regression and model adjusted odds ratios (AOR) for village level analysis of 614 
JEV villages 615 

covariate total JEV 
count 

AOR (CI) 

NDFI Q1 1604 18 reference group 
NDFI Q2 1604 15 0.83 (0.38 - 1.76) 
NDFI Q3 1604 20 1.11 (0.53 - 2.35) 
NDFI Q4 1604 35 1.26 (0.54 - 2.95) 
EVI Q1 1604 35 reference group 
EVI Q2 1604 23 1.81 (0.87 - 3.76) 
EVI Q3 1604 17 1.85 (0.77 - 4.46) 
EVI Q4 1604 13 1.76 (0.63 - 4.93) 
Village population   1.74 (1.55 - 1.96) 
Elevation   0.69 (0.46 - 0.97) 
Distance to major road     0.88 (0.62 - 1.20) 
 616 

 617 

 618 

 619 

 620 
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Table 6: Mixed effects logistic regression and model adjusted odds ratios (AOR) for individual 621 
level analysis 622 

   M1 M2 M3 
covariate total JEV 

count 
AOR (CI) AOR (CI) AOR (CI) 

NDFI Q1 262 7 reference group reference group reference group 
NDFI Q2 261 16 2.91 (1.06 - 7.97) 2.28 (0.86 - 6.01) 2.32 (0.87 - 6.19) 
NDFI Q3 261 31 2.73 (1.02 - 7.28) 2.75 (1.07 - 7.07) 2.98 (1.13 - 7.85) 
NDFI Q4 262 38 3.41 (1.17 - 9.94) 3.12 (1.09 - 8.90) 3.06 (1.04 - 8.96) 
EVI Q1 262 8 reference group reference group reference group 
EVI Q2 261 20 2.11 (0.84 - 5.28) 1.89 (0.76 - 4.74) 1.60 (0.63 - 4.04) 
EVI Q3 261 24 2.04 (0.81 - 5.12) 1.65 (0.67 - 4.07) 1.33 (0.53 - 3.32) 
EVI Q4 262 40 4.19 (1.62 - 10.87) 3.44 (1.35 - 8.73) 2.43 (0.91 - 6.46) 
Jan - March 210 2 reference group reference group reference group 
April - June 267 22 5.12 (1.10 - 23.89) 4.45 (0.95 - 20.76) 5.05 (1.07 - 23.73) 
July - Sep 333 62 8.72 (1.75 - 43.46) 6.35 (1.26 - 31.89) 7.40 (1.45 - 37.67) 
Oct - Dec 253 8 1.80 (0.35 - 9.25) 1.51 (0.29 - 7.81) 1.54 (0.29 - 8.17) 
Year   1.31 (1.03 - 1.68) 1.34 (1.05 - 1.72) 1.27 (0.98 - 1.64) 
0 through 4 208 13  reference group reference group 
5 through 14 150 37  3.00 (1.46 - 6.18) 2.74 (1.31 - 5.69) 
15 through 24 192 28  1.74 (0.84 - 3.62) 1.37 (0.64 - 2.94) 
25 through 34 186 10  0.66 (0.27 - 1.61) 0.61 (0.25 - 1.48) 
35 through 44 133 4  0.26 (0.07 - 0.96) 0.26 (0.07 - 0.97) 
45 plus 196 2  0.11 (0.02 - 0.52) 0.10 (0.02 - 0.47) 
female 399 39  reference group reference group 
male 666 55  0.97 (0.60 - 1.58) 1.08 (0.66 - 1.79) 
Village population     1.00 (0.77 - 1.29) 
Elevation     1.36 (1.11 - 1.66) 
Distance to major road         1.08 (0.88 - 1.32) 
 623 

 624 

 625 

 626 

 627 

 628 

 629 
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Figure 1: Spatial distributions of the home villages of study patients, for A: all study patients, B: 630 
study patients with JEV infections, and C: with cryptococcal infections, D: scrub typhus 631 
infections, E: with dengue virus infections, F: with leptospiral infections, and G: with murine 632 
typhus infections. SDDs and SDEs are weighted by case numbers, with some patients coming 633 
from the same village. 634 

 635 
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Figure 2: Environmental indices for villages with study patient homes for the duration of the 636 
study period (January 2003 through August 2011) for all study patient villages, non study patient 637 
villages in the study area, and for major diagnoses (JEV = Japanese Encephalitis virus; Crypto = 638 
cryptococcal infection; ST = scrub typhus; MT = murine typhus; dengue = Dengue virus; lepto = 639 
Leptospira spp. infection). Bar values are mean values and the error bars are 95% confidence 640 
intervals, using the t-distribution. NFI values here have a constant (0.25) added to them for 641 
visualization only. 642 

 643 

 644 

 645 

 646 

 647 

 648 

 649 

 650 

 651 

 652 

 653 

 654 
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Figure 3: Environmental indices for study patients by major diagnosis and at different times 655 
leading up to the date of admission. JEV = Japanese Encephalitis virus; Crypto = cryptococcal 656 
infection; ST = scrub typhus; MT = murine typhus; dengue = Dengue virus; lepto = Leptospira 657 
spp. infection. Bar values are mean values and the error bars are 95% confidence intervals, using 658 
the t-distribution. NFI values here have a constant (0.25) added to them for visualization only. 659 

  660 
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 661 

SUPPORTING MATERIALS 662 

Supporting Materials I: Diagnosis of major infectious agents 663 

A detailed report of the data collection and primary analysis can be found in [14]. Cerebrospinal 664 
fluid (CSF) was taken from all patients consenting to be included in this study (approximately 665 
2.5 mL for children < 1yo; 3.5 mL for children 1 – 14yo; and 8 mL for patients > 15yo). A 666 
venous blood sample was also taken on the same day as the lumbar puncture (approximately 5.5 667 
mL for patients > 15yo; 10 mL for children 1 – 14yo; and 18.5 mL for patients > 15yo). When 668 
possible follow-up serum samples were collected between 7 and 10 days post LP. All patient 669 
samples were analyzed using a panel of tests, including complete blood count; culture; 670 
biochemistry panel; and both serological and molecular assays for a range of fungi, parasites, 671 
viruses, and bacteria. 672 

We considered sample size, natural history, and ecology of infections for selecting pathogens for 673 
this secondary analysis. Detections of the pathogens included in this analysis are as follows: 674 

• Japanese encephalitis virus (JEV) infections were detected using ELISA IgM (Japanese 675 
Encephalitis/Dengue IgM Combo ELISA from Panbio) in CSF, and in serum at both 676 
admission and follow-up. Patients who were negative at admission but seropositive in a 677 
follow-up were classified as confirmed JEV infections. Some JEV infections were also 678 
diagnosed by culture or PCR. 679 

• Cryptococcus spp. infections were detected using Indian ink stain of CSF; Cryptococcus 680 
Antigen Latex Agglutination Test with CSF (when HIV infection was suspected); and 681 
culture on Sabouraud agar when Indian ink test was positive or HIV infection was 682 
suspected. 683 

• Dengue virus infections were detected using Hydrolysis probe real time RT-PCR [37] in 684 
CSF and serum; NS1 ELISA (Dengue Early ELISA from Panbio) in CSF and serum; and 685 
ELISA IgM (Japanese Encephalitis/Dengue IgM Combo ELISA from Panbio) in CSF, 686 
and in serum at both admission and follow-up (if negative at admission but seropositive 687 
in a follow-up). 688 

• Flavivirus infections were detected using nested SYBR Green real-time RT-PCR in CSF 689 
and serum [38,39].  690 

• Rickettsia spp. infections were detected using Hydrolysis probe RT-PCR in CSF [40,41]; 691 
Hydrolysis probe real time PCR and conventional PCR from buffy coat; and genetic 692 
sequencing.    693 

• R. typhi and Orientia tsutsugamushi infections were detected using Hydrolysis probe real 694 
time PCR in CSF [40,41]; Hydrolysis probe real time PCR from buffy coat; and IgM and 695 
IgG assays from admission and follow-up serum (if there was a > 4-fold rise in antibody 696 
at follow-up) [42].   697 

• Leptospira spp. infections were detected using hydrolysis probe real-time PCR in CSF 698 
[43]; culturing of blood clot on EMJH medium; microscopic agglutination tests at 699 
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admission and follow-up (if there was a > 4-fold rise in antibody at follow-up)[44]; and 700 
hydrolysis probe real time RT-PCR from buffy coat [43]. 701 

The final etiology was determined based on the panel of diagnostic tests, including direct 702 
detection of pathogens in CSF or blood, IgM in CSF, seroconversion, or a 4-fold increase in 703 
antibody titer between the date of admission and follow-up serum samples. When more than 1 704 
pathogen was present, direct tests were prioritized over indirect tests and presence in the CSF 705 
was prioritized over presence in the blood.  706 

 707 

 708 

 709 

 710 

 711 

 712 

 713 

 714 

 715 

 716 

 717 

 718 

 719 

 720 

 721 

 722 

 723 

 724 

 725 

 726 
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Supporting Materials II: Spatial point patterns  727 

The spatial distribution of villages from which study patients originated were indicated through 728 
maps of village locations, standard distance deviations (SDDs), and standard deviational ellipses 729 
(SDEs). Both SDDs and SDEs provide a visual representation of the central tendency and spread 730 
of points across a landscape [45,46]. SDEs also indicate potential anisotropy.  731 

The SDD gives an indication of how points deviate from the mean center. The formula for the 732 
SDD is: 733 

 734 

𝑆𝑆𝑆𝑆𝑆𝑆 = �∑ (𝑥𝑥𝑖𝑖 − 𝑋𝑋𝑀𝑀𝑀𝑀)2 +  ∑ (𝑦𝑦𝑖𝑖 − 𝑌𝑌𝑀𝑀𝑀𝑀)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 735 

 736 

where xi and yi are geographic references for point i; 737 
{XMC, YMC} is the geometric mean center (MC) for the features. 738 
 739 

The SDE differs from the SDD in that the X- and Y-axes are calculated separately and the 740 
orientation is not necessarily horizontal/vertical. The Y-axis is rotated clockwise until the sum of 741 
the squares of the distances between points (village locations) and axes are minimized. The angle 742 
is defined as: 743 

 744 

𝜃𝜃745 

= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �
[∑ (𝑥𝑥𝑖𝑖 − 𝑋𝑋𝑀𝑀𝑀𝑀)2𝑛𝑛

𝑖𝑖=1 − ∑ (𝑦𝑦𝑖𝑖 − 𝑌𝑌𝑀𝑀𝑀𝑀)2𝑛𝑛
𝑖𝑖=1 ] + �[{(∑ (𝑥𝑥𝑖𝑖 − 𝑋𝑋𝑀𝑀𝑀𝑀)2 − ∑ (𝑦𝑦𝑖𝑖 − 𝑌𝑌𝑀𝑀𝑀𝑀)2𝑛𝑛

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1 )}2 + 4{∑ (𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1
2∑ (𝑥𝑥𝑖𝑖 − 𝑋𝑋𝑀𝑀𝑀𝑀)(𝑦𝑦𝑖𝑖 − 𝑌𝑌𝑀𝑀𝑀𝑀)𝑛𝑛

𝑖𝑖=1
 746 

 747 

The standard deviation is then calculated along both the shifted X- and Y-axes: 748 

𝑠𝑠𝑋𝑋 =  �
∑ [(𝑥𝑥𝑖𝑖 − 𝑋𝑋𝑀𝑀𝑀𝑀) cos𝜃𝜃 − (𝑦𝑦𝑖𝑖 − 𝑌𝑌𝑀𝑀𝑀𝑀) sin𝜃𝜃]𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 749 

 750 

𝑠𝑠𝑌𝑌 = �∑ [(𝑥𝑥𝑖𝑖 − 𝑋𝑋𝑀𝑀𝑀𝑀) sin𝜃𝜃 + (𝑦𝑦𝑖𝑖 − 𝑌𝑌𝑀𝑀𝑀𝑀) cos 𝜃𝜃]𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 751 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted September 11, 2019. ; https://doi.org/10.1101/19005884doi: medRxiv preprint 

https://doi.org/10.1101/19005884
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 
 

 752 

. 753 

 754 

The output of these statistics is traditionally mapped as an ellipse; with 1, 2, or 3 standard 755 
deviations (roughly corresponding to 63, 98, or 99 % of all geographic points, respectively). 756 
Spatial point patterns that are isotropic will result in an SDE that is equal to the standard distance 757 
deviation (SDD), resulting in a circular map layer rather than an ellipse. 758 

Both the SDD and SDE can be weighted (for example, if multiple cases come from a single 759 
location).  760 

 761 

 762 

 763 

 764 

 765 

 766 

 767 

 768 

 769 

 770 

 771 

 772 

 773 

 774 

 775 

 776 

 777 

 778 
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Supporting Materials III: Environmental Indices (EIs) 779 

The photosynthetic components of vegetation (i.e. chlorophyll) absorb visible light, especially in 780 
the Red and Blue wavelengths. Conversely, most infrared radiation is reflected by healthy 781 
vegetation. The contrast between Red and near-infrared (NIR) responses therefore provides an 782 
estimate of healthy vegetation.   783 

One common measure of landscape vegetation is the normalized difference vegetation index 784 
(NDVI [47]) which is frequently defined as: 785 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅

 786 

. 787 

This simple measurement is sensitive to atmospheric effects and dense canopy structure [48]. 788 
While NIR can pass through multiple layers of canopy structure, Red typically cannot. In areas 789 
with high vegetation density NDVI quickly becomes saturated. An improved metric has been 790 
developed to account for these problems, referred to as the enhanced vegetation index (EVI 791 
[49]). This metric uses the difference between Red and Blue reflectances as an estimator of 792 
atmospheric influence level on the vegetation index. EVI is commonly specified as:  793 

 794 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐺𝐺
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅

𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐶𝐶1𝑅𝑅𝑅𝑅𝑅𝑅 − 𝐶𝐶2𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + 𝐿𝐿
 795 

 796 

; where L is the canopy background adjustment;  797 
C1 and C2 are coefficients of an aerosol resistance term;  798 
and G is a scaling factor.  799 
 800 
A variety of similar indices have been proposed to measure water content, either within 801 
vegetation (i.e. measuring drought conditions or identifying areas that have been burned) or as 802 
surface water. In general, indices that use a combination of NIR and shortwave infrared 803 
responses (SWIR) have been proposed to measure within-vegetation water content whereas those 804 
that use a combination of visible spectral regions (VIS) and SWIR are usually proposed for 805 
identifying water bodies.  806 

Almost all include a SWIR component because infrared in these wavelengths are well- absorbed 807 
by water (see [50], for example). Following Boschetti et al [51] we use the following normalized 808 
flooding index (NFI):  809 
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𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2
𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2

 810 

; where SWIR2 is shortwave infrared radiation 2 (~ 1640nm).  811 

 812 

 813 

 814 

 815 

 816 

 817 

 818 

 819 

 820 

 821 

 822 

 823 

 824 

 825 

 826 

 827 

 828 

 829 

 830 

 831 

 832 

 833 
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Supporting Materials IV: Statistical model selection 834 

Formal multivariable analysis was conducted on both the village- and individual-level datasets. 835 
Small case numbers for mono-infections limited our multivariable analyses to an analysis of 836 
study patient home villages and comparison villages as well as the most commonly diagnosed 837 
infection: JEV. The village-level data were coded as a “1” or “0” based on whether or not the 838 
village was home to an study patient; and whether or not the village was home to an study patient 839 
diagnosed with JEV. The individual-level dataset was likewise coded with a “1” or “0” based on 840 
whether or not the individual was diagnosed with a JEV infection (all patients in the individual-841 
level data had an LP).  842 

We began with an exploratory multivariable analysis using generalized additive models (GAMs) 843 
with a binomial distribution (logistic GAMs). The use of GAMs allowed us to explore the 844 
potentially non-linear shape of the association between continuous environmental predictors 845 
(NDVI, EVI, and NFI) and the outcome variables and informed our final model selection and 846 
variable specification.  847 

Our first GAMs included both NDVI and EVI, which are considered complimentary to each 848 
other [49]. The models showed a high degree of concurvity between these two covariates, almost 849 
no added benefit (from model fit statistics), and no detectable effect of the NDVI covariate. In 850 
subsequent models we therefore retained only EVI as a measure of vegetation.  851 

Village-level GAMs began with village geographic (elevation, distance to nearest major road) 852 
and demographic (village population size) covariates. A second model was then specified 853 
including the environmental covariates at the 2km buffer size around each village. Subsequent 854 
models tested larger buffer sizes (5km and 10km), investigating overall model fit using the 855 
Akaike Information Criterion (AIC) and the explained deviance. The smoothed functions were 856 
chosen using restricted maximum likelihood (REML).   857 

The village-level GAM for all study patients (that is, all patients who had an LP regardless of 858 
diagnosis) showed statistically significant contributions from NFI, EVI, village population, 859 
distance to the nearest major road, and elevation. The effects of NFI, EVI, and village population 860 
were positive while the effects for distance to the nearest major road and elevation were 861 
negative. The effects for NFI, EVI, village population, and elevation all appeared curvilinear. 862 
The village level model for JEV villages (villages from which LP patients who were diagnosed 863 
with JEV came) indicated that only village population was a significant predictor, with a 864 
curvilinear effect.  865 

Individual-level models began with village- (village population, elevation, distance to the nearest 866 
major road) and individual- (age, gender, admission quarter and year) level variables. 867 
Environmental variables were first added at the 2km buffer size and for the year prior to 868 
admission. Subsequent models tested larger buffer sizes until the AIC was minimized. The 10km 869 
buffer appeared to provide the best model fit. The temporal resolution was then varied at the 870 
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10km buffer size, beginning with 1 year mean prior to admission, then 2 months mean prior to 871 
admission, and finally within the same month as admission. The best fitting model appeared to 872 
be the 10km buffer and measures from the same month as admission.  873 

Both NFI and EVI show seasonal variations and calendar month is a strong predictor of NFI. In 874 
order to account for concurvity in the GAMs and collinearity in the subsequent logistic 875 
generalized linear models, we transformed the environmental variables to quartiles for 876 
subsequent models. This transformation allows for easy interpretation of covariate effects, allows 877 
for non-linear associations between the covariate and the outcome of interest, and allows the 878 
model to simultaneously address both the seasonality in cases (especially JEV) and the apparent 879 
associations with surface water (NFI).  880 

All other continuous variables were centered on their means and standardized by their standard 881 
deviations.  882 

The final village-level model was a logistic regression and the final individual-level model was a 883 
mixed effects logistic regression, with a random intercept for village, both using these 884 
transformed and standardized variables.  885 
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SUPPORTING FIGURES 900 

 901 

Supporting Figure 1: Diagram of data processing and aggregation. Four different data sources 902 
are used (indicated by boxes with dashed lines). Two main datasets are created from the 903 
combined sources (indicated by boxes shaded in grey): an individual-level dataset (one row per 904 
patient) and a village-level dataset (one row per village). NDVI indicates the normalized 905 
differential vegetation index, EVI indicates the enhanced vegetation index, and NFI indicates the 906 
normalized flooding index.  907 
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Supporting Figure 2: Subset of villages selected for village level analysis. A standard 918 
deviational ellipse ((SDE) with 3 standard deviations) was drawn around the home villages of all 919 
LP patients. All villages within that SDE were selected for the village level analysis. 920 
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Supporting Figure 3: Major roads (dark black lines) downloaded from OpenStreetMaps (2017) 930 
for use in calculating the Euclidian distance from each village to the nearest major road.  Roads 931 
included “primary”, “secondary”, and all major connecting roads. 932 
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Supporting Figure 4: Mean village population (and 95% CI) by diagnosis 944 

 945 

 946 

Supporting Figure 5: Mean village elevation (and 95% CI) by LP diagnosis 947 
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