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Abstract

We present our package, mrbayes, for the open source software environment R. The package imple-

ments Bayesian estimation for IVW and MR-Egger models, including the radial MR-Egger model, for

summary-level data in Mendelian randomization analyses. Users have the option of fitting the models

using either JAGS or Stan software packages. We have implemented a choice of prior distributions for the

model parameters, namely; weakly informative, non-informative, a joint prior for the MR-Egger model

slope and intercept, and an informative prior (pseudo-horseshoe prior), or the user can specify their own

prior. Similar prior distributions are included using the Stan software with the exception of a user-defined

prior. We include We show how to use the package through an applied example investigating the causal

effect of BMI on acute ischemic stroke. In future work, we plan to provide functions for Multivariable

MR estimation.

Availability

The package is freely available, under the MIT license, on GitHub here https://github.com/okezie94/

mrbayes.

It can be installed in R using the following commands.

# install.packages("remotes") # uncomment if remotes not installed

remotes::install_github("okezie94/mrbayes")

There is a website of the package helpfiles at https://okezie94.github.io/mrbayes/.
∗Department of Mathematics and Statistics, Lancaster University, Lancaster, UK
†Faculty of Health and Medicine, Lancaster University, Lancaster, UK
‡MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK. Population Health Sciences, Bristol Medical School,

University of Bristol, Bristol, UK

1

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. not certified by peer review)

(which wasThe copyright holder for this preprint this version posted August 20, 2020. ; https://doi.org/10.1101/19005868doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://github.com/okezie94/mrbayes
https://github.com/okezie94/mrbayes
https://okezie94.github.io/mrbayes/
https://doi.org/10.1101/19005868
http://creativecommons.org/licenses/by/4.0/


Introduction

Observational epidemiology is limited by possible bias due to unmeasured confounders, reverse causation and

other problems. Mendelian randomization (MR) is a method of testing and estimating causal effects for the

aetiology of diseases1. MR uses genetic variants as instrumental variables related to a modifiable phenotype

to estimate a causal effect of the phenotype on a disease outcome. By including multiple instruments, we

can increase power for hypothesis testing. The trade-off with this approach is the risk of violating the second

and third instrumental variable assumptions due to horizontal pleiotropy.

Genome wide association studies (GWAS) provide many potential instruments, and we can obtain summary-

level datasets for MR analyses. For two-sample MR, we get the values of instrument-phenotype associations

and instrument-outcome associations from different samples.

The inverse variance weighted (IVW) model estimates the causal effect for multiple independent instruments

in summary data. However, in the presence of pleiotropy its estimates are biased. Methods have been derived

which estimate causal effects that are robust to pleiotropy; such as the MR-Egger model.2 The MR-Egger

model relies on its InSIDE (Instrument strength is independent of direct effect) assumption. The MR-

Egger model has recently been adapted with its radial formulation which has the advantage of viewing the

instrument specific IV estimates in a radial plot and the IVW model is its sub-model3.

Extending MR analysis with Bayesian estimation allows specification of prior distributions on the model

parameters. Several authors have considered Bayesian estimation of MR models including assessing different

model parameterisations and Bayesian model averaging.4,5. Bayesian methods have also been applied towards

dependant instruments and invalid instruments6. The use of weakly informative prior distributions in the

MR-Egger model has been shown to have good coverage properties8.

This paper introduces our mrbayes R package that implements Bayesian estimation of the IVW, MR-Egger,

and Radial MR-Egger models. The models are estimated using Markov chain Monte Carlo(MCMC) methods

through an R interface to the JAGS and Stan software (using the rjags and rstan packages).9,10 Our package

includes some specified prior distributions; non-informative, weakly informative, a shrinkage prior on the

causal effect estimate (Pseudo-Horseshoe prior), and a joint prior on the intercept and causal effect estimate

in the MR-Egger and radial MR-Egger models. The package also allows users to specify their own prior

distributions within JAGS software.

In the next section, we briefly introduce the models included in our package. We then introduce the features

of our mrbayes package, and we show how to use the package in an applied example. The supplementary

material includes additional points relating to the methodology and examples.
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Methods

Equations (1), (2) and (3) denote the IVW, MR-Egger and Radial MR-Egger models respectively. Please

see the supplementary material for additional explanation of the models.

IVW Γ̂j = βγ̂j + σyj
εj ; εj ∼ N(0, 1). (1)

MR-Egger Γ̂j = α+ βγ̂j + σyj
εj , εj ∼ N(0, σ2). (2)

Radial MR-Egger β̂j
√
wj = α+ β

√
wj + εj , εj ∼ N(0, σ2). (3)

Prior Distributions

Table 1 gives a summary of the default prior distributions for the parameters in the mrbayes package.

The supplementary material gives additional details about the prior distributions for the model including a

covariance between intercept and slope in the MR-Egger models.

Table 1: Formula for default prior models in mrbayes. For functions in IVW model, there is no α parameter

Model Priors

Uninformative Priors α ∼ N(0, 1000), β ∼ N(0, 1000), σ ∼ U(0.0001, 10)

Weakly-Informative Priors α ∼ N(0, 1), β ∼ N(0, 1), σ ∼ U(0.0001, 10)

Pseudo-Horseshoe Priors α ∼ N(0, 1), β ∼ C(0, 1), σ ∼ IG(0.5, 0.5)

Joint Priors Please see supplementary material

Implementation

Our mrbayes package provides the following functions:

• mr_format, a function for setting up the summary-level dataset for analysis.

The functions that use JAGS/Stan software are;

• mr_ivw_rjags/mr_ivw_stan, a function for estimating causal effects using the Bayesian IVW model,

with a choice of prior distributions;
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• mr_egger_rjags/mr_egger_stan, a function for estimating causal effects through the Bayesian MR-

Egger model, with a choice of prior distributions;

• mr_radialegger_rjags/mr_radialegger_stan, a function for performing Bayesian analysis under the

radial formulation of MR-Egger.

The package allows users:

• to specify custom prior distributions for the estimate of the causal effect (betaprior) and optionally

for the residual standard error (sigmaprior) for the MR-Egger models (original and radial). This

option is only for _rjags functions, the prior distributions are written in the JAGS syntax. For more

information on how to specify prior distributions see page 34 of JAGS manual;11

• to choose a random seed for reproducible results and to choose the number of chains for MCMC, each

chain should have a different seed;

• to set parameter rho, the correlation coefficient between the average pleiotropic effect and causal

estimate. This option is only relevant when using the joint prior method;

• to plot the posterior density and investigate the MCMC diagnostics.

The package also includes two summary-level datasets containing:

• 185 SNPs with multiple instrument-phenotype associations for low-density lipoprotein cholesterol

(LDL-c), while the instrument-outcome associations for coronary heart disease (CHD);12

• 14 SNPs with instrument-phenotype associations of body mass index (BMI) and instrument-outcome

associations of insulin resistance .13

The next section shows an applied example with instructions in r code chunks on how to use the package.

Example: Investigating the effect of BMI on acute ischemic stroke

We demonstrate the package using the motivating example by zhao and colleagues 14 which is also the

example dataset in mr.raps for estimating the causal effect of body mass index (BMI) on acute ischemic

stroke (AIS). We estimate the causal effect on the summary-level dataset with GWAS p-value threshold as

p ≤ 5 × 10−8 and when all the instruments are included. We apply the prior distributions in table 1 and

compare with the frequentist model. Firstly, we load the package into our R session (See the Availability

section for installation instructions).
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library(mrbayes)

The next stage involves the setting up the dataset by using the mr_format() function. In our illustration

the datasets are denoted as bmi1 and bmi2;

dat <-

mr_format(

rsid = bmi1$SNP,

xbeta = bmi1$beta.exposure,

ybeta = bmi1$beta.outcome,

xse = bmi1$se.exposure,

yse = bmi1$se.outcome

)

dat2 <-

mr_format(

rsid = bmi2$SNP,

xbeta = bmi2$beta.exposure,

ybeta = bmi2$beta.outcome,

xse = bmi2$se.exposure,

yse = bmi2$se.outcome

)

We show the R syntax to estimate the Bayesian models using the default prior distributions. The code chunk

below describes the syntax for each prior distributions for JAGS and Stan software. For the joint prior we

assume the correlation between the intercept and slope is 0.5.

## weakly informative prior

### JAGS

vague_ivw <-

mr_ivw_rjags(

dat,

prior = "weak",

seed = c(123456, 456789, 342564),

n.chains = 3

)
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vague_mregger <-

mr_egger_rjags(

dat,

prior = "weak",

seed = c(123456, 456789, 342564),

n.chains = 3

)

vague_radmregger <-

mr_radialegger_rjags(

dat,

prior = "weak",

seed = c(123456, 456789, 342564),

n.chains = 3

)

### Stan

vague_ivw_stan <-

mr_ivw_stan(dat,

prior = 2,

seed = 12345,

n.chains = 3)

vague_mregger_stan <-

mr_egger_stan(dat,

prior = 2,

seed = 12345,

n.chains = 3)

vague_radmregger_stan <-

mr_radialegger_stan(dat,

prior = 2,

seed = 12345,

n.chains = 3)

## Default shrinkage prior
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### JAGS

pseudo_ivw <-

mr_ivw_rjags(

dat,

prior = "pseudo",

seed = c(123456, 456789, 342564),

n.chains = 3

)

pseudo_mregger <-

mr_egger_rjags(

dat,

prior = "pseudo",

seed = c(123456, 456789, 342564),

n.chains = 3

)

pseudo_radmregger <-

mr_radialegger_rjags(

dat,

prior = "pseudo",

seed = c(123456, 456789, 342564),

n.chains = 3

)

### Stan

pseudo_ivw_stan <-

mr_ivw_stan(dat,

prior = 3,

seed = 12345,

n.chains = 3)

pseudo_mregger_stan <-

mr_egger_stan(dat,

prior = 3,

seed = 12345,
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n.chains = 3)

pseudo_radmregger_stan <-

mr_radialegger_stan(dat,

prior = 3,

seed = 12345,

n.chains = 3)

## Joint Prior

### JAGS

joint_mregger <-

mr_egger_rjags(

dat,

prior = "joint",

rho = 0.5,

seed = c(123456, 456789, 342564),

n.chains = 3

)

joint_radmregger <-

mr_radialegger_rjags(

dat,

prior = "joint",

rho = 0.5,

seed = c(123456, 456789, 342564),

n.chains = 3

)

### Stan

joint_mregger_stan <-

mr_egger_stan(dat,

prior = 4,

seed = 12345,

n.chains = 3)
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joint_radmregger_stan <-

mr_radialegger_stan(dat,

prior = 4,

seed = 12345,

n.chains = 3)

The estimates and credible intervals from JAGS and Stan models are similar, we include estimates from JAGS

in tables 2 and 3. The estimates derived from the models are seen in Tables 2 and 3 (dataset including all the

instruments). In summary, estimates from the prior distributions for the MR-Egger model are consistent,

figure 1 shows a graphical summary.
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Figure 1: BMI and AIS

Conclusion

We present an R package, mrbayes, to perform Bayesian estimation of the IVW and MR-Egger models

implemented through the JAGS and Stan software. In our example, we demonstrated the use of several

different prior distributions to estimate the causal and average pleiotropic effects from these models.

There are several R packages providing functions for MR analyses. The MendelianRandomization and

TwoSampleMR packages implement various two-sample MR methods.15,16 The RadialMR R package imple-

ments the radial MR models and visualization of instruments through radial plots.3,17 Bayesian methods

have not gained popularity in applied studies due to availability of a user-friendly software18. Our pack-

age complements previous MR packages by offering a Bayesian perspective with the choice of four prior

distributions for the causal effect; non-informative, weakly informative, pseudo-horseshoe, and a joint prior

distribution for the MR-Egger model’s intercept and slope.
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In a Bayesian analysis the prior distributions can have an important impact upon the final parameter

estimates. Hence in the mrbayes package we offer a choice of prior distributions. In future work, we plan to

provide functions for multivariate models.
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