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Abstract 1 

Forecasting the spatiotemporal spread of infectious diseases during an outbreak is an 2 

important component of epidemic response. However, it remains challenging both 3 

methodologically and with respect to data requirements as disease spread is influenced by 4 

numerous factors, including the pathogen’s underlying transmission parameters and 5 

epidemiological dynamics, social networks and population connectivity, and environmental 6 

conditions. Here, using data from Sierra Leone we analyze the spatiotemporal dynamics of 7 

recent cholera and Ebola outbreaks and compare and contrast the spread of these two 8 

pathogens in the same population. We develop a simulation model of the spatial spread of an 9 

epidemic in order to examine the impact of a pathogen’s incubation period on the dynamics of 10 

spread and the predictability of outbreaks. We find that differences in the incubation period 11 

alone can determine the limits of predictability for diseases with different natural history, both 12 

empirically and in our simulations. Our results show that diseases with longer incubation 13 

periods, such as Ebola, where infected individuals can travel further before becoming 14 

infectious, result in more long-distance sparking events and less predictable disease 15 

trajectories, as compared to the more predictable wave-like spread of diseases with shorter 16 

incubation periods, such as cholera.  17 
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Significance statement 23 

Understanding how infectious diseases spread is critical for preventing and containing 24 

outbreaks. While advances have been made in forecasting epidemics, much is still unknown. 25 

Here we show that the incubation period – the time between exposure to a pathogen and 26 

onset of symptoms – is an important factor in predicting spatiotemporal spread of disease and 27 

provides one explanation for the different trajectories of the recent Ebola and cholera 28 

outbreaks in Sierra Leone. We find that outbreaks of pathogens with longer incubation periods, 29 

such as Ebola, tend to have less predictable spread, whereas pathogens with shorter incubation 30 

periods, such as cholera, spread in a more predictable, wavelike pattern. These findings have 31 

implications for the scale and timing of reactive interventions, such as vaccination campaigns. 32 

 33 

Introduction 34 

Epidemics of emerging infectious diseases such as Ebola and Zika underscore the need 35 

to improve global capacity for surveillance and response (1–3). Forecasting the spatiotemporal 36 

spread of infectious diseases during an outbreak can enable responders to stay ahead of an 37 

epidemic, but it remains challenging both methodologically and with respect to data 38 

requirements. Disease spread is influenced by factors, including: the pathogen’s underlying 39 

transmission parameters and epidemiological dynamics; social networks and population 40 

connectivity; and environmental conditions (4–7). Previous forecasting efforts have had varying 41 

levels of success in predicting the total number of cases and spatiotemporal spread of 42 

outbreaks like Ebola, and few have actually been used in real time in the midst of an epidemic 43 

(5). Efforts to understand the likely performance of forecasts have shown that heterogeneity in 44 
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contact structure and number of secondary infections can pose challenges, but reasonable 45 

predictions can be made in some cases, depending on disease-specific parameters (4). 46 

However, the epidemiological attributes that determine predictability remain poorly defined in 47 

real-world settings. 48 

The time taken for individuals to become infectious (the latent period) and symptomatic 49 

(the incubation period) following infection, and the relationship between the two, have been 50 

shown to play a large role in the epidemic potential of diseases (7–9). In particular, transmission 51 

that occurs during the incubation period before an individual develops symptoms can 52 

contribute to rapid disease spread. When the latent period is shorter than the incubation 53 

period for an infectious individual, pre-symptomatic transmission can be a strong driver of the 54 

total number of secondary infections by an infectious individual in a completely susceptible 55 

population (i.e. R0) (8, 9). Indeed, the basis of contact tracing protocols during an outbreak 56 

reflect the need to identify and contain individuals during the incubation period, and the 57 

relative effectiveness of interventions such as symptom monitoring or quarantine significantly 58 

depends on the relationship between infectiousness and symptoms (9). The incubation period 59 

is also likely to play a particularly important role in determining the spatial spread of an 60 

epidemic because one’s typical travel may continue prior to symptom onset, whereas travel 61 

behavior may change or stop altogether during illness (10), particularly when symptoms are 62 

severe or immobilizing.  63 

Back-to-back epidemics of cholera (2012-2013) and Ebola (2014-2015) in Sierra Leone 64 

present a unique opportunity to compare the spatial dynamics of two epidemics in the same 65 

population caused by pathogens with notable similarities in both the drivers of outbreaks and 66 
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the interventions used to curtail them, including oral rehydration (11, 12). Both are transmitted 67 

through contact with contaminated diarrhea or vomitus (plus other bodily fluids for Ebola), and 68 

the reproductive number (R0) for both diseases is thought to be between 1 and 3 (13, 14). Both 69 

diseases can cause immobilizing gastrointestinal symptoms of diarrhea and vomiting and, 70 

untreated, their case fatality rates can exceed 50% (15, 16). Cultural factors and rituals, such as 71 

traditional funeral practices, are known to influence the spread of both cholera (17) and Ebola  72 

(18), while water, sanitation, and hygiene (WASH) programs are often used to slow the spread 73 

of each (19). Both epidemics occurred against a backdrop of an immunologically naïve 74 

population. Presumably, travel patterns and the density and distribution of people were 75 

broadly similar over the time period in question. One critical difference between the dynamics 76 

of these diseases, however, is the incubation period, which is estimated at a median of 8-12 77 

days between infection and onset of symptoms for Ebola (1) and only 1-2 days for cholera (20). 78 

We hypothesize that the disease incubation period may be a particularly influential 79 

driver of different patterns of disease spread through space and time. We analyze the 80 

spatiotemporal dynamics of a cholera outbreak and an Ebola outbreak in Sierra Leone, both of 81 

which occurred over a similar time period. We develop a simulation model of the spatial spread 82 

of an epidemic and examine the impact of the incubation period on the dynamics of spread and 83 

the predictability of outbreaks. We find that differences in the incubation period alone can 84 

determine the limits of predictability for these diseases with different natural history, both 85 

empirically and in our simulations. Our results show that diseases with longer incubation 86 

periods, such as Ebola, where infected individuals can travel further before becoming 87 

infectious, result in more long-distance sparking events and less predictable disease 88 
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trajectories, as compared to the more predictable wave-like spread of diseases with shorter 89 

incubation periods, such as cholera.     90 

 91 

Results 92 

We first summarize the cholera and Ebola epidemics in terms of their dynamics in time 93 

and space. More cases were reported during the cholera epidemic (22,691) than during the 94 

Ebola epidemic (11,903); however, far fewer cholera cases were fatal (324 vs. 3,956). Both 95 

epidemics lasted for similar periods of time, with cholera (January 7, 2012 – May 14, 2013) 96 

occurring two years prior to Ebola (May 18, 2014 – September 12, 2015). The times between 97 

the onset of an outbreak and when half or all of its cases were reported were longer when 98 

outbreaks were aggregated by district instead of chiefdom (Figure 1), which has implications for 99 

the optimal scale for surveillance and response measures. The median time for a chiefdom 100 

cholera outbreak to report half its case total was 3.9 weeks, and median outbreak duration was 101 

11.3 weeks. The median time for district outbreaks to report half their cholera cases was 7.9 102 

weeks, and the median outbreak duration was 43.7 weeks. Analysis of Ebola revealed similar 103 

trends, with chiefdoms reporting half of their cases at a median of 13.9 weeks and median 104 

outbreak duration of 43.3 weeks, and districts reporting half of their cases at a median of 23.5 105 

weeks and median outbreak duration of 64.1 weeks.   106 

Both the cholera and Ebola epidemics were widespread, each reaching more than 75% 107 

of the country’s chiefdoms. However, their trajectories differed. The spread of cholera from the 108 

northwest followed a radial spatial dispersion gradually in all directions for the first six months, 109 

while Ebola spread from the southeast for two months before rapid expansion to the northwest 110 
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which sparked the national epidemic (Figure 2 A-B). These findings were statistically supported 111 

by space-time analysis of each epidemic, which revealed clusters of high case reporting of both 112 

diseases in western Sierra Leone and unique clusters of cholera in the south and Ebola in the 113 

east (Figure S1). The wave front of chiefdom cholera outbreak onset progressed more slowly 114 

and gradually than for Ebola, which exhibited faster and more discontinuous expansion as 115 

shown by the larger spacing between monthly contour lines (Figure 2 A-B). Despite their 116 

different trajectories, the geography of the epidemics largely overlapped, with clusters of high 117 

cumulative attack rates of cholera and Ebola observed in the north and west regions of Sierra 118 

Leone (Figures 2 C-D) and confirmed through Local Moran’s I methods (Figure S2).  119 

As a daily estimate of transmission intensity, we recorded the effective reproductive 120 

number (Rt) and its variation over time nationally and by region (Figure 3). While some areas 121 

sustained transmission (i.e., Rt > 1) of both cholera and Ebola for many days (e.g., Freetown in 122 

the west and Kenema Town in the east), most chiefdoms recorded either zero cases or zero 123 

days with Rt > 1 (Figure S3). As expected, transmission intensity of both diseases was positively 124 

correlated in chiefdoms near each other (Figure S4). Correlation decayed with distance, 125 

consistent with local disease spread, and inter-chiefdom distances of over 100km eliminated 126 

any evidence of positive correlation of disease presence, chiefdom outbreak time, case count, 127 

and cumulative attack rate (Figure S4). These metrics appear more highly correlated in space 128 

for cholera than for Ebola, although the confidence intervals overlap.  129 

 130 

Simulations 131 
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Our simulations show a systematic relationship between the incubation period and 132 

spatiotemporal patterns of disease spread. As expected, simulated epidemic curves of diseases 133 

with shorter incubation periods were more acute while diseases with longer incubation periods 134 

peaked later (Figure 4A). Although epidemics tend to last longer for diseases with longer 135 

incubation periods, the spread of the disease to more distant locations can progress more 136 

quickly, causing a discontinuous and more rapidly spreading wave front (Figure 4 C-D). In the 137 

first 50 days of our simulations, locations further from the origin of the epidemic experienced 138 

cases earlier on average in simulations with longer incubation periods compared to those with 139 

shorter incubation periods, likely due to long-distance sparking events from infected agents 140 

traveling during the incubation period (Figure 4B). The dispersion kernel Kx(d), the probability 141 

that an agent will end up at a position separated a distance d from the initial position after x 142 

days, is more homogeneously spread and has non-vanishing probabilities at greater distances 143 

the higher the incubation period, explaining the enhancement in sparking events (Figure S5). 144 

Simulations on a lattice with relative population size based on Sierra Leone’s chiefdom 145 

census data support the finding that the duration of epidemics is longer on a district (i.e. group 146 

of lattice points) rather than chiefdom (i.e. individual lattice point) scale, with duration 147 

lengthening with increasing incubation periods (Figure 5A).  148 

Consistent with the correlation analysis comparing Sierra Leone’s cholera and Ebola 149 

outbreaks, time series from simulated outbreaks with shorter incubation periods were more 150 

highly correlated than those from simulations with longer incubation periods, with correlation 151 

decaying as distance between locations on the lattice increased (Figure 5 B-C). Higher 152 

correlation suggests increased predictability, which the results of the overlap function support 153 
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(Figure 6). As the incubation period lengthened, the average predictability during the beginning 154 

of the outbreak decreased as the epidemics spread via unpredictable sparking patterns. 155 

Predictability plateaued as the outbreaks became widespread.  156 

 157 

Discussion 158 

 Analysis of the cholera and Ebola epidemics revealed commonalities and differences in 159 

the way these pathogens spread throughout Sierra Leone, and our simulations suggest the 160 

differences in the incubation period reproduce these differences. Spatial diffusion of Ebola 161 

occurred more quickly than cholera, as evidenced by the wave front contour lines and further 162 

supported by statistical tests considering a subset excluding cholera cases before the brief 163 

respite in June (Figure S6). Additionally, cholera metrics were more correlated in space than 164 

Ebola metrics. Our model simulations suggest that these findings are potentially due to the 165 

counter-intuitive role of the longer incubation period for Ebola as compared to cholera. Travel 166 

during the incubation period will be a key driver of geographic disease dispersion and 167 

predictability, especially in a population of individuals who decrease mobility when ill. 168 

Consequently, diseases with longer incubation periods will tend to have more long-distance 169 

sparking events caused by infected, but healthy, individuals traveling during the incubation 170 

period. This will result in faster epidemic dispersion to distant, unpredictable locations. These 171 

findings are in line with Marvel et al.’s results, which found epidemic wave fronts are less likely 172 

to occur for mobility kernels that decay more slowly (21); when the incubation period is longer, 173 

the effective kernel can span to more distant places, making sparking events more probable.  174 
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Similar results were also obtained when infectious agents did not decrease mobility 175 

when ill, suggesting that travel during the incubation period has more influence on correlation 176 

and predictability than travel during the infectious period. While many other factors will 177 

influence wave speed, continuity, and epidemic synchrony, our simulations showed that small 178 

changes in the incubation period can powerfully influence epidemic dynamics.  179 

The incubation period has already been recognized as an important component for 180 

understanding epidemics and control (8), with the conventional knowledge that long incubation 181 

periods allow more time for responders to scale-up interventions against the overall epidemic 182 

and are therefore advantageous for disease control efforts. Here we demonstrated a counter-183 

intuitive mechanism whereby a longer incubation period may in fact hinder a response by 184 

decreasing the predictability of outbreaks and increasing their geographic scope as well as of 185 

the needs of surveillance and response. We use simulations to reproduce the double-edged 186 

sword of the influence of the disease incubation period on reactive interventions.  187 

Reactive vaccination strategies exist for both cholera and Ebola outbreaks, and a better 188 

understanding of spatiotemporal spread can facilitate locally-preemptive vaccination to target 189 

locations at high risk of introduction (22–24). Reactive vaccination campaigns must consider 190 

both the expected duration of an outbreak at a given spatial scale and the predictability of its 191 

spread. For cholera, we showed that chiefdom outbreaks tended to report half their cases 192 

within approximately 4 weeks, suggesting reactive vaccination of a chiefdom triggered by 193 

detection of a case may not be early enough to avert an outbreak and instead intervening at a 194 

wider scale, such as districts, might provide more favorable timing for intervention targeting. 195 

We posit for future study that regional-ring vaccination strategies may be better suited to 196 
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diseases with short incubation periods, while contact-ring vaccination strategies may be better 197 

suited to diseases with longer incubation periods due to their regional unpredictability and the 198 

longer intervals between generations in infection. 199 

There are limitations to our work with regards to data as well as methods. Few cholera 200 

cases were confirmed during the epidemic and therefore we depend on the clinical definition as 201 

well as the cases that were detected and recorded by the surveillance system. Ebola 202 

surveillance data is similarly prone to differences in reporting rates, but the use of only 203 

confirmed cases yielded similar results. Our estimates for the effective reproductive number 204 

depend on, and absorb the limitations of, case data, serial interval estimates, and the chiefdom 205 

connectivity matrix. Specifically, we assume all cases in our dataset acquired infection from 206 

others in the dataset, thereby excluding missing cases and asymptomatic transmitters. 207 

However, this method has been shown to be robust to cases missing at random and we 208 

furthermore expect the role of asymptomatic transmission to be limited for both diseases due 209 

to the strong correlation between pathogen load, symptoms, and infectiousness (25, 26).  210 

Further, we assume no changes to the serial interval for either cholera or Ebola during 211 

the course of the epidemics. For cholera specifically, waterborne transmission could potentially 212 

lead to a heavy right-tail in serial intervals or change the distribution as pathogen accumulates 213 

or clears from a drinking source. Household data in Bangladesh, where the role of water 214 

contamination is expected to be large, suggest few serial intervals beyond 7 days (27). The 215 

geographic spread of cholera in Sierra Leone from the northwest and south towards the center 216 

of the country was not consistent with the direction of key waterways in the country, which 217 
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primarily run from the eastern highlands to the western shores, suggesting population density 218 

and human-to-human contact likely played a larger role than water sources in this outbreak.  219 

Finally, our simulation model provides a proof-of-concept test of the hypothesis of the 220 

impact of the incubation period on disease spread and makes several simplifying assumptions. 221 

These assumptions could be relaxed in future work, including the complete overlap of 222 

symptoms and infectiousness and constant diffusion of agents without increased probability of 223 

returning “home.” Other models for connectivity and movement could also be explored.  224 

The threat of cholera and Ebola re-emergence in Sierra Leone remains a concern (28). 225 

We have shown that differences in incubation period alone are a powerful driver of geographic 226 

dispersion and merit further study. Although this study only examines one epidemic from each 227 

disease, the size of these epidemics, combined with simulation results from our model, can 228 

lend information towards a better understanding of each disease and our ability to predict 229 

disease spread. This work can inform development of international preparedness and response 230 

strategies and ensure timely and effective interventions.  231 

 232 

Methods 233 

 234 

Data 235 

Cholera cases were reported to the Sierra Leone Ministry of Health and Sanitation by 236 

treatment facilities throughout Sierra Leone between January 1, 2012 and May 15, 2013. 237 

Following standard WHO definitions (29), a suspected cholera case was defined as acute onset 238 

of watery diarrhea or severe dehydration in a person aged five years or older in a region 239 
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without a known cholera outbreak; once the Government of Sierra Leone declared an outbreak 240 

of cholera on February 27, 2012, any case of acute watery diarrhea could henceforth be 241 

included as a suspected cholera case. Data were compiled and anonymized by the WHO for 242 

analysis, with case reports temporally resolved by day and spatially resolved by chiefdom. For 243 

Ebola, we used a published dataset of 8,358 confirmed and 3,545 suspected Ebola cases 244 

reported to the Sierra Leone Ministry of Health and Sanitation from May 2014 to September 245 

2015 (30). Our analysis included both suspected and confirmed cases of Ebola according to 246 

standard WHO definitions (31). Population estimates for 2012 and 2014 were imputed by 247 

chiefdom using a linear fit between chiefdom population estimates from the 2004 and 2015 248 

Population and Housing Censuses (32).  249 

Sierra Leone has four administrative regions, which are divided into fourteen districts. 250 

Freetown, the capital and largest city, is comprised of two districts; the remaining twelve 251 

districts are subdivided into 149 chiefdoms, with a median of 11.5 chiefdoms per district. 252 

Chiefdom, as the finest administrative unit available for cases of both cholera and Ebola, was 253 

considered the unit of observation and the unit of analysis (with the exception of cases in 254 

Freetown which were solely reported at district level), as it is the likely scale of intervention 255 

campaigns like vaccination. To understand what would have been observed at a coarser spatial 256 

scale that is more common for surveillance, we additionally aggregated cases by district.  257 

 258 

Spatiotemporal analysis 259 

We defined the first outbreak week for each chiefdom as the week of the first reported 260 

case in that chiefdom. We visualized outbreak spread using a contour map of outbreak wave 261 
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front direction and speed (30). Contours of spatial spread were generated using ArcMap 10.3.1 262 

Spatial Analyst extension by applying a fourth degree polynomial trend interpolation of 263 

chiefdom onset dates and generating contour lines of this surface in 2–4 week increments. 264 

With this method, more closely-spaced contour lines indicate slower propagation, similar to the 265 

slope of a topographic map of geographic elevation. 266 

To identify space-time clusters, using the SaTScan software package (33), we ran a 267 

retrospective discrete Poisson-based Scan Statistic over the entirety of the outbreaks for which 268 

data were available, namely 16 months of cholera data and 17 months of Ebola data. Disease 269 

case reports were assumed to be Poisson-distributed given chiefdom population size. The unit 270 

of time aggregation for the analysis was specified as the median incubation periods for each 271 

disease (1.5 days for cholera and 10 days for Ebola).  272 

  We calculated spline correlograms for four chiefdom outbreak metrics to measure 273 

spatial correlation of date of first case, case count, attack rate, and disease presence (yes/no). 274 

The maximum centroid-to-centroid distance was set to 150 km, approximately the radius of 275 

Sierra Leone. We used the spline.correlog function of the R package ncf for each disease and all 276 

chiefdom pairs (34).  277 

We estimated the daily effective reproductive number (Rt), the average number of 278 

onward infections generated by cases with onset on day t, using methods described by 279 

Wallinga and Teunis and extended to metapopulations by White et al. (35, 36). This maximum 280 

likelihood method estimates the probability that an observed case was the infector for each 281 

subsequent case by leveraging information on the daily case count, the serial interval 282 

distribution (i.e., the time between symptom onset of an infector-infectee pair), and a weights 283 
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matrix that quantifies relative contact frequency within and between chiefdoms. The serial 284 

interval for cholera was assumed to follow a gamma distribution (rate = 0.1, shape = 0.5) with a 285 

median of five days, as has been used previously after consideration of both fast, person-to-286 

person, and slow, environmental, transmission routes (37, 38). The serial interval for Ebola was 287 

assumed to follow a gamma distribution (rate = 0.17, shape = 2.59) with a median of 13.3 days 288 

derived from the estimates by the WHO Ebola Response Team (1). The contact frequency 289 

between two given chiefdoms was assumed to decrease with squared distance between the 290 

chiefdom centroids. Additional weights matrices with different functional forms for distance 291 

decay yielded qualitatively similar measurements of Rt. 292 

 293 

Model 294 

We simulated an agent-based model with 45,000 agents distributed equally in 150 295 

locations, evenly spaced on a 15 x 10 lattice. Infected agents progressed through a traditional 296 

Susceptible-Exposed-Infectious-Recovered (SEIR) compartmental transmission framework. We 297 

assumed the incubation period (i.e. the time from exposure to symptom onset) overlapped 298 

completely with the latent period (i.e. the time from exposure to onset of infectiousness). 299 

Similarly, the duration of illnesses (5 days) aligned with the duration of infectiousness. 300 

Movement of agents between two locations was based on a gravity model, whereby 301 

connectivity was proportional to the population sizes of each location and the inverse squared 302 

distance between them (39). Different parametrizations of the gravity model, as well as 303 

simulations with relative population size based on Sierra Leone’s chiefdom census data (40), 304 

yielded similar results.  305 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. not certified by peer review)

(which wasThe copyright holder for this preprint this version posted August 1, 2019. ; https://doi.org/10.1101/19003525doi: medRxiv preprint 

https://doi.org/10.1101/19003525
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

16 

Susceptible, exposed, and recovered individuals had a daily probability of movement. To 306 

simulate the impact of a reduction in mobility during illness, agents in the model had their 307 

movement reduced as far as zero throughout the course of their period of infectiousness (and, 308 

equivalently, illness). Holding all other parameters constant, we conducted 700 simulations of 309 

epidemics for incubation periods ranging from 1 to 14 days. We seeded the epidemic at the 310 

same location near the center of the lattice for all simulations.  311 

Synchrony was assessed with the R package ncf functions mSynch and Correlog.Nc (34), 312 

which both estimate the correlation between the time series in each of the 150 locations across 313 

the 500 days of the simulations, with the latter incorporating distance (34). which both 314 

estimate the correlation between the time series in each of the 150 locations across the 500 315 

days of the simulations, with the latter incorporating distance. To assess the impact of the 316 

incubation period on the initial speed of spread, we calculated the average start time across all 317 

locations in the first 50 days of the outbreaks as well as at increasing distances from the 318 

location on the lattice where the outbreaks began.  319 

To estimate the predictability of outbreak spread in space and time, we adapted an 320 

overlap function used to measure predictability of a SARS outbreak (7). In each simulation, a 321 

vector 𝜋"(𝑡) represents the proportion of all infected individuals at time (t) who are at location 322 

(j). In a system with high predictability, 𝜋"(𝑡) will be similar across simulations. The overlap 323 

between simulations I and II can be estimated by: Θ(t) = ∑ '𝜋"((𝑡) ∗ 𝜋"(((𝑡)" . Θ(t) ranges from 0 324 

to 1 with a higher value indicating more overlap and thus more predictability. We estimated 325 

predictability at each time point by calculating the average of the overlap functions for each 326 

pair of simulations for each incubation period. We calculated the average overlap across time 327 
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points to provide a summary metric for predictability of each incubation period. Code and data 328 

are available on Github (41).  329 
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 427 

Figure legends 428 

Figure 1. The proportion of cholera and Ebola cases reported over time differed between 429 

district and chiefdom level. The times between the onset of an outbreak and when half or all of 430 

its cases were reported were longer when outbreaks were aggregated by district instead of 431 

chiefdom, which has implications for the optimal scale for surveillance and response measures. 432 

The median time for a chiefdom cholera outbreak to report half its case total was 3.9 weeks 433 

and a median of 7.9 weeks for district cholera outbreaks. For Ebola, chiefdoms reported half of 434 

their cases at a median of 13.9 weeks and districts at a median of 23.5 weeks.  435 

 436 

Figure 2. Spatial trend contours of disease spread and chiefdom attack rates highlight 437 

similarities and differences between the two epidemics. Spatial trend contours of cholera (A) 438 

and Ebola (B) spread from areas in dark red to light red; thicker lines (A & B) show monthly 439 

increments and thinner lines (B) show 2 week increments. Thick black lines denote regions and 440 

thin black lines denote districts. Chiefdom attack rate quartile for cholera (C) and Ebola (D) vary 441 

over space and regions. Colored boundaries denote regions, followed by bold black borders for 442 

districts and thin borders for chiefdoms.  443 

 444 

Figure 3. Weekly case counts show outbreak trajectory in the four regions of the country. The 445 

bars in A and B indicate the weekly case count on independent y-axes of cholera and Ebola, 446 
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respectively. Black lines show maximum likelihood estimates of Rt of cholera and Ebola 447 

epidemics nationally (A and B, respectively) and in each region (C and D, respectively).  448 

 449 

Figure 4. Results of 700 simulations of 14 different incubation periods show the impact of 450 

incubation period on disease spread. Epidemics with shorter incubation periods are more acute 451 

than epidemics with longer incubation periods (A). The average start time of epidemics at all 452 

locations over the first 50 days of outbreak is later for shorter incubation periods than longer 453 

(B). Spatial trend contours of first 50 days of simulated outbreaks with shorter incubation 454 

period (2 days) (C) and longer incubation period (10 days) (D), spreading from areas in dark red 455 

to light red, show that shorter incubation periods result in a more wave front spread and longer 456 

incubation periods result in more long-distance sparking events; numbers show average start 457 

day relative to start of the outbreak.  458 

 459 

Figure 5. The incubation period impacts the timing of outbreaks and as a result, the correlation. 460 

As the incubation period increases, the proportion of cases reported by 10 weeks, when a 461 

reactive vaccination campaign might begin, decreases in simulated epidemics (A). As the 462 

incubation period increases, the average correlation overall (B) and by distance from origin of 463 

simulated outbreaks (C) decreases.  464 

 465 

Figure 6. The incubation period impacts the predictability of disease spread. As the incubation 466 

period increases, the average overlap (predictability) of the first 50 days (A) and over the first 467 

50 days (B) of simulated outbreaks decreases.  468 
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Figure 1
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