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2 

ABSTRACT 21 

Auditory brainstem response (ABR) is widely employed to evaluate the hearing 22 

function, both in clinics and basic research. Despite many attempts for automation 23 

over decades, reliable determination of threshold stimulus level still relies on human 24 

visual identification of waveform, which oftentimes is subjective. Here, we report a 25 

robust procedure for automatic and accurate threshold determination in both mouse 26 

and human ABR. Contrary to prior approaches, in our new threshold determination 27 

algorithm, the on-going averaging is stopped once the waveform is confirmed by a 28 

cross-correlation time shift approach. The flexible ending sweep numbers for different 29 

stimuli is used to inform the threshold determination. We found a good match of the 30 

threshold readings between the algorithm and the human judges. Moreover, in the 31 

algorithm, smaller sweep number is required for strong response from supra-threshold 32 

level, and thus a considerable portion of sweeps can be saved in comparison to the 33 

case with level averaging of a fix number. These features are attractive and 34 

implementation of this method in commercial devices will make the ABR test 35 

procedure more objective and efficient. 36 

 37 

Keywords: auditory brainstem response, threshold determination, cross-correlation, 38 

automation  39 
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INTRODUCTION 40 

The auditory brainstem responses (ABRs) are brain electrical potential changes due to 41 

synchronous neuronal activities evoked by supra-threshold acoustic stimuli (Jewett et 42 

al., 1970). These responses are detectable using non-invasive surface electrodes 43 

placed on the scalp of the test subject, and thereby widely employed to assess the 44 

hearing function. In rodents and cats, typical ABR waveform is composed of initial 45 

five peaks in the early onset of sound evoked potentials, followed by broader, later 46 

waves that represent synchronous activities arising from projections along the 47 

auditory ascending pathway including auditory nerve, cochlear nucleus, superior 48 

olivary complex, lateral lemniscus and inferior colliculus, respectively (Henry, 1979; 49 

Melcher et al., 1996), whereas in human slightly different peak generators were 50 

demonstrated with intracranial recordings (Moller and Jannetta, 1983) and 51 

neuromagnetic responses (Parkkonen et al., 2009). Thus, features like ABR wave 52 

latencies and amplitudes provide clinical-significant information, for instance site of 53 

lesions or tumors in the auditory system (Lewis et al., 2015; Roeser et al., 2007) based 54 

on how the properties of waveforms are altered. 55 

Although the ABR is an objective measurement, at near-threshold the waveform 56 

recognition involves human interpretation. Currently, professionals are still required 57 

to supervise recording and visually identify the obtained waveforms which is labor-58 

intensive. Besides, such interpretations oftentimes are subjective and can introduce 59 

errors that vary from person to person. When bias due to the skill and the experience 60 

of the interpretators is involved, the variation is not trivial, especially for cases with 61 

untypical waveform or high background noise (Vidler and Parkert, 2004). As precise 62 

and objective measurement of small hearing threshold elevation became critical for 63 

diagnosis of progressive hearing loss (Barreira-Nielsen et al., 2016), hidden hearing 64 
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loss (Kujawa and Liberman, 2009; Mehraei et al., 2016; Ridley et al., 2018; 65 

Sergeyenko et al., 2013), age-related hearing loss (Gates and Mills, 2005; Sergeyenko 66 

et al., 2013) and tinnitus (Bramhall et al., 2018; Castaneda et al., 2019), automated 67 

approaches with high precision and reliability are in demand to objectify the ABR 68 

threshold determination. Over decades, many attempts were made including: (1) 69 

quantification of the waveform similarity by comparison to existing templates (Davey 70 

et al., 2007; Elberling, 1979; Valderrama et al., 2014) as well as based on features 71 

learned by artificial neural network (Alpsan and Ozdamar, 1991; McKearney and 72 

MacKinnon, 2019) from human annotated datasets; (2) quantification of the 73 

waveform stability by cross-correlation function between single-sweeps (Bershad and 74 

Rockmore, 1974; Weber and Fletcher, 1980), interleaved responses (Berninger et al., 75 

2014; Xu et al., 1995) or responses at adjacent stimulus levels (Suthakar and 76 

Liberman, 2019); (3) the ‘signal quality’ through scoring procedures like F-ratios 77 

(Cebulla et al., 2000; Don and Elberling, 1994; Elberling and Don, 1984; Sininger, 78 

1993). Due to inconsistencies in waveform and signal-to-noise-ratio (SNR) 79 

introduced by differences in test subject conditions, electrode placement and 80 

impedance, as well as acquisition settings, the accurate threshold determination is 81 

only possible under a narrow range of experimental settings, hampering direct 82 

comparisons of ABR data and results across laboratories. 83 

In this study, we proposed a novel approach which detects time-locked ABR 84 

waveforms via a time shift cross-correlation approach during on-going sweep 85 

averaging. Sweep averaging is terminated upon reaching a criterion for a detectable 86 

waveform at different stimulus levels and the threshold estimation was also carried 87 

out by the algorithm. The collected results were validated by human experts on the 88 

same mouse or human subjects. To verify, the total numbers of sweeps (as an 89 
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indicator of test duration) were compared between cases in the algorithm and with a 90 

fixed sweep number for level averaging and prove the algorithm effective. 91 

  92 
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MATERIALS AND METHODS 93 

Animals, Human Participants and Ethics 94 

C57BL/6 mice were purchased from Sino-British SIPPR/BK Lab Animal Ltd. 95 

(Shanghai, China). The telomerase-knock-out mice were kindly donated by Prof. Lin 96 

Liu (Nankai University, China) and bred in house. Human participants were recruited 97 

from Shanghai Ninth People’s Hospital and consent forms were signed before the 98 

experiment. This study was conducted at the Ear Institute and the Hearing and Speech 99 

Center of the hospital. All procedures were reviewed and approved by the Institutional 100 

Authority for Laboratory Animal Care (HKDL2018503) and the Hospital Ethics 101 

Committee for Medical Research (SH9H-2019-T79-1). 102 

 103 

ABR Recording 104 

Mouse ABRs were recorded via a TDT RZ6/BioSigRZ system (Tuck-Davis Tech. 105 

Inc., US) in a sound-proof chamber as previously described (Lin et al., 2019). In brief, 106 

7-week-old mice were anesthetized through intraperitoneal injection of Chloral 107 

hydrate (500 mg/kg). During the recording, animal body temperature was maintained 108 

at 37 °C using a regulated heating pad (Harvard Apparatus, US) with a rectal thermal 109 

probe placed under the animal’s body. Evoked potentials were registered via 110 

subdermal needle electrodes (Rochester Electro-Med. Inc., US) placed at the animal’s 111 

vertex (active electrode), left infra-auricular mastoid (reference electrode) and right 112 

shoulder region (ground electrode). 3-ms tone pips at 16 kHz were delivered via an 113 

MFI speaker (Tuck-Davis Tech. Inc., US) positioned in the front 10 cm from the 114 

animal’s vertex. Acoustic stimuli were presented 20 stimuli per second and the evoked 115 

potentials were sampled at 24 kHz. Artifact rejection level was set at < 35 % (mean 116 

rejection voltage 20.5 μV). Sound level series were acquired starting from 90 to 0 dB 117 
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SPL (sound pressure level) with 5-dB step size. For one animal, the stimulus level 118 

series were repeated from +10 to –10 dB SPL around the estimated threshold with 1-119 

dB step size (Fig. 3B). 120 

Human ABRs were recorded by a commercial ABR device (Intelligent Hearing 121 

Systems, US) with Smart EP software from four volunteers aged 21-29 years without 122 

the knowledge of their medical conditions. Click sound stimulation (100 μs duration, 123 

rectangular envelopes) was generated and presented monaurally through ER3 insert 124 

earphones with foam tips. Stimuli were presented at a rate of 37.1/s with alternating 125 

polarity. Electrode impedance was < 5 kΩ and inter-electrode impedance was within 126 

± 1 kΩ. The artifact rejection level was < 31% (rejection voltage 31 μV) to exclude 127 

contaminations from EEG and myogenic potentials. The evoked potentials were 128 

collected with 40 kHz sampling rate and × 100,000 amplification. The bandpass filter 129 

was set at 100 - 3000 Hz. Average responses over 500, 1000, and 2000 sweeps were 130 

acquired and repeated three times for the level series starting from 60 to 0 dB SPL 131 

with 5-dB step size. 132 

 133 

Cross-correlation Analysis in Mouse ABR 134 

Sweeps were randomly subdivided into two groups. Cross-correlation operations 135 

(MATLAB Central File Exchange Function xcorr, MathWorks, US) were applied to 136 

subgroup averages. The result of this operation yielded the correlation coefficient as a 137 

function of time shift between two signals (ABR subgroup averages). The time shift 138 

(signal lag) of the maximal coefficient was used to judge the reproducibility of ABRs. 139 

As the responses are time-locked to the acoustic stimuli, a neglectable time shift is 140 

expected. In this study, maximum allowed lag (L) for a true waveform was within one 141 

data point from time zero (equivalent to ± 0.042 ms, 1 % of the analyzed temporal 142 
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window) due to system sampling error. As noise peaks could also coincidently 143 

overlapped within the desired time shift, three parallel cross-correlation runs with 144 

regrouped sweeps were implemented and false positives were rejected upon 145 

inconsistent lag values. In addition, the correlation coefficient peak amplitude was 146 

included as an independent variable (Fig. 2C).  147 

At each stimulus level, averaging with increasing sweep numbers was iterated 148 

and the ending sweep number was noted upon a detectable response by the cross-149 

correlation approach described above. Each iteration consists of 50 sweeps and the 150 

upper limit was set to include seven iterations (350 sweeps). The estimated threshold 151 

was just above the stimulus level at which the upper iteration limit was reached. A 152 

more precise threshold determination was done by modeling the change of the ending 153 

sweep numbers upon level series. For that both sigmoidal (1) and exponential 154 

functions (2) were employed to fit the relationship between the normalized iteration 155 

count C’ and the stimulus level S using a nonlinear least square method in MATLAB 156 

(MathWorks, US). In the functions, α1 = 0.6 and α2 = 0.25 were fixed for calibrated 157 

lag criterion (L = 1), while β1 and β2 were obtained by fitting. The estimated threshold 158 

was the corresponding S with the sigmoidal function value of 0.9 or the exponential 159 

function value of 1.0.   160 

������� ����	: ��
�� �
�

��������β��
   (1) 161 

����������	 ����	: ��
�� � �������β�� (2) 162 

 163 

Cross-correlation Analysis in Human ABR 164 

For human ABR, average responses were recorded sequentially and used as inputs in 165 

the algorithm with minor modification (Fig. S3). Instead of regrouping single sweeps 166 

as in the mouse ABR, the three combinations of two out of three average responses 167 
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(E{A}, E{B}, E{C} in Fig. S3) were used for the parallel cross-correlation runs to 168 

reject false positives caused by noise peaks. When the lag condition is not fulfilled, 169 

averages over more sweeps (with a step size of 500) were used for further iterations 170 

until the upper limit of 3500 was reached. The average responses over 500, 1000 and 171 

2000 sweeps were recorded, whereas responses over 1500, 2500, 3000 and 3500 172 

sweeps could be obtained by weighted averaging (3) where E{m}, E{n} and E{m + 173 

n} denote the time averages over m, n and m + n sweeps, respectively. 174 

��� � �� �
�•������•����

���
     (3) 175 

The maximum allowed lag (L) for a true response was within seven data points from 176 

time zero (equivalent to ± 0.175 ms, 2 % of the analyzed temporal window). The 177 

estimated threshold was the lowest level with a detectable waveform. 178 

 179 

Visual identification of ABR Threshold by Human Judges 180 

To estimate the ground-truth thresholds of the recorded mouse and human ABRs, five 181 

clinicians were asked to independently assess the average responses and report the 182 

visually identified thresholds. The identities of the test subjects were blinded to the 183 

judges. The average responses of all level series were provided, of which either 184 

constant number of sweeps (the conventional averaging) or ending number 185 

determined by the algorithm (the algorithm termination averaging) was used. The 186 

thresholds were determined by three out of five execution judges (with the highest 187 

and the lowest value excluded) and used to evaluate the accuracy of the algorithm 188 

outcomes.  189 
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RESULTS 190 

Cross-Correlation Analysis in On-going Averaging  191 

ABRs are embedded in high-level background activities and system noise. Smooth 192 

baseline and clear waveform, if present, are obtained usually after averaging over 193 

hundreds of sweeps. The required number of sweeps in averaging, however, not only 194 

depends on the amplitude of the evoked response but also varies between test subjects 195 

due to variations in, for instance, skull sizes, electrode impedances and placement that 196 

determined the distances from the generator, how far reach the electrode pick up the 197 

far-field signals and the angles of the vector projections. Within an ABR recording 198 

session, these experimental parameters are fixed and the SNR of recorded sweeps 199 

between stimulus levels can be quantitatively compared. It is expected that weak 200 

response evoked by low level stimulus requires more sweeps to average than those 201 

strong responses from high level stimuli to reach similar SNR level, whereas 202 

averaging fails to improve the SNR when a response is absent. Based on this fact, we 203 

designed a novel procedure to estimate the threshold stimulus level by monitoring the 204 

change in sweep number which is required for the average response to reach a stable 205 

SNR level. 206 

 In detail, recorded sweeps at a test stimulus level were randomly divided into two 207 

groups (Fig. 1, yellow boxes) and cross-correlation coefficients (CCs) were computed 208 

between two subgroup averages (Fig. 1, green boxes). Time-locked ABR waveform, 209 

irrespective of wave latencies and amplitudes, are detected by specifying a maximum 210 

allowed time shift (L; Fig. 1, magenta boxes) within which these subgroup averages 211 

are maximum overlapped (peak of the obtained CC). In addition, three parallel runs 212 

with regrouped sweeps are used (Fig. 1, red box) so that the false waves from 213 

randomly overlapped noise peaks of similar latencies can be rejected. Next, these 214 
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iteration steps repeat along with the increase of sweep number (Fig. 1, the inner loop), 215 

until either a true waveform is confirmed (consistent smaller lag than L) or the upper 216 

limit of iteration count (N) is reached. Here the iteration count limit is needed to avoid 217 

nonproductive attempts in the cases where waveforms are absent. Finally, the outer 218 

loop (Fig. 1) is implemented to scan the responses with decreasing stimulus levels. In 219 

this study, we start with 90 dB SPL in mice and 60 dB SPL in humans with a step size 220 

of 5 dB. The stop command was triggered upon a second attempt with exceeded 221 

iteration count, but the function was idled during initial optimization. 222 

 223 

Threshold Determination in Mouse ABR 224 

To test whether the algorithm could determine the threshold automatically, we 225 

recorded single-sweep ABR sets from eight mice (three wild-type adult C57BL/6 226 

mice of normal hearing and five telomerase knock-out mice with age-related 227 

progressive hearing threshold elevation). The raw sweeps were corrected through a 228 

smoothing spline fit to remove baseline fluctuations (Fig. S1) before being processed 229 

by the algorithm.  230 

As illustrated in Fig. 2A, an averaged mouse ABR waveform level series is 231 

plotted with the threshold of 30 dB SPL determined by human judges. Subgroup 232 

averages (Fig. 2B) were produced in the algorithm to compute the CCs. The obtained 233 

CC peak amplitudes (Fig. 2C) and corresponding signal lags (Fig. 2D) were plotted 234 

versus stimulus levels. With reducing stimulus level, the CC peak amplitude decreases 235 

monotonically, whereas the lags at supra-threshold levels are constantly within one 236 

data point (equivalent to a time shift of ± 0.042 ms from time zero). This result 237 

suggests that the cross-correlation time shift is more sensitive to the responses at near-238 

threshold levels than the CC,  thus justified its use in our algorithm.  239 
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We then determine whether the algorithm could use the ending sweep number to 240 

inform the threshold level. To enable rapid threshold determination by reducing the 241 

total number of test iterations, batches of 50 sweeps were added into the subgroup 242 

averaging by iterations until stable waveforms are reached. As shown in Fig. 2E, the 243 

iteration count (proportional to the ending sweep number) remained low at high 244 

stimulus levels but increases dramatically at near-threshold levels and reached its 245 

maximum at sub-threshold levels. Besides, we found consistent results were obtained 246 

within a large range of the allowed lag (Fig. S2A) and the maximum ending sweep 247 

number (Fig. S2B), suggesting that the new method works without fine-tuning the 248 

detection parameter. 249 

Further attempts were made to model the iteration count for precise threshold 250 

determination between the lowest supra-threshold and the highest sub-threshold level. 251 

A sigmoidal function was employed to fit the normalized iteration counts (Fig. 3A). In 252 

order to determine the corresponding function value at the true threshold level, from 253 

one animal we acquired an ABR set with peri-threshold level series of 1-dB step size 254 

(Fig. 3B). Both exponential and sigmoidal functions were used to model the change. 255 

Note that for the exponential fit only data points at supra-threshold levels were used 256 

due to early cut-off by the maximum iteration count. The lowest supra-threshold level 257 

was found when the best-fitted exponential growth reached 1.0 or ~ 0.9 in the sigmoid 258 

growth (Fig. 3B). As fitting with sigmoid function does not require additional data 259 

exclusion, it was used to obtain the mouse threshold results for further validation of 260 

the method. 261 

 262 

Threshold Determination in Human ABR 263 

To test whether the new method was compatible with human ABR, we acquired ABR 264 
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sets from four human participants. Because export of single-sweep data was not an 265 

option on the commercial device we used, alternatively we use average responses 266 

over different pre-set sweep numbers (see Fig. S3 for the variant of the algorithm 267 

block diagram; see MATERIALS AND METHODS for more details). Averages (Fig. 268 

4A) as well as subgroup averages (Fig. 4B) are shown at decreasing stimulus levels 269 

(60 dB to 0 dB SPL).  270 

The CC peak amplitudes and the corresponding signal lags were plotted versus 271 

the stimulus levels (Fig. 4C and 4D). The sweep number increment was 500 per 272 

iteration and the upper limit was 3500 sweeps (at iteration count of seven). Note that 273 

we allowed slightly larger lag value (seven data points, equivalent to a time shift of ± 274 

0.175 ms from time zero) for a true waveform because a broader waveform is 275 

expected for human ABR evoked by click-sound than that of mouse ABR. As shown 276 

in Fig. 4E, the iteration count increases fast to reach its maximum near the visually 277 

identified threshold level. 278 

 279 

Comparison between Expert and Algorithm Determined Threshold 280 

To validate the new method, we asked five human experts to independently assess the 281 

same ABR sets and compared the visually identified thresholds to those determined 282 

by the algorithm (Table 1). Scatterplots of the algorithm determined thresholds versus 283 

the visually identified thresholds showed no significant difference for both mouse and 284 

human ABR (Fig. 5A and Fig. 5C), suggesting a reliable threshold determination by 285 

our algorithm. Besides, matched thresholds were also obtained when average 286 

responses were generated with the ending sweep numbers from the algorithm (Fig. 287 

S4A and S4B). This result suggests that extensive averaging at supra-threshold levels 288 

does not improve the detection accuracy, and thus including a large number of the 289 
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sweep recording is unnecessary. We then compared the total sweep number used in 290 

two averaging methods, one with a constant sweep number (350 for mouse and 3500 291 

for human ABR) at all stimulus levels and the other with varying sweep number based 292 

on the response detection in the algorithm. We found in algorithm a reduction of 293 

66.76 ± 4.09 % and 53.08 ± 12.91 % (mean ± s.d.) of number of sweeps needed in 294 

mouse and human ABR, respectively (Fig. 5B and Fig. 5D). 295 

  296 
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DISCUSSION 297 

Over decades several statistical approaches have been proposed to automate and 298 

objectify the ABR analysis. The cross-correlation approach has two advantages. First, 299 

high intra-subject waveform stability in both ABR wave latencies and amplitudes 300 

leads to the robust waveform which can be detected by cross-correlation analysis with 301 

high sensitivity. Second, it is template-free and not subject to the influence of large 302 

inter-subject waveform variability which is often presented in template-based 303 

approaches. However, prior attempts of the cross-correlation approach detect the ABR 304 

waveform with a decision boundary for a true response, for instance, minimum CC 305 

(Berninger et al., 2014; Bershad and Rockmore, 1974; Suthakar and Liberman, 2019; 306 

Weber and Fletcher, 1980) or maximum latency shift (Galbraith and Brown, 1990; Xu 307 

et al., 1995). Even with the same experimental settings, uniform SNR across 308 

recordings is not always guaranteed due to variabilities in skull size, electrode 309 

impedance and placement, as well as different sweep number used for averaging by 310 

individual experimenter. Thus, it is unlikely that calibrated decision boundary can be 311 

simply applied to another dataset without introducing detection error (in our hands up 312 

to 20 dB SPL, data not shown), limiting the application in cases like cross-institution 313 

collaboration efforts where data poolings are needed. 314 

In contrast, our approach determines the threshold based on the relative change in 315 

the contribution of sweeps to the SNR of average response at different stimulus 316 

levels. The cross-correlation time shift approach has proven to be a reliable tool to 317 

detect the time-locked ABR waveform with high sensitivity, but in principle, it can be 318 

replaced in the algorithm by other quantifications like CC peak amplitude or Fsp (data 319 

not shown). The origin of the observed fast increase in the iteration count at near-320 

threshold levels (Fig. 2E and Fig. 3E) is the compensation of a gradually reduced 321 
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response amplitude by noise suppression through averaging. As this increase reflects 322 

relative SNR change in the responses evoked by different stimulus strengths within 323 

subject, it is therefore rather insensitive to the inter-subject system variability. 324 

Besides, the new approach was proven not heavily rely on fine-tuning of the detection 325 

parameters. First, large difference in the obtained signal lags between sub- and supra-326 

threshold levels (Fig. 2D) allows the lag selection from a large range without affecting 327 

the waveform detection (Fig. S2A). Second, the elevation of the maximum iteration 328 

count (proportional to the sweep number increase) causes little shift to the estimated 329 

threshold level when above certain value (Fig. S2B) as a result of its fast increase 330 

with reducing stimulus levels (Fig. 3B), 331 

Next, we showed that precise threshold determination beyond the step size of 332 

level sampling was possible by modeling the sweep number change (Fig. 3B), in our 333 

case up to 1 dB in mouse ABR. Similar attempt was also made with human ABR sets, 334 

but a reliable model could not be established due to poor model fitting.  Further 335 

development of this approach is to combine with level sampling strategy like 336 

progressively reduced step size (Cebulla and Sturzebecher, 2015) and increased 337 

sweep number per iteration at near-threshold levels, so that more effective data points 338 

can be used for model fitting.  339 

In both mouse and human ABR, the new method was proven reliable in threshold 340 

determination with a maximum discrepancy of ± 5 dB to those provided by human 341 

experts. The average responses over varying sweep numbers seemed not to introduce 342 

additional difficulty in the threshold determination (Fig. 5B and Fig. 5E). That is 343 

because at the near-threshold levels, where the SNR of responses are critical for the 344 

threshold determination, an increasing number of sweeps were averaged, whereas at 345 

the supra-threshold levels the requirement of level averaging is low. Such feature is 346 
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attractive in two respects. First, it provides minimal quality control for unambiguous 347 

waveform recognition for both humans and algorithms. Such standardized data will 348 

benefit machine-learning-based approaches by minimizing annotation discrepancy in 349 

the training data (McKearney and MacKinnon, 2019). Second, when to stop 350 

averaging is an important decision during ABR recording (Don and Elberling, 1996; 351 

Madsen et al., 2018), the new method makes the ABR test more efficient by avoiding 352 

prolonged acquisition and redundant recordings.   353 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. certified by peer review)

(which was notThe copyright holder for this preprint this version posted July 2, 2020. ; https://doi.org/10.1101/19003301doi: medRxiv preprint 

https://doi.org/10.1101/19003301
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

ACKNOWLEDGMENT 354 

We would like to thank Y. Li, K. Han, Y. Ren, L. Yang and H. Li from Shanghai Ninth 355 

People’s Hospital for help with ABR assessment; Drs. G. Chen and L. Liu for 356 

providing terc-/- mice. This study was supported by the National Science Foundation 357 

for Young Scientists of China (81800901 to Y.H. and 81700903 to B.L.). 358 

 359 

COMPLIANCE WITH ETHICAL STANDARDS 360 

Conflict of Interest The authors declare that they have no competing interests. 361 

  362 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. certified by peer review)

(which was notThe copyright holder for this preprint this version posted July 2, 2020. ; https://doi.org/10.1101/19003301doi: medRxiv preprint 

https://doi.org/10.1101/19003301
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

FIGURE LEGENDS 363 

FIG 1. Flowchart of our algorithm for automatic threshold determination. The 364 

stimulus level starts with 90 dB SPL and the initial iteration count is one. The input is 365 

50 sweeps recorded from a test subject. They are subdivided into two groups with 366 

corresponding subgroup averages E{A} and E{B} in each of three parallel runs 367 

(yellow boxes). Cross-correlation operation (xcorr) is applied to the subgroup 368 

averages (green boxes) and the obtained signal lags of the CC peaks are compared 369 

with the allowed time shift (L = 1 data point for mouse ABR; C1 to C3, magenta 370 

boxes). In cases when C1 to C3 are all true, the procedure starts over with lower 371 

stimulus level (red line, the outer loop), otherwise it iterates at the same stimulus level 372 

with more sweeps added (the inner loop, cyan line; 50 sweeps per iteration) until the 373 

maximum iteration count (N = 7 for mouse ABR) is reached, indicating a sub-374 

threshold level.  375 

 376 

FIG 2. Threshold determination by cross-correlation analysis in mouse ABR. A 377 

Example average responses over 350 sweeps were recorded from a mouse. The 378 

visually identified threshold level (bolded) was about 30 dB SPL. B Two subgroup 379 

averages were used in the algorithm for cross-correlation analysis. C Peak amplitude 380 

of the computed CCs was plotted as a function of the level series. D Signal lag of the 381 

CC peak vs. level function was plotted. At supra-threshold levels (dots) the mean 382 

signal lags from three parallel runs were close to time zero (0.28 ± 0.46 data points, 383 

mean ± s.d.), whereas significant large variability (30.50 ± 22.51 data points, mean ± 384 

s.d.) was constantly observed at sub-threshold levels (cycles). E Plot of the count of 385 

executed iterations vs. level function. Responses that were evoked by supra-threshold 386 

stimuli (black dots) require different number of iterations to converge lags within a 387 
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desired time shift (L ≤ 1 data point). After two consecutive aborts at maximum 388 

iteration count (N = 7, dash line), a detectable waveform was considered absent at the 389 

applied stimulus level (cycles) and stop command will be triggered to avoid 390 

nonproductive attempts at lower levels (triangles). 391 

 392 

FIG 3. Precise threshold determination by modeling the change in iteration count 393 

with stimulus level. A The normalized iteration count vs. level function is fit by 394 

sigmoid function (red line). The best-fit function is used to estimate the threshold by 395 

level interpolation at 0.9 of the sigmoid growth. B Validation of the level interpolation 396 

with a dataset of 1-dB spaced stimulus level. The normalized iteration count vs. level 397 

function is fit by both sigmoid and exponential functions. The experimentally 398 

determined threshold is approximately at the level which corresponds to 1.0 of the 399 

best-fit exponential growth and 0.9 of the sigmoid growth.  400 

 401 

FIG 4. Threshold determination by cross-correlation analysis in human ABR. A 402 

Example average responses over 3500 sweeps were recorded from a human 403 

participant with the visually identified threshold of 5 dB (bolded). B Subgroup 404 

averages were used in the algorithm for the cross-correlation analysis. C CC peak 405 

amplitude was plotted as a function of the level series. D Signal lag of the CC peak 406 

vs. level function was plotted. At supra-threshold levels (dots) the mean signal lags 407 

from three parallel runs were close to time zero (1.85 ± 2.45 data points, mean ± s.d.), 408 

whereas large variability (22.67 ± 23.01 data points, mean ± s.d.) were constantly 409 

observed at sub-threshold levels (cycles). E Plot of the executed iteration count vs. 410 

level function. The supra-threshold responses converge lags within seven data points 411 

from time zero after finite number of iterations (black dots). 412 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. certified by peer review)

(which was notThe copyright holder for this preprint this version posted July 2, 2020. ; https://doi.org/10.1101/19003301doi: medRxiv preprint 

https://doi.org/10.1101/19003301
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 413 

FIG 5. Comparisons between the thresholds determined by the algorithm and human 414 

judges. A For mouse ABR close matches between the algorithm determined 415 

thresholds and those agreed by three out of five human experts (maximum and mean 416 

discrepancies, 4 dB and 2.00 ± 1.13 dB, mean ± s.d.). Linear fit: adjust R2 = 0.97. B 417 

Comparison between the total sweeps used in the conventional level averaging with a 418 

fixed number (left bar) and in our method with varying sweep numbers at different 419 

levels (right bar). The latter requires 66.76 ± 4.09 % (mean ± s.d.) fewer sweeps than 420 

the former. Note that the sweeps were counted at all supra-threshold and two highest 421 

sub-threshold levels. C Similar to A, matched thresholds in human ABR were 422 

reported by both the algorithm and human judges (maximum and mean discrepancies, 423 

2 dB and 0.42 ± 0.83 dB, mean ± s.d.). To illustrate overlapping data points, dots of 424 

different sizes were used. Linear fit: adjust R2 = 1.00. D The total number of sweeps 425 

used in the conventional level averaging (left bar) vs. in our method (right bar). The 426 

latter requires 53.08 ± 12.91 % (mean ± s.d.) fewer sweeps than the former. 427 

  428 
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Threshold Threshold
 (level interpolated) (by execution judges)

mouse 01 (wt) 20 18 0.9122 1900 25 10 20 20 20 20 5950
mouse 02 (wt) 25 27 0.9314 2000 25 20 25 25 25 25 5600
mouse 03 (wt) 20 17 0.995 1650 25 15 20 15 15 16.67 5950

mouse 04 (terc-/-) 25 26 0.8619 2050 30 30 30 30 25 30 5600
mouse 05 (terc-/-) 30 25 0.9778 1500 25 15 25 25 20 23.33 5250
mouse 06 (terc-/-) 55 49 0.9856 1100 55 45 55 50 45 50 3500
mouse 07 (terc-/-) 30 28 0.9655 1800 25 25 25 25 25 25 5250
mouse 08 (terc-/-) 60 57 0.998 1250 55 50 65 55 55 55 3150

human participant 01 5 NA NA 20500 5 5 5 5 5 5 45500
human participant 02 5 NA NA 17500 5 5 5 5 5 5 45500
human participant 03 45 NA NA 11500 40 45 45 45 40 43.33 17500
human participant 04 5 NA NA 17500 5 5 5 5 5 5 45500

Table 1 Comparisons between Threshold Determination by Human Experts and the Algorithm

# sweeps

Algorithm Human

Threshold R2 of fitting # sweeps judge1 judge2 judge3 judge4 judge5
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