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Abstract 17 

Background: Using a model of methicillin-resistant Staphylococcus aureus (MRSA) 18 

within an intensive care unit (ICU), we explore how differing hospital population 19 

structures impact these infection dynamics. 20 

Methods: Using a stochastic compartmental model of an 18-bed ICU, we compared the 21 

rates of MRSA acquisition across three potential population structures: a Single Staff 22 

Type (SST) model with nurses and physicians as a single staff type, a model with 23 

separate staff types for nurses and physicians (Nurse-MD model), and a 24 

Metapopulation model where each nurse was assigned a group of patients. By varying 25 

the proportion of time spent with the assigned patient group (g) within the 26 

Metapopulation model, we explored whether simpler models may be acceptable 27 

approximations to more realistic patient-healthcare staff contact patterns.  28 

Results: The SST, Nurse-MD, and Metapopulation models had a mean annual number 29 

of cumulative MRSA acquisitions of 40.6, 32.2 and 19.6 respectively. All models were 30 

sensitive to the same parameters in the same direction, although the Metapopulation 31 

model was less sensitive. The number of acquisitions varied non-linearly by values of g, 32 

with values below 0.40 resembling the Nurse-MD model, while values above that 33 

converged toward the metapopulation structure.  34 

Discussion: The population structure of a modeled hospital has considerable impact on 35 

model results, with the SST model having more than double the acquisition rate of the 36 

more structured Metapopulation model. While the direction of parameter sensitivity 37 

remained the same, the magnitude of these differences varied, producing different 38 

infection rates across relatively similar populations. The non-linearity of the model’s 39 
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response to differing values of g suggests only a narrow space of relatively dispersed 40 

nursing assignments where simple model approximations are appropriate. 41 

Conclusion: Simplifying assumptions around how a hospital population is modeled, 42 

especially assuming random mixing, may overestimate infection rates and the impact of 43 

interventions.  44 

  45 
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Introduction 46 

 The Centers for Disease Control and Prevention (CDC) considers methicillin-47 

resistant Staphylococcus aureus (MRSA) to be a serious threat to patient safety, and 48 

recent trends show that the incidence of infection is no longer declining as aggressively 49 

as it has for much of the last decade [1]. The evidence base for interventions to 50 

successfully address MRSA is mixed. For example, it has been difficult to quantify the 51 

effectiveness of MRSA screening and contact precautions, which has led to 52 

disagreement over their benefit [2]–[5]. Other efforts, such as improved hand hygiene 53 

are often successful [6], [7], but reducing MRSA acquisitions by means of improved 54 

transmission prevention continues to be a focus for hospital infection control efforts.   55 

 Preventing the spread of MRSA within intensive care units (ICUs) is especially 56 

critical, due to the vulnerable nature of the patients and the difficulty in treating severe 57 

infections. Patients admitted to the ICU have been found to have persistent colonization 58 

with MRSA 12-14 days after discharge from the hospital [8]. There is strong evidence 59 

that frequency and patterns of interaction between staff and patients play a critical role 60 

in transmission [9]. The ratio of nurses to patients has been found to contribute to the 61 

overall level of colonization and transmission within healthcare settings and ICUs. 62 

Lower nurse-to-patient ratios have a positive correlation with increased transmission 63 

and poor health outcomes [10]. Beyond this, clinical practices such as the use of 64 

consistent care teams, grouping particular types of patients together, or even the 65 

hospital’s built environment may create distinctive sub-populations even within a single 66 

unit. These sub-populations then form a larger, interconnected “metapopulation”, the 67 

infection dynamics of which, in a hospital setting, remain largely unexplored. In other 68 
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areas of infectious disease epidemiology, metapopulations and other complex 69 

population structures have been shown to be important [11], [12].  70 

Studying the transmission of MRSA within an ICU is often a difficult task due to 71 

the highly constrained environment. The patient population within any given ICU is 72 

small, with patients sharing care team, being impacted by the same policies, and 73 

sharing the same environment, which violates the independence assumptions 74 

underlying many statistical techniques. There are limited or no control groups due to co-75 

occurring interventions and the clinical care mission, and many potential interventions, 76 

such as policy changes, are difficult if not impossible to effectively blind as part of a 77 

clinical trial. 78 

Using mathematical models can help alleviate many of these issues. Widely used 79 

models generally which assume random mixing between healthcare workers and 80 

patients, where all patients are cared for by all healthcare workers, but clinical practices 81 

such as the use of consistent care teams, grouping particular types of patients together, 82 

etc. naturally creates a metapopulation like structure within hospital units. Patient 83 

isolation and limited interaction with other patients creates sub-populations within the 84 

larger patient population forming a weakly connected metapopulation.  85 

Evidence suggests that modeling disease transmission dynamics within 86 

metapopulations has an important role in understanding the underlying patterns that 87 

govern disease spread. One previous study [13] suggested that nurses caring for 88 

specific patients can reduce the basic reproductive number (R0) of a healthcare-89 

associated pathogen below 1.0, though this model examined a particularly strict form of 90 

non-random mixing, examining the circumstance of a nurse visiting the same patient as 91 
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they previously cared for rather than visiting another patient. More specifically, the 92 

spatial patterns and aggregation of host populations are important in identifying how a 93 

pathogen is introduced and dispersed within a population [14]. Rarely, however, are 94 

healthcare settings modeled as metapopulations.  95 

 Using a stochastic compartmental model of an 18-bed ICU, we compared three 96 

potential population structures: a single staff type model with nurses and physicians as 97 

the same type of healthcare worker, a model with separate staff types for nurses and 98 

physicians where they are different types of healthcare workers, and a highly structured 99 

model where each nurse is assigned a specific group of patients, in order to examine 100 

the impact of treating an ICU with a metapopulation type structure. These models are 101 

hereafter referred to as “SST”, “Nurse-MD” and “Metapopulation” respectively. We 102 

explored the impact on the estimated number of MRSA acquisitions and the sensitivity 103 

of the different models to changes in their underlying parameters.  104 

We then developed a hybrid model that allows a nurse to randomly interact with 105 

patients not originally under their direct care over some proportion of their workday. This 106 

hybrid model allows for a population that is primarily, but not exclusively, organized into 107 

distinct sub-populations, but still allows for some interaction between nurses and all 108 

patients. The limited random interaction represents variance from patient assignments 109 

often seen in the ICU environment, such as cross-coverage during breaks or complex 110 

procedures that require higher numbers of healthcare workers. 111 

 112 

Methods 113 

Model Structure 114 
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MRSA transmission was simulated in an 18-bed ICU that included six nurses and 115 

a dedicated critical care physician based on a previously published model [15]. Hospital 116 

staff are either uncontaminated (SU) or contaminated (SC), representing the presence of 117 

infectious material on their hands or person. Patients, similarly, are either uncolonized 118 

(PU) or colonized (PC).In the baseline model, patients are assumed to mix randomly with 119 

healthcare workers (HCWs) in the ICU, with no distinction between the nurses or the 120 

intensivist (Fig. 1).  121 

Three alternative models were created to compare how different population 122 

structures within the ICU impacted MRSA acquisitions when relaxing the random mixing 123 

assumption. The “Nurse-MD” model retained random mixing but separated the 124 

intensivist from the nursing staff (Fig. 2). Separation of the physician also allowed the 125 

interactions between healthcare workers and the patients to be more realistic, using 126 

role-specific contact rates with patients, rather than a generic behavior that was the 127 

weighted average of nurse and physician contact rates. This resulted in physicians 128 

having less direct care tasks (touching the patient or their immediate surrounding 129 

environment) involving patients when compared to either nurses or the generic 130 

healthcare workers in the SST model. This model thus had six compartments within it: 131 

the number of patients either colonized (PC) or uncolonized (PU), the number of nurses 132 

either contaminated (NC) or uncontaminated (NU), and the two additional compartments 133 

representing the physician as either contaminated (DC) or uncontaminated (DU). 134 

The second alternative model, the Metapopulation model, further segregated the 135 

healthcare workers by assigning each nurse a specific group of patients (one nurse for 136 

every three patients) and assuming the nurse cared exclusively for those patients. This 137 
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practice is common in many ICUs for continuity of care, familiarity, and scheduling 138 

purposes, and may be assumed to predominantly care for those patients. The model’s 139 

compartments thus become further divided into six subpopulations, with the physician 140 

acting as a bridge between them by visiting all patients. (Fig. 3). This model structure 141 

creates a metapopulation that is closer to the actual organizational structure.  This 142 

model does not assume full random mixing, but rather only assumes that the nurse 143 

visits each patient in their assigned group randomly.  144 

Even where nurses are assigned a specific group of patients, a nurse will have 145 

some interaction with patients outside their assigned group due to cross coverage, staff 146 

breaks, or patient care tasks that require more than one nurse to perform. The final 147 

extension of this model adds an additional parameter, g, to represent the amount of time 148 

a nurse spends in their assigned group, with the remainder of the time spent moving 149 

randomly among patients outside their assignment. In doing so, the expanded model 150 

effectively hybridizes the previous models, allowing the exploration of intermediate 151 

population structures between a purely random mixing model and one with strict 152 

assignment. In essence, when g = 1/6, this model replicates the Nurse-MD model, as a 153 

nurse is no more likely to spend time with their assigned patients as they are any other 154 

five patient groups not assigned to them. Similarly, when g = 1, the model replicates the 155 

Metapopulation model, where nurses are strictly confined to treating their assigned 156 

patients. The state transitions for each model, and the equations that govern those 157 

transitions, may be found in the Supplemental Material as Tables S1, S2 and S3 158 

respectively for the SST, Nurse-MD and the expanded Metapopulation model with  g 159 

respectively. 160 
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Several assumptions underlie all four models. First, patients are assumed to 161 

have a single-occupancy room and not to interact with other patients. The nurses and 162 

the physician only interact with the patients and do not interact with each other – or 163 

more specifically, do not interact in ways relevant to pathogen transmission. The ICU is 164 

considered a “closed ICU” – physicians from outside the ICU do not see patients. The 165 

ICU is also considered to be at 100% capacity – if a patient is discharged it is assumed 166 

another patient is admitted to the bed immediately [16]. A hand hygiene opportunity 167 

occurs after every direct care task and personal protective equipment such as gowns 168 

and gloves are changed on entry and exit from the rooms of colonized patients. Note 169 

both of these are performed with imperfect compliance (Table 1). Lastly, we assumed 170 

that MRSA colonization was detected instantly and with perfect sensitivity and 171 

specificity to simplify the model.  172 

 173 

Parameterization 174 

 Parameter values were obtained predominantly from a previously published 175 

model of MRSA transmission in an ICU [17] and are described in Table 1. The 176 

alternative models introduce new interactions between the patient and their healthcare 177 

team, which required rederivation of some parameters from their original sources [18]–178 

[20]. Specifically, the hand hygiene and gown/glove change rates incorporate nurse and 179 

physician specific contact rates, which were recalculated using the same methods as in 180 

the previous work. 181 

 Contact rates between patients and healthcare workers were represented by 182 

direct care tasks per hour for each healthcare worker type. Direct care tasks are defined 183 
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as the physical interaction of the healthcare worker with the patient or their surrounding 184 

environment [20]. Effective hand-decontaminations per hour (i) were calculated by the 185 

number of direct care tasks and taking into consideration the compliance rate and 186 

handwashing efficacy. Effective gown and glove changes per hour (t) were calculated 187 

based on the number of visits to a patient per hour and a compliance rate – changing 188 

gowns and gloves was assumed to be 100% effective at removing contamination from a 189 

healthcare worker. 190 

 One additional parameter was added to the model differing from previously 191 

published work. A natural decolonization rate based on results from the STAR*ICU Trial 192 

was added based on evidence that colonization of MRSA is limited, and natural 193 

decolonization can occur without targeted treatment or decontamination efforts, moving 194 

patients from PC to PU at a low rate absent any direct intervention [8], [21]. 195 

 196 

Model Simulation 197 

 The SST, Nurse-MD and Metapopulation models were simulated to count the 198 

number of patients who transitioned to the colonized state (PC) in order to compare the 199 

average number of MRSA acquisitions. The models were stochastically simulated using 200 

Gillespie’s Direct Method [25] in Python 3.6 using the StochPy package [26] for 1000 201 

iterations per model. The initial conditions for each model was set to have no 202 

contaminated healthcare workers, either nurses or the physician, and no colonized 203 

patients, with initial MRSA infections being seeded from colonized members of the 204 

community being admitted to the ICU. Each iteration was run for a single year. The 205 

distribution of the acquisitions for each model’s 1000 iterations was visualized in R 206 
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v3.5.1 using the vioplot package [27], and the difference between them assessed using 207 

a Kruskal-Wallis test. The code for the model simulation and subsequent analysis may 208 

be found at github.com/epimodels/Metapopulation_MRSA. 209 

 210 

Model Recalibration 211 

In addition to considering model outcomes using a single set of parameters 212 

(originally calibrated to the SST model), we also examined the difference in the 213 

estimated value of a single free parameter which could be fit within each model. The 214 

purpose of this recalibration is two-fold. First, it allows for a comparison of the models in 215 

a setting where their outcomes are equal. Second, it allows us to examine how each 216 

model form might influence the value of an estimated parameter – important information 217 

in a setting where models may be used to perform statistical inference and estimate 218 

intervention efficacy. The parameter chosen for this recalibration, y, is the probability of 219 

an effective colonization of an uncolonized patient from contact between a 220 

contaminated healthcare worker. 221 

Approximate Bayesian Computation (ABC) [28] was used for the parameter 222 

fitting and to obtain an approximate Bayesian posterior of y for the SST, Nurse-MD and 223 

Metapopulation models. This method samples a candidate value from a prior 224 

distribution, performs the model simulation using that candidate, and compares a 225 

summary statistic from that simulation to a target statistic. The candidate value is 226 

accepted if the simulation’s summary statistic equals the target statistic ± an error term 227 

e. This is performed repeatedly, and the resulting distribution of accepted candidates is 228 

an approximation of a Bayesian posterior distribution. 229 
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For this analysis, the target number of acquisitions was set to 5.94 acquisitions 230 

per 1,000 person-days with an e of 15%, matching the rate seen in the control arm of a 231 

large randomized clinical trial on MRSA prevention during the study period [17]. A 232 

uniform prior bounded by 0.0 and 1.0 was used, and 1,000,000 candidate parameters 233 

were drawn from this distribution to obtain the approximated Bayesian posterior of y for 234 

each model, using a simulation procedure similar to the one described above. For 235 

comparison between models, the median of this distribution was used as the value for 236 

y. 237 

 238 

Parameter Sensitivity Analysis 239 

 In addition to assessing the difference in raw acquisitions in each model, we 240 

assessed the sensitivity of this outcome to changes in the model’s parameters. All 241 

parameters in the model were allowed to vary uniformly ±50% of their original values, 242 

and 100,000 parameter combinations were simulated for each model. For each model, 243 

the recalibrated value for y was used in order to ensure the models were compared 244 

against a consistent acquisition rate. The number of acquisitions in each simulation was 245 

then normalized as a percentage-change from the mean number of acquisitions. Linear 246 

regression was used on the normalized acquisition rate to determine the percentage 247 

change in acquisitions due to a single-percentage change in each parameter value.  248 

 A more structural sensitivity question within the Metapopulation model was 249 

explored by varying the amount of time a nurse spends exclusively with their assigned 250 

group vs. other patients on the ward, g. The Metapopulation model including g was 251 

simulated 10,000 times, drawing a value of g for each iteration from a uniform 252 
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distribution bounded by 1/6 and 1. A segmented Poisson regression model was then fit 253 

to detect any thresholds in the value of g where it’s relationship to the rate of MRSA 254 

acquisitions notably changed, or if the transition between the Nurse-MD model (g=1/6) 255 

and the Metapopulation model (g=1) was linear. This model incorporated linear and 256 

quadratic terms for g and allowed the model to choose any number of break points. 257 

 258 

Results   259 

Model Comparison 260 

 When using the same parameter set (calibrated to the SST model), the 261 

probability density and average number of MRSA acquisition were significantly different 262 

between the SST, Nurse-MD and Metapopulation models (c2 = 1796.8, df = 2, p > 263 

0.001) (Fig. 4). Using the SST model as the baseline for comparison, a decrease in the 264 

average number of MRSA acquisitions were observed in both the separate Nurse-MD 265 

model and the Metapopulation model. By separating the physician from the nurses, the 266 

mean acquisitions decreased 20.7% from 40.6 acquisitions to 32.2 acquisitions, 267 

respectively. The Metapopulation model experienced a 51.7% decrease from the 268 

original SST model at 19.6 acquisitions. 269 

 270 

Model Recalibration  271 

 The model parameter y (psi) (the probability of effective colonization of an 272 

uncolonized patient from contact with a contaminated healthcare worker) was used to 273 

calibrate the models. Calibration of the SST model resulted in the median value of the 274 

parameter of 0.024 (95% Credible Interval: 0.016, 0.034). The Nurse-MD model results 275 
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were very similar to the SST model, with a median value of 0.029 (95% Credible 276 

Interval: 0.019,0.042). In contrast, the Metapopulation model had a median y value of 277 

0.046 (95% Credible Interval: 0.032, 0.07), both a substantially higher estimate than the 278 

other models and one in which the bounds of the credible interval did not contain the 279 

other estimates. The altered contact patterns in the Metapopulation model thus needs 280 

substantially higher per-contact colonization probabilities to sustain the same level of 281 

contact. 282 

 283 

Sensitivity Analysis 284 

 While the Metapopulation model resulted in fewer acquisitions, certain 285 

parameters were found to affect the model outcomes to a larger magnitude when 286 

compared to the other models. The three parameters in SST model showing the largest 287 

proportional change (> 0.20) in cumulative acquisitions (Fig. 5a): contact rate (r), 288 

probability of patient colonization (y), and hand-decontamination (i).  Similar findings 289 

were also found in the Nurse-MD model, though generally only for the nurse-specific 290 

parameters (Fig. 5b). The doctor-specific parameters had little effect on the model 291 

outcomes. Only one parameter of the Metapopulation model had a large change in 292 

cumulative acquisitions > 0.20 – the nurse-specific contact rate. However, the 293 

parameters with the largest effects were consistent with the previous two models (Fig. 294 

5c).  295 

 The directionality of the overall change in cumulative acquisitions by parameter is 296 

an important measure of model stability and correct parameter estimates, as this 297 

reflects whether the models qualitatively give the same results as to whether or not a 298 
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particular parameter value changing results in an increase or decrease in MRSA 299 

acquisitions, even if the models disagree as to the specific value of that change. All of 300 

the parameters between the models are consistent in terms of directionality, with the 301 

Metapopulation model having a smaller change in magnitude of the cumulative 302 

acquisitions (Fig. 5d).  303 

 304 

Metapopulation Interactions  305 

 The relationship between g and MRSA acquisitions was non-linear (Fig. 6), with 306 

progressively higher values of g resulting in drastically reduced rates of MRSA 307 

acquisition. The segmented Poisson regression model identified a single change point, 308 

g*, at 0.40 (95% Confidence Interval: 0.37, 0.42). Values below g* were well 309 

approximated by the Nurse-MD model, and values above it rapidly approached the 310 

stricter assignment of the Metapopulation model.  311 

 312 

Discussion 313 

Developing interventions to reduce the spread or transmission of antibiotic-314 

resistant pathogens, such as MRSA, is an important public health and healthcare goal 315 

due to costly on-going hospitalizations and difficulty of treatment. Mathematical models 316 

are an important tool in the development of these interventions, but only if they can 317 

represent the population and transmission dynamics of a hospital. 318 

One important aspect of the highly structured hospital population is the 319 

interaction between patients and healthcare workers. Nurses in particular are typically 320 

assigned to a group of patients within a particular shift, suggesting the possibility of 321 
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modeling a hospital unit as a metapopulation. We developed a model using a 322 

metapopulation structure that explores how nurses-to-patient interactions may affect the 323 

transmission of pathogens in an ICU setting.  324 

 As compared to a model that assumes random mixing, which dominate the 325 

epidemiological compartmental model literature, a more structured metapopulation 326 

appears to be warranted when modeling MRSA within an ICU. The random mixing 327 

assumption allows a higher degree of interaction with the patients and healthcare 328 

workers, resulting in an over-estimation of both the overall rate of MRSA acquisition and 329 

an over-estimation of the impact of interventions. 330 

While the models considered in this study had similar parameter sensitivity in 331 

terms of the direction of changes, the more highly structured models were relatively less 332 

sensitive. In all cases, the contact rate (r), probability of patient colonization (y), and 333 

hand-decontamination (i) parameters had the largest impact, consistent with many of 334 

the known drivers of infection rates within hospitals.  335 

 336 

Conclusion 337 

When combined, these results suggest that while compartmental models that 338 

assume random mixing and those that have more structured populations may give 339 

qualitatively the same answer as to the benefit of an intervention, the magnitude of 340 

these estimates may vary considerably, which has implications for cost-effectiveness 341 

models and other studies that rely on these estimates. Additionally, if the interventions 342 

suggested by the model are implemented in practice, the performance of the 343 

intervention may differ from the model’s predictions due to the choice of population 344 
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structure. Finally, these results show that fitted parameters can vary considerably even 345 

for very similar models, suggesting even mild changes in model form necessitate 346 

refitting, and parameter estimates are not transportable from one model to another 347 

model with a differing population structure. 348 

 Even within a highly structured population, there are events that will lead to the 349 

interactions outside the normal structure. In an ICU setting, it is foreseeable that events 350 

like emergencies, breaks, or cross-coverage of nurses will occur with a reasonable 351 

degree of frequency. Our model suggests that even relatively small increases in the rate 352 

at which these interactions occur can have outsized impacts on MRSA rates. This 353 

finding has broad implications for staffing levels and hospital policy and may provide an 354 

avenue for reducing MRSA rates that does not rely on individual-level actions.  355 

 This study has several limitations. While the Metapopulation model is a more 356 

granular representation of a hospital population than the more-common SST model, it 357 

too is a simplification. Similarly, the parameter estimates used in the model are 358 

imperfect. In particular, it is likely that the hand hygiene rate is likely higher than the 359 

rates occurring in many hospitals, as reported rates are often substantially inflated. 360 

However, these estimates are drawn primarily from the established literature, and 361 

represent the field’s best understanding of the underlying processes.  362 

Other limitations include the structure of the model – it focuses specifically on 363 

healthcare worker and patient interactions and does not account for interactions with 364 

individuals other than nurses and the physician. For example, interactions among 365 

patients, visitation by family and friends, medical or radiological technicians performing 366 
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a specific procedure, etc. are not represented. Similarly,  transmission purely through 367 

environmental contamination is not represented. 368 

 Hospital settings are characterized by highly structured populations and very 369 

limited types of interactions. Despite this, these environments are rarely modeled as 370 

metapopulations, especially at the ward level.  This study shows that the random mixing 371 

assumption results in an over-estimation of both the overall rate of MRSA acquisition 372 

and an over-estimation of the impact of interventions as expressed as changes in model 373 

parameter values. In contrast, a metapopulation model tends to result in proportionately 374 

lower acquisition rates and somewhat more attenuated responses to changes in 375 

parameters. These findings are consistent with observations of the effect of 376 

metapopulations in the disease ecology literature. These results suggest that, even at 377 

small scales, models that assume random mixing may be inappropriate and result in an 378 

overestimation in both acquisition rates and the impact of interventions. 379 
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 470 
Figure 1. Schematic representation of the compartmental flow of a mathematical model 471 
of methicillin-resistant Staphylococcus aureus (MRSA) acquisition with a single type of 472 
staff. Solid arrows indicate possible transition states, while dashed arrows indicate 473 
potential routes of MRSA contamination or colonization. Healthcare staff are classified 474 
as uncontaminated (SU) or contaminated (Sc), while patients are classified as 475 
uncolonized (PU) or colonized (PC). 476 
 477 

 478 
Figure 2. Schematic representation of the compartmental flow of a mathematical model 479 
of methicillin-resistant Staphylococcus aureus (MRSA) acquisition with nurses and 480 
intensivists separated into different staff types. Solid arrows indicate possible transition 481 
states, while dashed arrows indicate potential routes of MRSA contamination or 482 
colonization. Nurses and doctors are classified as uncontaminated (NU or DU) and 483 
contaminated (NC and DC), while patients are classified as uncolonized (PU) or 484 
colonized (PC). 485 
 486 
 487 
 488 
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489 
Figure 3. Schematic representation of a Metapopulation model of methicillin-resistant 490 
Staphylococcus aureus (MRSA) acquisition. Patients (blue) are treated by a single 491 
assigned nurse (orange). A single intensivist (red) randomly treats all patients. 492 
 493 
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 494 
Figure 4. Distribution of cumulative MRSA acquisitions in 3,000 simulated 18-bed 495 
intensive care units under three theoretical population structures. 496 
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 498 
Figure 5. Global parameter sensitivity of three modeled ICU population structures. 499 
Panel A depicts the change in proportional change in cumulative MRSA acquisitions per 500 
one-percent change in the value of a specific parameter, with light bars indicating 501 
increased acquisitions, and dark bars indicating decreased acquisitions for a model 502 
assuming random mixing and with a single staff type for both nurses and physicians. 503 
Panel B depicts the same for a model that separates nurses and physiciansin to 504 
different staff types, while Panel C depicts the same for a metapopulation model where 505 
nurses were assigned to a strict subpopulation of patients. Panel D depicts the 506 
difference in proportional changes between the Metapopulation and Nurse-MD models. 507 
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 509 
Figure 6. Relationship between the proportion of time nurses spend treating patients 510 
outside their assigned group (g) and cumulative MRSA acquisitions over 10,000 511 
simulations, randomly sampling g from a uniform distribution between 1/6 and 1. Grey 512 
dots show an individual simulation, while the black line shows a segmented Poisson 513 
regression fit with linear and quadratic terms for g. The vertical dashed line depicts the 514 
single segmentation point, g*, to the left of which these more complicated models are 515 
adequately approximated by the Nurse-MD model where random mixing occurs. The 516 
shaded area shows the corresponding confidence interval. 517 
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Table 1. Parameters for modeling the acquisition of methicillin-resistant Staplylococcus 
aureus in an Intensive Care Unit 
Parameter Parameter Description Parameter Value Source(s) 
r Contact rate between patients and HCWs 4.154 

(# of direct care tasks/hour) [22], [23] 

rN Contact rate between patients and nurses 
3.973 
(# of nurse direct care 
tasks/hour) 

[22], [23] 

rD Contact rate between patients and physician 
0.181 
(# of physician direct care 
tasks/hour) 

[22], [23] 

s 
Probability that a HCW’s hands are 
contaminated from a single contact with a 
colonized patient 

0.054 [13] 

y SST 
Probability of successful colonization of an 
uncolonized patient due to contact with a 
contaminated HCW when randomly mixed 

0.1494 Fitted to 
[17] 

y Nurse-MD 
Probability of successful colonization of an 
uncolonized patient due to contact with a 
contaminated HCW with physician separated 

0.1660 Fitted to 
[17] 

y Metapopulation 
Probability of successful colonization of an 
uncolonized patient due to contact with a 
contaminated HCW in metapopulation 
structure 

0.4481 Fitted to 
[17] 

q Probability of discharge 4.39 days-1 [17] 

nu Proportion of admissions uncolonized with 
MRSA 0.9221 [17] 

nc Proportion of admissions colonized with 
MRSA 0.0779 [17] 

i 
Effective hand-decontaminations/hour 
(direct care tasks ´ hand hygiene compliance 
´ efficacy) 

5.740 
(10.682 direct care tasks/hour 
´ 56.55% compliance ´ ~ 95% 
efficacy) 

[17], [22]–
[24] 

iN Effective nurse hand-decontaminations/hour 

6.404 
(11.92 direct care tasks/hour ´  
56.55% compliance ´ ~ 95% 
efficacy) 

[17], [22]–
[24] 

iD Effective physician hand-
decontaminations/hour 

1.748 
(3.253 direct care tasks/hour ´  
56.55% compliance ´ ~ 95% 
efficacy) 

[17], [22]–
[24] 

t Effective gown or glove changes/hour 
(2 ´ # of visits ´ compliance) 

2.445 
(2.957 changes/hour ´  
82.66% compliance) 

[13], [17], 
[20] 

tN Effective nurse gown or glove changes/hour 
2.728 
(3.30 changes/hour ´  
82.66% compliance) 

[13], [17], 
[20] 

tD Effective physician gown or glove 
changes/hour 

0.744 
(0.90 changes/hour ´  
82.66% compliance) 

[13], [17], 
[20] 

µ Natural decolonization rate 20.0 days-1 [21] 
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