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ABSTRACT 22 

Background: Prior candidate gene studies have shown tumor suppressor DNA methylation in 23 

breast milk related with history of breast biopsy, an established risk factor for breast cancer. To 24 

further establish the utility of breast milk as a tissue-specific biospecimen for investigations of 25 

breast carcinogenesis we measured genome-wide DNA methylation in breast milk from women 26 

with and without a diagnosis of breast cancer in two independent cohorts. 27 

Methods: DNA methylation was assessed using Illumina HumanMethylation450k in 87 breast 28 

milk samples. After quality control, 368,171 autosomal CpG loci were analyzed. Cell type 29 

proportion estimates from RefFreeCellMix were calculated and adjusted for in this Epigenome 30 

Wide Association Study using linear mixed effects models adjusted for history of breast biopsy, 31 

age, time of delivery, cell type proportion estimates, array chip, and subject as random effect.  32 

Results: Epigenome-wide analyses identified 58 differentially methylated CpG sites associated 33 

with a breast cancer diagnosis in the prospectively collected milk samples from the  breast that 34 

would develop cancer compared with women without a diagnosis of breast cancer (q-value < 35 

0.05). Nearly all CpG sites associated with a breast cancer diagnosis were hypomethylated in 36 

cases compared with controls, and were enriched for CpG islands. In addition, inferred repeat 37 

element methylation was lower in breast milk DNA from cases compared to controls, and cases 38 

exhibited increased estimated epigenetic mitotic tick rate as well as DNA methylation age 39 

compared with controls.  40 

Conclusion: Breast milk has utility as a biospecimen for prospective assessment of disease 41 

risk, for understanding the underlying molecular basis of breast cancer risk factors, and 42 

improving primary and secondary prevention of breast cancer. 43 

 44 

BACKGROUND 45 
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Breast cancer is the most common non-keratinocyte cancer in women in the USA, with over 46 

270,000 new cases each year [1]. Established risk factors for breast cancer include age, 47 

reproductive history, and family history of disease and can be used to estimate disease risk 48 

[2,3]. Additionally, and beyond the recognized role of inherited BRCA mutation, individual 49 

germline genetic variants, and even polygenic risk scores from genome-wide association 50 

studies have also contributed to breast cancer risk assessment [4–6]. Nonetheless, a large gap 51 

in the capacity to predict breast cancer risk remains, and the molecular basis of breast cancer 52 

risk and carcinogenesis has largely not been studied using target-organ biospecimens from 53 

premenopausal women.  54 

Epigenome-wide association studies (EWAS), using surrogate tissues such as peripheral blood 55 

DNA, have also had some success testing the relation of DNA methylation with cancer risk [7–56 

9]. However, unlike genetic variation and germline alterations that confer cancer risk, cytosine 57 

modifications that contribute to cancer risk as disease initiating and promoting events are 58 

overwhelmingly tissue specific. Defining and leveraging knowledge of tissue-specific early DNA 59 

methylation alterations for screening or risk models in normal, nontumor human tissues is 60 

challenging for most common tumor types. Yet, use of breast-specific substrate to investigate 61 

breast cancer risk has shown promise in early studies measuring cell composition, cytology, and 62 

candidate gene DNA methylation from nipple aspirate fluid, though as a substrate, nipple 63 

aspirate fluid can be challenging to obtain and typically yields very low volume [10–14]. 64 

Recently, the utility of altered DNA methylation in cancer screening and risk assessment was 65 

established in colon cancer as part of the Cologuard multi-target assay where a tissue-specific 66 

biospecimen (stool) is obtained and measured without using an invasive procedure [15].  67 

 68 

The majority of extensive DNA methylation alterations observed in invasive breast cancer 69 

compared with normal breast tissue, are already present in pre-invasive disease [16], [17]. In 70 
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addition, age-related variation in normal breast tissue DNA methylation has been shown to 71 

occur at CpG sites that are more likely to be altered in breast tumors [18], suggesting that early 72 

measures of DNA methylation in the pathologically normal breast has value as a biomarker for 73 

future breast cancer risk [18]. Typically, mammary epithelial cells cannot be accessed without 74 

invasive procedures (breast biopsy), lavage, or other relatively impractical methods. However, 75 

exfoliated mammary epithelial cells are abundant in breast milk [19], a tissue-specific substrate 76 

obtained without invasive procedure. These cells are an excellent target for biomarker 77 

development, and prior candidate gene studies have shown that methylation-induced silencing 78 

of tumor suppressor genes in breast milk is related with history of breast biopsy, an established 79 

risk factor for breast cancer [20–22]. Given that 85% of 40 year-old women in the USA have 80 

given birth [23], breast milk is a viable noninvasive source of mammary epithelial cells [24]. We 81 

investigate the relation of early epigenetic alterations with breast cancer risk using cells 82 

obtained from breast milk in controls compared with prospectively collected milk specimens 83 

from subjects who were later diagnosed with breast cancer.  84 

METHODS 85 

Study population 86 

Two different study populations were included in this study: 1) women from the “Molecular 87 

Biomarkers for Assessing Breast-Cancer Risk” project at the University of Massachusetts 88 

Amherst (UMass), and 2) participants of the New Hampshire Birth Cohort study (NHBCS) at 89 

Dartmouth College. UMass subjects were women older than 18 years of age. They were either 90 

lactating or have recently given birth, and they had a history of either breast biopsy or breast 91 

cancer. UMass subjects were asked to provide one or two breast milk samples expressed in a 92 

single pumping session. NHBCS participants characteristics has been described previously [25]. 93 

Briefly, NHBCS eligibility criteria included: English speaking, literate, and mentally competent 94 

women carrying a singleton pregnancy, 18–45 years of age, and whose primary source of 95 
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residential water was a private well. Women who planned to move during pregnancy were 96 

excluded from this study. NHBCS participants were asked to bring bilateral breast milk samples 97 

to the postpartum follow-up appointment. All study participants provided written informed 98 

consent prior to the study according to the guidelines of Institutional Review Board of the 99 

University of Massachusetts Amherst and the Committee for the Protection of Human Subjects 100 

at Dartmouth. Women in both studies were asked to complete a questionnaire about general 101 

health, reproductive health, and personal breast biopsy and breast cancer history. Each 102 

woman’s samples were classified into five different groups: (1) no breast cancer history, (2) 103 

healthy breast, contralateral breast cancer before donation, (3) ipsilateral breast cancer 104 

diagnosis before donation, (4) healthy breast, contralateral cancer diagnosis after donation, and 105 

(5) sample from the ipsilateral breast with cancer after donation. For this analysis, we report the 106 

results of model milk samples from control subjects and from subjects with a subsequent 107 

diagnosis of breast cancer. 108 

Sample collection  109 

Using a previously described method [24], breast milk was processed within 24 hours of sample 110 

collection to obtain DNA. Briefly, DNA was extracted from 1 - 10 mL of milk from each breast 111 

and stored at -20 °C until DNA extraction.  112 

DNA extraction and genome-wide DNA methylation array 113 

DNA was isolated using the Qiagen DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA) and 114 

bisulfite converted using the EZ DNA Methylation kit (Zymo, Irvine, CA). Samples were 115 

randomized across several plates and subsequently subjected to epigenome-wide DNA 116 

methylation assessment using Illumina Infinium HumanMethylation450 BeadChip, which 117 

measured ~485,000 CpG sites genome-wide (Illumina, San Diego, CA). Microarrays were 118 

processed at USC core facility following standard protocols. The data were assembled using 119 
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GenomeStudio methylation software (Illumina, San Diego, CA) without normalization per the 120 

manufacturer’s instructions. The methylation status for each individual CpG locus (β-value) was 121 

calculated as the ratio of fluorescent signals (β = Max(M,0)/ [Max(M,0) + Max(U,0) + 100]), 122 

ranging from 0 (no methylation) to 1 (complete methylation) using the average probe intensity 123 

for the methylated (M) and unmethylated (U) alleles. We read the idat files using the minfi R 124 

package [26]. β-values were background corrected using methylumi-noob and normalized using 125 

functional normalization.[27] Our pipeline included array control probes to assess sample quality 126 

and evaluate potential problems such as poor bisulfite conversion or color-specific issues for 127 

each array as described previously [28,29]. All CpG loci on X and Y chromosomes, CpH, and 128 

loci with potential problems of cross-reactivity, tracking to polymorphisms with minor allele 129 

frequencies over 5% for the general population, or common copy number alterations,[30] were 130 

excluded from the analysis, leaving 368,171 autosomal CpG loci in 92 samples. Principal 131 

components analysis and multiple dimension scaling were used to identify potential technical 132 

batches. Additionally, we used a principal component regression analysis to investigate the top 133 

eight principal components in relation to potential batch-associated differences. Subjects with 134 

missing covariate data were excluded from modeling, resulting in 87 samples. DNA methylation 135 

β-values were logit2 transformed to M-values for the analyses [31]. 136 

Cell mixture analysis 137 

In order to identify and adjust for potential cell type heterogeneity in the breast milk samples we 138 

used a reference-free decomposition (RefFreeCellMix) of the DNA methylation matrix into cell-139 

type distributions and cell-type methylomes, using the expression Y = Μ*ΩΤ [32]. We explored a 140 

range of k cell types from 2 to 10. Note that the decomposition will be based on Y, but Yfinal (=Y 141 

by default) was used to determine the final value of M based on the last iterated value of Ω)  142 

Locus-by-locus analysis for detecting differentially methylated CpG loci  143 
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We implemented a locus-by-locus analysis to identify differentially methylated CpG sites 144 

between samples obtained from control subjects without breast cancer diagnosis and those 145 

from healthy and diseased breasts before or after the cancer development using the R package 146 

limma [33]. Five groups were compared: 1) Controls with no breast cancer history, 2) 147 

Contralateral Prior Diagnosis (sample from healthy breast of a woman previously diagnosed 148 

breast cancer), 3) Ipsilateral Prior Diagnosis (sample from affected breast of a woman 149 

previously diagnosed breast cancer) 4) Contralateral New Diagnosis (sample from healthy 150 

breast of a woman with incident breast cancer), and 5) Ipsilateral New Diagnosis (sample from 151 

affected breast of a woman with incident breast cancer). Briefly, linear mixed effects models 152 

were fit to each CpG site separately, with the CpG β-value as the response against the five 153 

groups. A random effect for subject was included to control for within subject correlation in 154 

subjects with bilateral samples (30 subjects). The models were adjusted for time from delivery 155 

(in months), maternal age (in years), RefFreeCellMix proportion estimates (5 putative cell 156 

types), and the microarray Slide to control residual batch confounding. P-values were adjusted 157 

for multiple comparisons by computing the Benjamini–Hochberg q-values [34], and we defined 158 

loci with q-value < 0.05 to be statistically significant. We focus on CpGs identified as 159 

differentially methylated in both prospectively diagnosed groups (ipsilateral and contralateral), 160 

and report individual group results in supplemental material. All analyses were carried out using 161 

the R statistical package, version 3.5.0 (Vienna, Austria; www.r-project.org/) [35]. 162 

Repetitive elements prediction and analysis 163 

We use the package REMP, Repetitive Element Methylation Prediction [36], to estimate the 164 

DNA methylation levels on both LINE-1 and Alu transposons using the information from the 165 

DNA methylation microarray. This random forest approach covers 37 Alu subfamilies and 115 166 

LINE-1 subfamilies. We computed the average Alu and LINE-1 methylation levels for each 167 

sample, and tested the association with prospectively diagnosed breast cancer, excluding the 168 
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three samples from subjects with a prior diagnosis of breast cancer. P-values were computed 169 

using the Kenward-Roger approach.  170 

Enrichment analyses 171 

The probes that were differentially methylated were tested for pathway and gene set enrichment 172 

using missMethyl [37] and the MSigDB v.6.2 curated database [38]. A minimum of two genes 173 

were required for further exploring the specific pathway. We also tested for over- or 174 

underrepresentation of differentially methylated CpGs identified in the locus-by-locus analysis in 175 

1) enhancer regions and 2) CpG island regions. Loci with a q-value < 0.05 were considered to 176 

be statistically significant. Odds ratios, 95% confidence intervals, and P-values were computed 177 

with the Cochran-Mantel-Haenszel test and were adjusted for probe type. 178 

Predicted methylation age and stem cell divisions 179 

We used Horvath’s DNA methylation age estimation algorithm [39] to calculate predicted 180 

methylation age (����) using the agep function from wateRmelon [40]. Using those estimates, 181 

age acceleration was defined as: ��� ������	�
��
 � ���� � ��� . We tested for differences in 182 

age acceleration between control subjects and subjects with breast cancer using a linear mixed 183 

effects model. P-values were calculated using the Kenward-Roger approach. Additionally, stem 184 

cell divisions were estimated using the epiTOC method [41], but only 334 of 385 CpGs were 185 

available to calculate estimates. epiTOC estimates were compared between cases and controls 186 

using unadjusted linear mixed effect models analogously to the age acceleration models. 187 

RESULTS 188 

Genome-scale DNA methylation was measured in breast milk samples from 87 subjects using 189 

the Illumina HumanMethylation450 beadchip. Subject demographic and sample details are 190 

provided in Table 1. 64 (73%) samples were from cancer-free subjects and 23 were from 191 

subjects who had a breast cancer diagnosis of which 20 (87%) were collected prior to diagnosis. 192 
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Milk samples from subjects with any breast cancer diagnosis were classified according to 193 

whether the cancer was in the ipsilateral or contralateral breast. Overall, about 70% of samples 194 

from subjects with subsequent breast cancer were collected from the ipsilateral breast (n=14) 195 

and 30% were from the contralateral breast (n=6). 196 

Table 1. Subject characteristics 197 

Variable 
N (%) or Mean [Range]  

Controls (n = 64)   Breast Cancer (n = 23) P 

Age (years) 33.2 [23 - 44] 36.3 [29 - 45] 0.01 

BMI 26.5 [18.2 - 43.6] 25.2 [18.4 - 38.7] 0.40 

BMI category 0.20 

Normal/Underweight 28 (43.8) 8 (34.8)  
Overweight/Obesity 27 (42.2) 13 (56.5)  
Missing 9 (14.1) 2 (8.7)  

Breast biopsy <0.001 

    No 50 (78.1) 0 (0.0)  
    Yes 14 (21.9) 23 (100.0)  
Time since delivery (months) 2.2 [0 - 10] 10.8 [0.2 - 20] <0.001 

Parity 2 [1 - 5] 2 [1 - 4] <0.001 

Milk sample  N/A 

    Ipsilateral N/A 16 (69.6)  
    Contralateral N/A 7 (30.4)  
Milk collection  N/A 

Pre-diagnostic N/A 20 (87.0)  
Post diagnosis N/A   3 (13.0)   

 198 

We used a reference-free cell type estimation approach to identify the number of putative cell 199 

types and the proportions of each cell type in each breast milk sample. The reference-free 200 

method identified five putative cell types in human milk. In unadjusted models, we observed 201 

differences in cell type proportions between breast milk samples from women who did not 202 

developed breast cancer (henceforth named as “controls”) compared with those diagnosed with 203 

breast cancer for three of the five putative cell types. The proportions of cell types 2 and 3 were 204 

higher in subjects with a prospective diagnosis of breast cancer than controls (P=5.2E-06 and 205 
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7.1E-04), and the proportion of cell type 4 was lower in milk from subjects with breast cancer 206 

compared to controls (P=1.2E-05) (Figure 1). In these models, differential abundance of 207 

putative cell types in controls versus cases was similar irrespective of whether the samples 208 

were from the ipsilateral or contralateral breast, or whether the breast cancer diagnosis 209 

occurred prior or subsequent to breast milk sample collection (see figure Additional File 1). 210 

After adjusting for maternal age (years), time since delivery (months), and BeadArray slide 211 

number, cell type proportions were no longer associated with breast cancer diagnosis. 212 

DNA methylation was compared using linear mixed effect models adjusted for time since 213 

delivery in months, maternal age in years, estimated cell type proportions, and array chip with 214 

subject as a random effect. We identified 57 significantly differentially methylated CpG sites 215 

associated with milk from the ipsilateral breast after correction for multiple comparisons (q-value 216 

< 0.05). Among these 57 CpGs, one CpG in an island region and associated with both the 217 

LRRC61 and ACTR3C genes was significantly hypermethylated in breast milk from subjects 218 

who were later diagnosed with breast cancer (Figure 2). The remaining 56 CpG sites were 219 

significantly hypomethylated in prospectively collected breast milk from the ipsilateral breast of 220 

subjects who developed cancer compared with controls (Figure 2). The most statistically 221 

significantly hypomethylated CpG site related to breast cancer diagnosis was located in the 222 

island region of the CLCC1 gene. Additional genes with hypomethylated loci included TMSB10, 223 

ZNF584, MAP10 (previously KIAA1383), TRIM27, and SEPTIN7 (previously SEPT7). A total of 224 

32 of these CpGs also were hypomethylated in prospectively collected milk from women who 225 

developed cancer in the contralateral breast compared to controls (Table 2). The full set of the 226 

EWAS results are available as Additional Files 2 and 3. 227 

 228 

 229 
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 230 

 231 

 232 

Table 2. CpG loci that are hypomethylated in breast cancer 233 

CpG ID Gene Enhancer Genomic 
Context 

cg22063056 CLCC1  Island 

cg00954003 TMSB10  Island 
cg01221484 ZNF584  Island 
cg02014690 DGCR6  Island 
cg02191044 MAP10 x North Shore 
cg04637598  x Island 
cg05698228 ENC1  Island 
cg14399369 VRK2  Island 
cg18453621 LMX1B  Island 
cg19286631 TRIM27  Open Sea 
cg21458073 SEPTIN7  Island 
cg26421123 COMMD5  Island 

cg01996304 ZNF668; 
ZNF646  

Island 

cg02236651 LIMD2  Island 
cg03644271 LDHA  Island 
cg06363887 UTP3  Island 
cg06952862 NHEJ1  South Shore 

cg08790491 PSMA3-AS1; 
ARID4A  Island 

cg09422220 ELMOD2  Island 
cg09523472 RAD21  Island 
cg09974136 RAB34 x Island 

cg12276298 
ECD; 

FAM149B1  Island 

cg12538369 SERTAD1  Island 
cg14500569 PTCH1  Island 
cg14610853 EEF1A2  South Shelf 
cg15698995 NAT14  Island 
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cg16914272 HIST1H2BN; 
HIST1H2AK  Island 

cg19337593 DHPS  Island 
cg19570943 MAGOHB  Island 
cg20923184 

 
x Open Sea 

cg24104616 ZNF311 
 

Open Sea 
cg24663984 UBE4A x Island 

We accessed TCGA breast tumor data using cBioportal to determine whether genes we 234 

identified as having hypomethylated CpGs related to breast cancer were associated with gene 235 

regulation.  We found negative correlations between DNA methylation with mRNA expression z-236 

scores (RNA seq) for many of these genes including ZNF584 (P=2.41E-17), MAP10 (P=1.61E-237 

76), TRIM27 (P=6.01E-14), LIMD2 (P=1.14E-59), and LDHA (P=6.06E-06). In contrast, there 238 

was little to no correlation between DNA methylation and expression of CLCC1 (Spearman ρ=-239 

0.03, P=0.5), TMSB10 (ρ = -0.08, P=0.07) and SEPTIN7 (ρ =-0.05, P=0.2), see Additional File 240 

4. The range of DNA methylation level observed for each CpG tested in the TCGA tumors was 241 

comparable to that observed in our samples.  242 

Given the preponderance of CpG-specific breast milk DNA hypomethylation associated with 243 

breast cancer, and that repeat element hypomethylation is well established in cancer, we further 244 

assessed repetitive element methylation.  To do so, we inferred Alu (37 subfamilies) and LINE-1 245 

(115 subfamilies) DNA methylation using array data and the repetitive element methylation 246 

prediction (REMP), as detailed in the methods section. None of the individual repetitive 247 

elements reached statistical significance after multiple comparison correction. The nominally 248 

significant are summarized in Additional File 5, Table S5. Mean Alu subfamily methylation was 249 

significantly lower in breast cancer cases compared to controls (β = -0.21, p-value = 2.9E-4), 250 

and mean LINE-1 subfamily methylation was also lower in cases than controls (β = -0.073, p-251 

value = 0.10) (Figure 3).  252 

To evaluate the location in the genome where breast cancer-related DNA methylation 253 

alterations in breast milk were occurring we performed enrichment analyses for both genomic 254 
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context and gene sets. Differentially methylated CpGs (q-value<0.05) associated with a 255 

subsequent diagnosis of breast cancer were enriched for CpG island regions in milk from both 256 

the ipsilateral and contralateral breast (Table 3). Among CpGs whose methylation was 257 

significantly related with cancer diagnosis we also tested for enrichment of gene sets using the 258 

molecular signatures database (MSigDB) v. 6.2, and identified 7 gene sets enriched for the 32 259 

CpG sites that were differentially methylated in both ipsilateral and contralateral samples. The 260 

top two pathways are related to highly conserved motif clusters matching transcription factor 261 

binding sites [42]. Three pathways are related to upregulation of genes in CD8(+) T 262 

lymphocytes, T regulatory cells and dendritic cells. Finally, two gene sets are associated to 263 

tumor invasion [43] and granulocyte differentiation in acute promyelocytic leukemia [44] , see 264 

Additional File 5, Table S6. 265 

Table 3. Enrichment for genomic context in CpGs with q < 0.05 266 

Breast Cancer Group2 
Island Regions Enhancer Regions 

OR (95% CI) P1 OR (95% CI) P1 

Ipsilateral 3.48 (1.75, 7.45) 9.3E-05 1.05 (0.45, 2.18) 8.5E-01 

Contralateral 4.28 (1.64, 13.30) 8.6E-04 1.01 (0.30, 2.67) 1.0E+00 

1P determined using the Cochran-Mantel-Haenszel test 267 

2Reference level is controls with no breast cancer history 268 

In univariate linear mixed effect analyses we also tested for DNA methylation age acceleration 269 

and elevated epigenetic mitotic clock tick rate (epiTOC) in association with breast cancer status. 270 

The epiTOC estimates were significantly higher amongst breast cancer subjects (β = 0.013, p-271 

value = 3.2E-04, Figure 4a). A marginally significant increase in age acceleration subjects with 272 

breast cancer compared to controls was also observed (β = 2.7, p-value = 0.071, Figure 4b). 273 

After adjusting for covariates, neither epiTOC estimates nor methylation age were related to 274 
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breast cancer status. In the adjusted analyses, putative cell type proportions were related to 275 

epiTOC estimates and age acceleration. 276 

DISCUSSION 277 

We identified significant differences in DNA methylation after controlling for cell type and other 278 

confounders in subjects with a subsequent diagnosis of breast cancer compared with controls. 279 

In the subjects who were diagnosed with breast cancer after the milk collection, nearly all of the 280 

significantly differentially methylated CpGs were hypomethylated. Several of the genes whose 281 

CpG sites were differentially methylated in prospectively diagnosed cases have previously been 282 

associated with breast cancer. For example, TMSB10 is overexpressed in breast cancer cells, 283 

has elevated protein expression in serum of breast cancer patients, and is elevated with 284 

increasing breast cancer stage and distant metastasis [45]. Linking a systemic marker of breast 285 

cancer risk to our tissue-specific approach, promoter CpG island hypomethylation of ZNF584 286 

was associated with a breast cancer diagnosis both here and in peripheral blood DNA from 287 

breast cancer patients [46]. Further, using TCGA breast tumor data, we showed the functional 288 

relationship of ZNF584 DNA methylation with gene expression. We also observed 289 

hypomethylation at CpGs in SEPTIN7, TRIM27, LIMD2, and LDHA, which have been 290 

associated with breast cancer metastasis, invasion, and proliferation, [47–50]. Apart from 291 

SEPTIN7, all these genes showed negative correlation between gene expression and DNA 292 

methylation in TCGA breast cancer samples, again demonstrating functional consequences of 293 

altered DNA methylation to gene regulation. These results support our hypothesis that 294 

epigenetic alterations in human milk have utility for noninvasive molecular assessment of breast 295 

cancer risk. 296 

Amongst subjects with incident breast cancer, the group of hypomethylated CpGs found to be 297 

significantly differentially methylated in milk samples from both contralateral and ipsilateral 298 

breast compared to those from controls were enriched for CpG island regions. Methylation at 299 
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CpG island regions can reduce gene expression in associated genes [51]. Since the majority of 300 

differentially methylated CpGs were hypomethylated, this may correspond to increased 301 

expression of genes with promoters in these regions, and consistent with our observations of 302 

local and potentially systemic effects, our pathway enrichment analyses identified both proto-303 

oncogene signatures and immune dysregulation signatures. One pathway with strong 304 

enrichment is associated with a motif for the ELK-1 a regulator of the c-Fos protooncogene 305 

which has been linked to growth suppression in breast cancer cells [52]. The second pathway 306 

includes CpGs related to a motif for SP-1, a part of the Kruppel-like family that also has been 307 

associated as a prognostic factor in breast cancer [53]. Three more pathways pointed to genes 308 

upregulated in CD8(+) T lymphocytes, activated T-regulatory cells, and dendritic cells, 309 

cornerstones of tumor immune response in breast cancer murine models [54]. The remaining 310 

two pathways were related to tumor invasion and granulocyte differentiation. 311 

We also observed differences in measures of methylation age including the epiTOC estimator 312 

and Horvath’s methylation age between breast cancer subjects and control subjects, but these 313 

associations were not robust to adjustment for potential confounders. Notably, in our study 314 

population the subjects with a cancer diagnosis were slightly older than control subjects. 315 

Putative cell type proportions, however, were related to all measures of methylation age. 316 

Although CpG loci utilized in each algorithm are not supposed to be dependent on cell type, 317 

there have been consistent trends of accelerated age in breast tissues when using the Horvath 318 

methylation age approach. Accelerated biologic age inferred using DNA methylation has 319 

recently been associated with breast cancer risk in a very large prospective study using 320 

peripheral blood [55]. However, to date, unlike peripheral blood, there are no DNA methylation 321 

clocks for inference of biologic age that are calibrated to biospecimens from the breast. In the 322 

future, larger breast-tissue-specific studies are needed to advance our understanding and 323 

All rights reserved. No reuse allowed without permission. 
certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprint (which was notthis version posted July 12, 2019. ; https://doi.org/10.1101/19001925doi: medRxiv preprint 

https://doi.org/10.1101/19001925


opportunity to leverage biologic age estimates for breast cancer risk assessment and primary 324 

prevention. 325 

This study has several strengths and limitations. Strengths of our study include the use of 326 

prospectively collected specimens, tissue-specific measures of DNA methylation, and two 327 

independent cohorts. Although some subjects were potentially had clinically occult disease 328 

when providing a milk specimen, others were not diagnosed until years later. One limitation of 329 

this study is sample size, though investigating genome-scale DNA methylation measures in 330 

breast milk is novel. One potential limitation is that we pooled controls from two different cohorts 331 

processed in different technical batches. Although we controlled for technical differences in our 332 

models and used a conservative approach that adjusted for cell estimates which also captures 333 

technical differences, we cannot completely exclude some residual technical noise between 334 

cohorts affecting our results.  335 

We identified early DNA methylation alterations in breast milk associated with subsequent 336 

breast cancer occurrence. These loci were either in genes expressed in breast cancers, related 337 

to breast cancer progression, or found in peripheral blood samples women with breast cancer. 338 

Importantly, because we identified both overlapping results with work that used peripheral blood 339 

as a surrogate biospecimen and results distinct to breast milk we expect that our tissue-specific 340 

approach has high potential for follow up work. We expect that future investigations of DNA 341 

methylation changes present in cells from breast milk from disease-free women will have value 342 

for risk assessment and primary prevention of breast cancer, perhaps with specific strength in 343 

application to premenopausal disease. However, larger studies are needed to validate our 344 

findings and to further establish the utility of breast milk as a biospecimen for understanding the 345 

molecular basis of disease risk and prospective risk assessment. 346 

Conclusions 347 
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We assessed genome wide DNA methylation in breast milk from subjects with and without 348 

breast cancer, specific loci were hypomethylated in breast cancer subjects compared to control 349 

subjects. These differentially methylated regions were more likely to occur in island regions of 350 

the genome. Our results suggest that breast milk has utility for prospective assessment of 351 

breast cancer risk. 352 
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