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Abstract:  

In this study, we introduce a novel framework for the estimation of residual renal function 

(RRF), based on the population compartmental kinetic behavior of Beta 2 Microglobulin (B2M) and 

its dialytic removal. Using this model, we simulated a large cohort of patients with various levels of 

RRF receiving either conventional high-flux hemodialysis or on-line hemodiafiltration. These 

simulations were used to estimate a novel population kinetic (PK) equation for RRF (PK-RRF) that 

was validated in an external public dataset of real patients. We assessed the performance of the 

resulting equation(s) against their ability to estimate urea clearance using cross-validation. Our 

equations derived entirely from computer simulations and advanced statistical modeling, and had 

extremely high discrimination (AUC 0.808 – 0.909) when applied to a human dataset of 

measurements of RRF. A clearance-based equation that utilized pre and post dialysis B2M 

measurements, patient weight, treatment duration and ultrafiltration had higher discrimination than 

an equation previously derived in humans. Furthermore, the derived equations appeared to have 

higher clinical usefulness as assessed by Decision Curve Analysis, potentially supporting decisions 

that for individualizing dialysis frequency in patients with preserved RRF. 
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1. Introduction 

Patients with End Stage Renal Disease (ESRD) initiate dialysis when their intrinsic, residual renal 

function (RRF) is between 5-11 ml/min/1.73m2 [1,2]. Although RRF will be invariably lost within the 

first few years of dialysis initiation, sustaining this RRF is clinically important for the following 

reasons:   low or declining RRF is associated with worse survival [3–7],  worse phosphate control 

[8], increasing left ventricular hypertrophy [9], and poorer quality of life [3,10]. Hence existing 

dialysis guidelines [11,12] recommend the incorporation of RRF measurements into individualized 

patient  prescriptions in order to achieve minimum dialysis adequacy targets.  

In recent years, the paradigm of incremental dialysis [6,13,14], i.e. the gradual increase in 

frequency of dialysis match the RRF has also been proposed. This practice has not been widely 

adopted despite the fact that it  may be associated with neutral[15] or even improved survival, 

reduced hospitalizations and improved control of several biochemical parameters[16] [17]. A major 

barrier to the safe implementation of incremental dialysis is the need to measure RRF in order to 
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prevent underdialysis. This is a concern raised by regulators as well. In the United States the Center 

for Medicare Services explicitly considers twice weekly dialysis to be inadequate in patients with 

Urea Clearance (UrCl, a proxy for RRF)  lower than 2 ml/min. Current guidelines [18] thus suggest 

that RRF be measured by interdialytic urine collection and plasma sampling for urea and creatinine 

for the calculation of the relevant clearances. However such collections are inconvenient for the 

patient [17,19–21], costly and partially adhered to, even in incentivized research settings [22].  

To overcome the shortcomings of urine collections, effort has shifted towards estimating UrCl 

without having to collect urine. These efforts leverage  pre dialysis measurements of “middle 

molecules”; such as beta 2 microglobulin, (B2M) [19,21,23], cystatin C (CysC) [21,23] and beta trace 

protein (BTP) [19,21], either alone or in combination, to estimate UrCl. These data suggest that B2M 

is the single most predictive biomarker of the guideline relevant cutoff of UrCl <2ml/min. Addition 

of other middle molecule markers e.g. CysC or BTP only marginally improves the performance of 

RRF estimating equations. Despite these encouraging results, these equations are not deployed in 

clinical practice because of the large variability in predicting the RRF of individual patients. This 

variable performance is thought to reflect the complex, multi-compartmental interdialytic kinetics of 

middle molecules and is particularly evident in patients with minimal or zero RRF [21].  

In this study, we introduce a novel framework for the estimation of RRF, based on the population 

compartmental kinetic behavior of B2M and its removal during dialysis that have been meticulously 

modelled and meta-analyzed by our group [24,25]. This population kinetic model captures 

interindividual variability in the processes of generation, distribution and even elimination of B2M 

from the body. Using this model, we simulated a large cohort of patients with various levels of RRF 

receiving either hemodialysis (HD) or hemodiafiltration (HDF). These simulations were then used to 

estimate a novel population kinetic equation for RRF (PK-RRF) that was validated in an external 

public dataset of real patients [21]. Incorporation of additional renal function biomarkers in our 

approach is straightforward under the simulator calibration framework [26,27], that is commonly 

applied to calibrate simulations against real world measurements. This is an innovative direction 

towards the development of multi-biomarker models, which we explore in this manuscript. We 

assessed the performance of the resulting equation(s) against their ability to estimate UrCl using 

cross-validation. Clinical utility of these predictive models is quantified from a decision curve 

analysis/net-benefit perspective [28,29]. 

2. Experimental Section 

The PK-RRF has two components: a) a statistical model linking B2M to RRF and b) a model that 

links RRF to a clinical measurement (urinary clearance) of a biomarker that could be used as a proxy 

for the RRF. The first component was developed by simulating the B2M kinetics in an artificial cohort 

of “patients” with characteristics that cover all possible combinations of dialysis prescriptions and 

kinetic parameters for B2M. After the conclusions of the simulations, a statistical description of the 

relationship between the output of the simulator (B2M) and the control parameters (e.g. dialytic 

clearance, B2M generation rate, distribution compartment volume, RRF) was derived. Such 

descriptions can be used to derive estimating equation for the actual RRF based on observable 

quantities that are either easily measurable (e.g. B2M), directly available (dialysis prescription), or  

can be proxied (e.g. dialytic clearance based on pre and post dialysis B2M levels).  

After development, the estimating equation for the RRF was used as input to a second model 

that related the measured RRF to urinary clearance. The first component of the PK-RRF is derived by 

flexible parametric modeling of simulated data. The second component of the PK-RRF requires 

additional experimental data. In the context of this paper, key studies provided data that clarified the 

relationship between urinary clearance of urea and creatinine, and RRF. Even though the underlying 

population kinetic simulations and the emulator were based on sound principles, it would be naïve 

to expect them to faithfully represent the complexity of the B2M generation, distribution and removal 

by dialysis. Hence, we also consider calibrating the predictions of the PK-RRF against an external 

dataset of actual measurements performed in actual patients. Figure 1 presents a schematic overview 

of the approach adopted in this report. 
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Figure 1. Overview of the approach adopted in this paper. We simulated the B2M kinetics in populations 

undergoing hemodialysis (HD) or hemodiafiltration (HDF). These simulations were used to derive Gaussian 

Process approximations for dialytic clearance and equations that related B2M to the known residual renal 

function (PK-RRF). Literature data were then used to relate the RRF to Urea Clearance (UrCl) and derive an 

equation that uses B2M and dialysis parameters to predict UrCl, a proxy for the unmeasured RRF. These in-

silico derived equations were assessed in terms of discrimination, validation and calibration in real world 

datasets.  

2.1. Simulations of B2M kinetics during dialysis and hemodiafiltration  

 We simulated 10,000 hemodialysis patients receiving either thrice weekly high flux HD or 

on line hemodiafiltration (HDF) under the two compartment, variable volume model for B2M 

kinetics [24,30] following the methodology previously reported by our group [24]. These simulations 

used the PopK parameters for B2M and the range of the dialyzer B2M clearances [24,31] described in 

our previous meta-analysis. Dialysis-related parameters (dialysis duration, ultrafiltration volume, 

substitution flow rates) were based on the FHN [32,33], HEMO [34] trials for the HD simulations and 

on the three largest randomized controlled trials  (Dutch CONTRAST [35], Spanish ESHOL [36], 

Turkish OL-HDF [37]), for HDF. Each patient was given a unique RRF value and the 

interdialytic/intradialytic changes in B2M concentration were simulated over a period of three 

months with the LSODA integrator [38]. The pre dialysis and post dialysis simulated concentration 

of B2M at the first weekly session at the end of the three month period were extracted from the 

simulation files and were used for model development. This simulated dataset is available on-line as 

Table S1. 

2.1. Development of PK-RRF equations 

2.1.1. Generalized Additive Models for the PK-RRF  

 The B2M pre dialysis values in the simulated dataset (Table S1) were used to predict the 

RRF value in each artificial patient, via means of Generalized Additive Models (GAM) [39,40]. GAM 

regressions allow the data-driven discovery of complex, possibly non-linear interactions between 

continuous covariates and either continuous (the RRF value) or discrete (RRF > 2 ml/min) outcomes. 

GAMs achieve these goals by modeling the relationships between variables through smoothing 

functions, e.g. thin plate regression splines (TPRS) or Gaussian Processes (GP). Contrary to other 

popular flexible models used in biomedicine e.g. cubic splines, TPRS can model highly complex 
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relationships and nonlinear interactions between covariates and without the need to specify knot 

locations, i.e. ranges of values in which the relationship between the covariate and outcome changes 

mathematical form. For models with more than two interacting variables measured in different 

scales, we also considered GPs when fitting the GAMs. Despite their flexibility, GP models require a 

considerable amount of data to learn these relationships, and thus could only fit on the dataset of 

simulated patients. In fitting these models, one has to specify a covariance function that describes the 

correlation of the value of quantity modelled as GP at two different points of the input (e.g. B2M, 

dialyzer clearance, body weight, treatment duration) variables. For the purpose of this work, we used 

the Kamman and Wand version of the Matérn covariance function [41] in the mgcv GAM package in 

R.  

2.1.2. In silico exploration of factors affecting the performance of the PK-RRF  

While exploring our artificial dataset, we developed a series of models that used control 

parameters of the simulations; e.g. dialytic clearance of B2M or treatment time in addition to B2M 

levels when predicting RRF. The purpose of this modeling was to understand the additional 

measurements or dialysis treatment parameters that should be incorporated into a basic model of 

B2M vs. RRF in order to develop an estimating equation that can truly individualize predictions. For 

these analyses, we adopted a hold-out validation strategy in which the simulated dataset was 

randomly split in a training/development (2/3 of all data) and a testing/validation subset. The 

simplified formulas were then developed in the training dataset and their performance was assessed 

in the development one. Dialytic clearance was calculated from treatment duration, ultrafiltration 

volume, body weight, pre and post dialysis B2M measurements via the Leypoldt formula [43]. This 

formula was obtained through a uni-compartmental approximation to the full kinetic model of B2M. 

The inputs to this formula are the pre and post dialysis B2M levels, body weight and ultrafiltration 

rate.  It is not entirely clear how accurate this equation is over the entire range of the input 

parameters. Hence, we used our kinetic simulations to compare this formula against a GP that 

utilized the same variables using a hold out validation technique. These analyses were carried out in 

Microsoft R Open v3.4.0-3.5.1; GAM analyses were undertaken via the package mgcv. 

2.2. Modeling the relation of RRF to UrCl 

A key question that has not been answered in the literature [14,42,43], concerns the quantitative 

relationship between clinical measurements of CrCl and UrCl and their relationship with the concept 

of the RRF. In the context of this work, the RRF maps to the glomerular filtration rate (GFR), as has 

been recently discussed [42,42,44,45]. Only a few landmark, experimental studies [46–49] have 

simultaneously measured GFR using exogenous markers and timed urine collections, but the data 

from these studies have not been analyzed together. We thus undertook a quantitative synthesis of 

the relationship between GFR measurements and the timed urine collections for the calculation of 

clearances of urea and creatinine. In the compartmental kinetic model for B2M, the RRF participates 

in its non-normalized to the Body Surface Area form, ie. its units are expressed in ml/min rather than 

ml/min/1.73m2 and this is the form we analyzed in this paper. We extracted individual patient data 

(Table S2) from these publications from the relevant tables, or figures using digitizer software as 

previously described [25]. These studies had used a variety of methods; e.g iothalamate, inulin or 

DTPA, to measure GFR (mGFR). The UrCl and CrCl data from these studies were related to the RRF 

using the following hierarchical measurement error model: 

 

𝑚𝐺𝐹𝑅𝑖,𝑗 = 𝑅𝑅𝐹𝑖 + 𝑒𝑖,𝑗

𝑈𝑟𝐶𝑙𝑖 = 𝑎𝑈 + 𝛽𝑈𝑅𝑅𝐹𝑖 + 𝑈𝑖

𝐶𝑟𝐶𝑙𝑖 = 𝑎𝐶 + 𝛽𝐶𝑅𝑅𝐹𝑖 + 𝐶𝑖

,    

𝑒𝑖,𝑗 ~ 𝑁(0, 𝜎𝑅𝑅𝐹
2 )

𝑈𝑖 ~ 𝑁(0, 𝜎𝑈
2)

𝐶𝑖 ~ 𝑁(0, 𝜎𝐶
2)

 
(1) 

According to this model, the jth measurement of GFR (mGFRi,j j=1,2,3 corresponding to iothalamate, 

inulin or DTPA) in the ith patient i an unbiased, but noisy estimate of the (unobserved) RRF in that 
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patient (RRFi). The (observed) UrCli and CrCli in the same patient are linearly related to the RRFi, with 

the relationship incorporating linear intercept (αU andαC , respectively) and slope (βU andβC , 

respectively terms. If the urine clearances are unbiased estimates of the RRF, the corresponding 

intercept terms should be zero; if the slope parameters are less (greater) than 1.0, the clearance 

measurements consistently under(over)estimate the RRF. The quantities (ei,j , Ui and Ci) are random 

terms, quantifying measurement and formula error in the measured GFR, UrCl and CrCl 

respectively. All random terms are modelled as zero mean, Gaussian (normal) random variables with 

standard deviations given by the sigma symbols in (1). Model fitting procedures are discussed in 

Appendix A. 

2.3. Measurements of B2M , RRF and dialyzer clearance in patients 

We utilized the publicly available dataset of RRF, CysC, B2M, urea, creatinine and dialysis 

parameters that accompanied the publication of Vilar et al [21] to evaluate the PK-RRF equation 

performance. This dataset included measurements in 341 individuals, of whom 230 were receiving 

HDF and the remaining conventional, high flux HD. Thirty six per cent of the participants in this 

dataset had RRF of 0 ml/min, providing an opportunity to assess equation performance in this 

challenging subgroup of patients. For the purpose of this paper we used the 24 hour urea clearance 

as an index of RRF. This is the approach taken by the bulk of the literature to date [17,19,21,23] in the 

field. Post dialysis B2M, and thus dialytic clearance calculations were available in 291 patients in the 

Vilar cohort, thus allowing us to fit the dialytic clearance equations. 

2.4. Models and outcomes for UrCl 

We compared our PK-RRF equations against the Shafi equation for the a) primary outcome of 

having a UrCl > 2 ml/min vs ≤ 2 ml/min and b) the continuous prediction of UrCl. In the publication 

describing the Shafi equation, the formula’s continuous prediction was thresholded in order to 

classify patients as having a clearance above or below the cutoff.  This is also how we used the 

formula in this paper. The Shafi equation was developed in a cohort of 44 patients with urine volume 

> 250ml undergoing HD and were validated in a cohort of 826 mixed cohort of patients undergoing 

either peritoneal dialysis or HD from the NECOSAD study. In the PK-RRF approach we developed 

logistic GAM regression model for the threshold of RRF corresponding to a UrCl ≤ 2 ml/min. We 

considered two logistic PK-RRF equations as comparators of the Shafi equation: i) a basic equation that 

included only the predialysis B2M, and  ii) a clearance based equation which used a GP to account for 

dialytic clearance as explained in section 2.1.2.. 

2.5 Model Comparison: Discrimination, Calibration and Clinical Usefulness 

 We adopted the AUC for discrimination of UrCl ≥ 2ml/min vs UrCl< 2ml/min (the cutoff of 

incremental dialysis in the existing guidelines) as the primary metric for evaluating the performance 

of the logistic PK-RRFs against the Shafi equation. Other descriptive metrics were also computed to 

provide a more complete evaluation for the continuous UrCl outcome: the proportion of predictions 

within a 0.5 – 2 ml/min of the true RRF, measures of bias (Mean Absolute Error, Median Error), 

variance (Interquartile Range) and the total Root Mean Square Error (RMSE) between the model 

predictions and the actual RRF measurements.   

The basic method for assessing calibration was the linear calibration plot. In these analyses, the 

UrCl , or the linear predictor for the logistic PK-RRF was used as a covariate in linear regression 

analyses against the real world measurements [50,51]. This linear regression yields an intercept and 

a slope which can be used used to assess calibration. The intercept is an index of the formulas ability 

to be systematically too high or low (“calibration-in-the-large”) and should be close to zero for an 

unbiased model. The calibration slope should be ideally equal to unity, with values smaller than one 

reflect model overfit, with the departure from unity quantifying the effects of overfit.  
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2.5.1 Clinical Usefulness (Decision Curve Analysis) 

We also assessed the clinical usefulness of the PK-RRF and Shafi models using Decision Curve 

Analysis (DCA). DCA essentially quantifies the net numbers of correct classifications gained by 

applying a predictive model or a simple clinical decision rule and the resulting clinical consequences 

of a treatment decision guided by the rule.  DCA [28] assumes that the threshold probability of a 

clinical state at which one would opt in or out of treatment decided by the prediction rule, is 

informative of the risk benefit ratio of a false-positive and a false-negative prediction. This 

relationship is then used to calculate the Net Benefit (NB) over different threshold probabilities 

contrasting the benefit against treatment strategies of treating all or no patients. The NB is a quantity 

that assumes values between negative infinity up to the prevalence of the predicted state with 

positive values indicating that the model had a beneficial impact on clinical decision-making and 

negative values indicating harm. The Standardized Net Benefit (SNB) indexes the NB to the 

prevalence of the predicted state, to give a maximum potential value of one.  Since there is not 

usually a single, universally acceptable probability threshold, one can plot SNB against threshold 

probability to obtain a "decision curve". DCA then identifies the magnitude of benefit, and allows a 

direct comparison of several models against the range of threshold probabilities, or equivalently risk-

benefit ratios. For any given risk threshold, the DCA shows the prediction model with the highest 

utility [52]. In our context, we applied DCA under the opt-out treatment policy framework [53]: the 

PK-RRF and the clinical rule based on the Shafi formula are used to identify low risk patients (patients 

with preserved UrCl > 2 ml/min) who could opt out of the (reference) treatment strategy of thrice 

weekly dialysis.  

2.6 PK-RRF recalibration and inclusion of multiple biomarkers 

Finally we explored the potential of re-calibration to improve the PK-RRF performance; in 

particular, we carried out analyses of “internal-external” leave-one-out cross-validation [54] of the 

PK-RRF against the Vilar dataset. In these analyses, we sequentially set aside each of the original 

study participants and repeat the linear calibration regression analysis. After these models have been 

fit, we generate predictions for each patient held back and compare the model prediction against the 

actual RRF measurement. We also examined the possibility of linear calibration of the PK-RRF 

equations using multiple additional biomarkers (urea, creatinine and CysC). To do so, we applied 

the  “simulation-calibration” framework proposed from the statistical literature about computer 

simulations [26,27,55]. This framework was put forward to calibrate simplified versions (our PK-RRF 

equations) of complex computer models (such as the output of our kinetic simulations) against real 

world measurements of the phenomena (B2M levels – RRF). The statistical framework for the 

calibration analysis rests on Gaussian Process models, thus providing a unique methodological 

synthesis between the GAM models used to develop the PK-RRF and this calibration analysis. For 

the purpose of this work, we assessed whether prediction models that included statistical interactions 

among the measurements of multiple biomarkers (B2M, CysC, urea and creatinine) and the PK-RRF 

can be used to improve discrimination and calibration of the PK-RRF equation against the Vilar 

dataset. Whereas these models do include the same slope and intercept terms as the simple linear 

calibration models, they differ by incorporating GPs among the biomarkers that could predict RRF. 

These additional terms, effect a non-linear correction of the B2M based equations as they allow the 

contribution of the B2M measurement to non-linearly co-vary along with measurements of other 

biomarkers of renal function when predicting UrCl. 

2.6. Software Availability 

 Due to the complexity of the TPRS models, it is not easy to write down the equation in a 

mathematically simple form, like other equations. We thus distribute the entire R code required to 

estimate the PK-RRF from the software repository https://bitbucket.org/chrisarg/pk-rrf/ .This software 

repository includes all code required to fit the models considered in this paper. It also includes code to 

set up a shiny application to deploy these equations in a web server. An instance of this server 
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application has also been deployed at https://chrisarg.shinyapps.io/popk_rrf/ . This server version is 

only intended for demonstration purposes (e.g. due to the licensing of the shiny platform, it will only 

be running for 25 cumulative hours every month). 

3. Results 

3.1. Development of PK-RRF and performance of GP for dialytic clearance 

Use of a pre dialysis level B2M achieved very high discrimination for predicting ≥ 2 ml/min 

(AUC 0.896). Inclusion of postdialysis time and dialytic clearance improved discrimination (AUC 

0.915) in the simulated dataset (Appendix A, Figure A1). When benchmarked against the true value, 

the dialytic clearance calculated on the basis of the Leypoldt formula had a median (mean) bias of -

0.78 (-3.82) ml/min and highly variable performance: an IQR (standard deviation) of the difference 

between true and estimated values of 14.6 (22.50) ml/min. On the other hand the dialytic clearance 

estimated by the GP had minimal median (mean) bias of 0.18 (0.07) ml/min and much less variable 

performance: the IQR (standard deviations) of the difference between true and estimated value of 

8.29 (7.21) ml/min (Appendix A, Figure A2). In summary, the analysis of the simulated dataset 

suggests that one should include not just B2M, but also GP based estimates of dialytic clearance in 

order to derive a predictive equation for RRF that has high discrimination.  

3.2. The relationship between RRF, Urea and Creatinine Clearance. 

The literature data suggest that UrCl and CrCl are linearly related to the mGFR (Figure 2), while 

regression estimates are shown in Table A1.  

 

Figure 2. Relationship between measured GFR (mGFR)/RRF and urinary clearance for Urea and 

Creatinine in the literature data. Dashed line: line of identity with zero intercept (bias) and unity slope. 

Continuous lines are the results of the regression analysis based on Eq (1). See also Table A1. 

 

Urea clearance measurements had essentially zero bias in predicting mGFR (the intercept of the 

linear regression was 0.007 ml/min), while underestimating mGFR (the regression slope was 0.751). 

There was a small negative bias when CrCl is used to estimate mGFR, yet CrCl systematically 

overestimated mGFR (its slope was 1.242). These analyses suggest the following simplified equation 

to relate UrCl to RRF: 
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UrCl = 0.007 + 0.751 × RRF ≈ 0.751 × RRF (2) 

In the latter equation ignoring the intercept and the uncertainty in the parameter estimates is justified 

because of the small value of the former parameter and the extremely high signal to noise ratio in 

estimating the slope. In particular, the 95% credible interval for the slope is between 0.694-0.810, 

indicating that we are 95% certain that the true value of this parameter is contained in this narrow 

range. In all subsequent analyses, we multiplied the output of the PK-RRF estimating equations for 

the continuous RRF outcome by 0.751 to convert it to an estimate for the UrCl. Furthermore, when 

deriving PK-RRF equations that predict the odds of having UrCl above a given cutoff, e.g. 2 ml/min, 

one has to use the equivalent RRF cutoff of 2/0.751 ml/min ~ 2.66 ml/min. 

3.3. The logistic PK-RRF has high discrimination and calibration when validated against a patient dataset 

The PK-RRF equation developed in simulations, achieved greater discrimination (AUC 0.829 – 

0.911) compared to the Shafi equation in the entire Vilar cohort, the subset of patients on HD or HDF 

(Table 1). Discrimination by either equation was lower when applied in the entire dataset, i.e. not 

excluding anuric patients.  

Table 1. AUCs for predicting RRF > 2 ml/min in the entire Vilar cohort 

Subset Equation HD HDF All 

Non Anuric PK-RRF 0.845 0.823 0.829 

 Shafi 0.807 0.782 0.787 

All Patients PK-RRF 0.911 0.878 0.888 

 Shafi 0.842 0.816 0.821 

HD: Hemodialysis, HDF: Hemodiafiltration 

Inclusion of treatment duration, body weight, predialysis and postdialysis B2M as GP increased the 

performance of the PK-RRF equation (AUC 0.909 for all patients and 0.855 for the non-anuric ones). 

The p-values of the Spiegelhalter test for overall calibration accuracy of prediction probabilities were 

0.594 (basic model), and 0.743 (clearance based model). Examination of the calibration plots (Appendix 

C, Figure C1) showed that all these models systematically underestimated the risk of having UrCl ≤2 

ml/min (intercept different from zero). Nevertheless, the clearance based model had a calibration 

slope of 1.058 , close to the ideal value of unity, indicating that the model’s variables and their 

interconnection validly generalize from the simulated to the real world dataset. Other metrics (e.g. 

Brier score, Somer’s rank correlation, unreliability index) favored the clearance based PK-RRF over 

the basic one (Figure C1). These analyses suggest that an “intercept update”[56,57] of the PK-RRF to 

improve “calibration-at-large” may allow the use of these models to human populations with 

different overall probabilities for the outcome of UrCl ≤2 ml/min. The superior calibration of the 

clearance based PK-RRF was also shown when the RRF was examined as continuous outcome 

(Appendix C). 

3.4 Re-calibration of the PK-RRF and incorporation of multiple biomarkers 

We explored the possibility of improving the performance of the PK-RRF equations using 

recalibration and additional biomarkers.  Towards that goal we crossvalidated the logistic and 

continuous RRF equations in all patients with CysC, pre dialysis urea and creatinine measurements 

in the Vilar dataset. Recalibration using multiple biomarkers improved the discrimination of the 

clearance-based RRF compared to a simple intercept/slope recalibration that did not use these 

markers (Table 2). Overall, the performance of the PK-RRF equation improved but only marginally 

(delta AUC was ~ 0.05 – 0.1) with the inclusion of multiple biomarkers. Across the entire dataset of 

patients receiving either HD or HDF, incorporation of the pre dialysis urea and creatinine had similar 

incremental improvement as the inclusion of CysC.  
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Table 2. Discrimination of recalibrated clearance-based PK-RRF for predicting UrCl > 2 ml/min 

Additional Biomarkers HD HDF All 

None 0.868 0.922 0.900 

Creatinine 0.888 0.922 0.904 

Urea 0.885 0.929 0.906 

Cystatin C 0.866 0.927 0.903 

Cystatin C + Urea 0.881 0.927 0.906 

Creatinine + Urea 0.887 0.927 0.907 

Cystatin C + Creatinine 0.878 0.924 0.903 

Cystatin C + Creatinine + Urea 0.856 0.938 0.907 

HD: Hemodialysis, HDF: Hemodiafiltration.  

Examination of the proportion of the predicted UrCl within a fixed amount (in ml/min) for the 

continuous UrCl (Figure 3) reproduced the patterns seen for the discrete outcome. Analysis of bias, 

variance and total error (Table 3) for the Cystatin C and the Urea/Creatinine calibrated models are 

shown in Table 3. Overall, incorporation of additional biomarkers appears to improve performance 

but only marginally.  

 

 Figure 3. Proportion of predicted UrCl within a certain fixed amount from the measured UrCl for 

calibrated models that included additional biomarkers 

Table 3. Bias, Variance, Total Error and Precision of the continuous RRF outcome  

Metric Equation HD HDF All 

Median Clearance based PK-RRF 0.09 0.23 0.18 

(ml/min) Clearance based PK-RRF+Urea/Creatinine -0.14 0.23 0.14 

 Clearance based PK-RRF+Cystatin C -0.13 0.22 0.10 

MAE Clearance based PK-RRF 0.93 0.88 0.89 

(ml/min) Clearance based PK-RRF+Urea/Creatinine 0.86 0.83 0.84 

 Clearance based PK-RRF+Cystatin C 0.91 0.82 0.85 

IQR Clearance based PK-RRF 1.37 1.03 1.19 

(ml/min) Clearance based PK-RRF+Urea/Creatinine 1.11 1.02 1.12 
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 Clearance based PK-RRF+Cystatin C 1.25 1.06 1.15 

RMSE Clearance based PK-RRF 1.26 1.25 1.25 

(ml/min) Clearance based PK-RRF+Urea/Creatinine 1.14 1.16 1.15 

 Clearance based PK-RRF+Cystatin C 1.20 1.17 1.18 

HD: Hemodialysis, HDF: Hemodiafiltration, MAE : Mean Absolute Error, IQR: Interquartile Range, RMSE: Root 

Mean Square Error 

3.5. Clinical Usefulness (Decision Curve Analysis) 

We investigated the clinical usefulness of the PK-RRF equations in detecting patients with UrCl 

> 2 ml/min (“low risk group”) who could be offered infrequent or incremental dialysis in the Vilar 

dataset. Decision curves were constructed for the entire range of threshold probabilities from 0 to 1, 

corresponding to increasing risk benefit ratio from 1:100 to 100:1. SNB were calculated for the base 

PK-RRF, the clearance based PK-RRF and the Shafi clinical decision rule (Figure 4, left). The default 

strategy of offering incremental/infrequent dialysis has by default a SNB of zero irrespective of the 

probability threshold used to classify patients as low risk (gray horizontal line). The Shafi rule was 

dominated by both the base and the clearance base PK-RRF when the risks of offering patients the 

possibility to opt out of the default strategy were much smaller than the perceived benefit. In 

particular, the SNB of both PK-RRF rules were less than -0.1 when the threshold for classifying 

patients as low risk were less than 0.28. The Shafi rule dominated the base PK-RRF between threshold 

values of 0.28 – 0.85 and dominated by it for higher thresholds, corresponding to a higher perceived 

risk than the anticipated benefit. The clearance base PK-RRF had similar performance as the Shafi 

equation in the mid-range of threshold probabilities and dominated it at either low or high values. 

The PK-RRF models and the Shafi rule dominated a strategy of treating no patients with the default 

policy.  

Finally, we assessed the potential improvement in clinical usefulness of the recalibrated base and 

clearance PK-RRF and the inclusion of additional biomarkers. These analyses were performed under 

a leave-one out cross validation framework and are shown in the right panel of Figure 4. As expected, 

linear re-calibration improved the performance of the base PK-RRF model much more than the 

clearance-based model alone. Inclusion of urea and creatinine did not appear to improve the clinical 

usefulness of the clearance-based PK-RRF model, except for low risk thresholds. On the other hand, 

inclusion of CysC measurements resulted in models with higher clinical usefulness in the middle 

range of threshold probabilities.  
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Figure 4. Clinical Usefulness (Decision Curve Analysis) for predicting the binary outcome of 

UrCl>2ml/min and to offer twice weekly or incremental dialysis. Left Graph: uncalibrated base PK-

RRF model (“PK-RRF”), clearance  based PK-RRF model (“PK-RRF(B2Cl)”), Shafi clinical decision 

rule (“Shafi”), treat “all” with thrice weekly dialysis, treat “none” with thrice weekly. Right graph: 

recalibrated basic and clearance based PK-RRF, clearance-time based PK-RRF incorporating urea and 

creatinine (interacting with the B2M measurement and gender) and the clearance based PK-RRF 

model that incorporates the Cystatin C. All PK-RRF curves were smoothed using a non-parametric 

smoother prior to plotting. 

4. Discussion 

In this paper we utilized a novel population compartmental kinetic framework to derive a set of 

equations for the prediction of RRF in patients undergoing conventional high flux HD or on line HDF. 

Our equations were derived entirely with computer simulations and advanced statistical modeling, 

and had extremely high discrimination when applied to a human dataset of measurements of RRF. 

A clearance-based equation that utilized pre and post dialysis B2M measurements, patient weight, 

treatment duration and ultrafiltration had higher discrimination than a equation previously derived 

in humans. Furthermore, the derived equations appear to have higher clinical usefulness supporting 

decisions that depend on patients having preserved RRF e.g. incremental dialysis. 

Compartmental models for biomarker kinetics are familiar to nephrologists since they have been 

used to quantify dialysis dose for decades [58–63]. These models are mathematical descriptions of 

the processes of generation, distribution, and elimination that determine the concentration of the 

biomarker of interest. A population viewpoint extends the kinetic approach by allowing 

interindividual variation in these parameters. This interindividual variation allowed us to simulate 

the relation between B2M, RRF and the impact of the dialytic regimen in a manner that generalized 

from the simulated patients to the real world clinical data. The resulting equations, which were 

entirely derived in artificial datasets, thus, had high discrimination when applied to data from actual 

patients. In fact the performance of the PK-RRF equations rivalled the performance of equations 

derived entirely in human populations e.g. AUC of 0.91 [21] and 0.84 [23]. Overall our paper adds to 

the expanding literature showing that plasma levels of middle molecules in general and B2M in 

particular [19,21,23] can predict the regulatory relevant threshold of RRF > 2ml/min on a par with the 

performance of the clinically accepted, validated troponin assays in the diagnosis of acute coronary 

syndromes (AUC: 0.84-0.94) [64]. 

    The high performance of the PK-RRF equations are entirely due to the validity of the constructs 

used to derive them from first principles. These constructs include the bi-compartmental kinetics of 

the B2M , the population distribution [24] of the kinetic parameters of B2M, the effects of dialytic 

clearance [25] and finally the relation between the RRF and the clinical measurement (UrCl) used as 

its proxy. Despite the high theoretical validity of our approach, translation of the derived equations 

to the real world should be expected to not be entirely free of complications. In fact, we have 

documented the need for calibration of the base and the clearance-based PK-RRF formulas. The 

degree of calibration required to predict RRF in a new dataset appears to be smaller than that required 

to adapt the high quality Shafi equation to the same external dataset. Recalibration of the PK-RRF 

equations did not materially affect their extremely high discrimination but did seem to have a 

positive impact on the clinical usefulness as assessed by DCA. Consequently, we feel that the 

calibrated version of the base PK-RRF equation should be used over the uncalibrated version. 

However, the uncalibrated clearance-based PK-RRF equation appears to perform equally well and 

either the calibrated or the non-calibrated version can be applied to future clinical studies.  

    Despite the success of middle molecules in predicting RRF, a puzzling feature of the literature to 

date [19,21,23] concerned the marginal success of multi-biomarker equations in the field. This was 

also noted in our study, which showed unimpressive improvements in discrimination and precision 

when CysC or simultaneous urea and creatinine measurements were used to recalibrate the B2M 

based PK-RRF. Although there have been concerns that the involvement of B2M in the inflammatory 

response may confound the relationship between RRF and B2M [42,65], our approach to consider 
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variable rates of generation in our large scale simulations probably allowed us to derive PK-RRF 

equations insensitive to large variations in the generation rate. Hence, our formulas are unlikely to 

require additional biomarker measurements for robust performance. Despite these observations, we 

have noticed that some improvement in clinical utility may be derived by considering additional, 

readily measurements e.g. urea, creatinine or CysC. We also provided the analytical methodology to 

incorporate these biomarkers, as flexible GP embedded in the recalibration framework. This opens 

the possibility of incorporating additional, promising biomarkers e.g. BTP [42,43] in datasets that 

have measured them. 

    In developing our equations we were motivated by the unmet need for measurements that can 

facilitate further research in the area of RRF preservation and/or implementation of incremental, 

individualized forms of dialysis in practice [13,43]. Research in both areas is impeded by the lack of 

alternative techniques to measure RRF that do not require urine collections [19,21,23,42]. Prospective 

observational [66], and retrospective propensity score matched studies [15] have shown that an 

incremental approach to dialysis frequency is non inferior with respect to mortality and may be 

associated with improved quality of life. Considering the direct treatment cost differential, i.e. 

biweekly dialysis has 2/3 dialytic costs than thrice weekly dialysis, a formula that can identify patients 

with relative preserved RRF could have direct implications for both research and practice of 

“personalized dialysis”. However, this research should take place within the boundaries of existing 

regulations for the dialysis industry. In fact, one of the barriers in practice incremental dialysis in the 

United States is a concern raised by regulators: the Center for Medicare Services explicitly considers 

twice-weekly dialysis to be inadequate in patients with RRF lower than 2 ml/min. By providing a PK-

RRF equation that can predict this threshold with high discrimination and positive Net Benefit across 

the entire spectrum of the risk-benefit assessments, we feel that research in this space can proceed in 

an ethical and regulatory compliant manner.  

   A few limitations of the developed PK-RRF equations should be kept in mind. First, the analytical 

complexity precludes the ability to write them down in closed form, similar to the simpler equations 

they outperform. This is an unavoidable price to pay for the high discrimination of the PK-RRF 

equation. Nevertheless, we provide these equations as software programs in the open source R 

programming language and a web server in order to allow other investigators to replicate our results. 

Second, the formulas were validated only in cross-sectional assessments and their use in repeated 

evaluations of the RRF of the same patient remain untested. This is an area of exploration in future 

studies. Third, the marginal improvement of the discrimination of the multi-biomarker models may 

reflect deficiencies in the biomarkers available for inclusion. In particular, urea, creatinine and  

CysC, the conventional serum biomarkers of estimating renal function in patients not on dialysis via 

eGFR formulas, exhibit large interdialytic variation in levels and thus may not provide the optimal 

additional biomarkers. Fourth, the recalibrated PK-RRF equations have an intermediate validation 

status since we did not have an additional dataset to test their performance. This limitation does not 

extend to the uncalibrated version whose discrimination and clinical usefulness can be  externally 

validated.  

In summary, we have used computer simulations, the population kinetic approach and advanced 

statistical modeling to develop equations that can predict RRF (as assessed by UrCl) in patients 

undergoing maintenance HD or on line HDF. These equations exhibit high discrimination and 

clinical usefulness when validated against an external, public clinical dataset. Recalibrated versions 

of these equations were developed in a cross-validation setting and are available for clinical use as 

well. Future studies should validate these equations in repeated assessments of the same patients and 

explore the utility of the PK-RRF equations as research tools in the areas of preservation of RRF and 

incremental, personalized dialysis.  
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Appendix A: Development of PK-RRF equations and assessment of dialyzer clearance 

 For these analyses, we split the simulation dataset into a development dataset (n=13,333) and a 

validation (n=6,667) cohort. The basic PK-RRF emulator that incorporated only the B2M concentration 

achieved a moderate R2, and a high AUC (0.896) for classifying “patients” as having a RF> 2ml/min 

(Figure A1, panel “B2M Only”). There was substantial variation in predicting the RRF of individual 

“patients” as evidenced by an IQR of 4.1 ml/min, while precision was also small, since only 12.9% 

and 49% of predictions were within 0.5 and 2 ml/min respectively of the predicted values. 

Incorporation of the postdialysis dialysis level and its interaction with the predialysis level (panel 

“B2M+Post+B2M*Post”) did not materially improve precision or discrimination. Adding treatment 

time as a covariate (panel “B2M+Post+B2M*Post+T”) increased AUC to > 0.90. Nevertheless, inclusion 

of an index of dialyzer clearance and treatment time did improve the classification performance and 

increased the AUC to 0.915 (panel “B2M+Post+B2M*Post+T+Kd+T*Kd”).  

 

Figure A1. Indices of precision (P05/P02: probability of a prediction within 0.5 and 2 ml/min of the 

simulated RRF, IQR: interquartile range), model explanatory power (R2) and classification accuracy 

(AUC: Area Under the ROC curve) for predicting a RRF > 2ml/min across a range of models that 

included only the pre dialysis B2M concentration, the postdialysis level (Post), Dialysis Treatment 

Time (T), Dialysis Clearance (Kd). In models that incorporated statistical interactions between any 

two parameters, the interacting covariates are joined by the multiplication (“*”) symbols. Blue curve: 

smoothed average prediction, orange line: the line of identity, i.e. the ideal situation in which the 

prediction (y-axis) is identical to the simulated value (x-axis). These analyses were carried out in 

simulated datasets of 10,000 patients receiving hemodialysis and 10,000 receiving on-line 

hemodiafiltration. 

In these analyses the value of the dialytic clearance was assumed to be known, a condition that does 

not apply in real world practice in which measurement of clearance does not take place. Hence we 

assessed the performance of the Leypoldt equation against a flexible, GP equation that used the same 

variables (body weight, ultrafiltration, pre and post dialysis B2M). These analyses are shown in 

Figure A2. While both approaches were associated with small (median) bias in the overall population, 
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the performance of the GP was much less variable and separated the clearances between HD and 

HDF. 

 

Figure A2. Smooth density histograms (left) of simulated and estimated dialytic clearances by the 

Leypoldt and GP approaches. The true distribution of clearance values is a bimodal one, because of 

the different clearances in hemodialysis and hemodiafiltration. The boxplots (right) show the 

differences between the estimated and simulated (true) values for the two methods. Overall the GP 

estimated clearance was much closer to the true one, as evidenced by the near complete superposition 

of the histogram of estimated values (red line, left graph) against the true values (black line, left 

graph), and the much tighter distribution of the differences between estimated and true values 

(boxplot, right graph) 
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Appendix B: Fitting literature RRF and Urea/Creatinine Clearance Data 

We fit the model of (1) to the literature data from a Bayesian perspective while assuming typical 

non-informative priors for all the unobserved quantities in the model. For the fitting we utilized long 

Markov Chain Monte Carlo (MCMC) simulations which were carried out with the JAGS 

software[67,68]. Technical parameters of MCMC runs were as follows: the Mersenne-Twister[69] was 

used as the underlying random number generator, number of independent chains (n=5), number of 

samples in the adaptive phase (n=100,000) discarded (burnin) samples (n=100,000), post-burnin 

samples (n=100,000), thinning interval (n=50) leading to 10,000 independent samples for each 

quantity of interest. Convergence of the MCMC was assessed by visual (trace) plots and the Gelman-

Rubin diagnostic for multiple chains [70,71]. Although definitely an overkill, this long MCMC 

simulation ensured that the Potential Scale Reduction factors of the Gelman-Rubin diagnostic were 

indistinguishable from one (indicating successful convergence), and Monte Carlo (numerical) error 

was at most 0.001 for all parameters of interest.  Means and standard deviations were used to 

summarize samples from the posterior simulations for the slope and intercept parameters, since their 

non-parametric kernel density estimates were visually perceived to be symmetric, gaussian-like 

densities. R/JAGS code and data are available in the online repository set up for this project. Model 

estimates are shown in Table A1. Monte Carlo numerical error was less than 0.001 for all parameters, 

while the potential scale reduction factors were one indicating successful convergence of the MCMC 

algorithm 

 

Table B1. Estimates for the parameters of Equation (1) relating RRF to UrCl and CrCl  

Parameter Mean SE Q2.5% Q25% Q50% Q75% Q97.5% 

αC -0.213 0.124 -0.458 -0.296 -0.213 -0.130 0.033 

αU 0.007 0.072 -0.135 -0.040 0.007 0.056 0.150 

βC 1.242 0.047 1.149 1.211 1.242 1.274 1.334 

βU 0.751 0.030 0.694 0.731 0.751 0.770 0.810 

σC 0.564 0.080 0.414 0.510 0.561 0.615 0.728 

σU 0.316 0.048 0.229 0.284 0.314 0.346 0.416 

σRRF 0.302 0.046 0.223 0.269 0.299 0.331 0.401 

 

Appendix C: External validation of the PK-RRF in the Vilar dataset via linear calibration plots 

A calibration analysis of the Shafi and clearance based PK-RRF equation against the measured RRF 

is summarized in Table C1. Calibration analysis was conducted on the enitre Vilar cohort of anuric 

and nonanuric patients. The PK-RRF demonstrated a small and statisticallyno significant amount bias 

in both HD and HDF. The Shafi equation had considerable bias (0.79 ml/min) in the HD subgroup. 

Calibration slopes for both models were different from the ideal value of one, yet they were closer to 

unity for the PK-RRF model. These analyses indicate the need for model re-calibration for both 

equations. 

Table C1. Linear Calibration analysis for models of the continuous RRF in the Vilar cohort 

Parameter Equation HD HDF All 

Intercept PK-RRF 0.23 (0.19) -0.12 (0.14) 0.01 (0.11) 

(ml/min) Shafi 0.79 (0.13) 0.10 (0.11) 0.44 (0.08) 

Slope PK-RRF 0.57 (0.06) 0.69 (0.05) 0.64 (0.04) 

(per 1 ml/min) Shaffi 0.36 (0.03) 0.63 (0.04) 0.48 (0.03) 

HD: Hemodialysis, HDF: Hemodiafiltration. Results are reported as model estimate (standard error).  
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Figure C1: Calibration plots for the basic (left) and clearance based (right) logistic models. Dashed 

curve: non-parametric estimate of the calibration relationship between actual and predicted 

probability, grey line: ideal relationship (intercept of zero and slope of one). Dxy: Somer’s rank 

correlation, C(ROC): AUC for discrimination, R2: Nagelkerke-Cox-Snell-Maddala-Magee R-squared 

index, D: discrimination index, U: unreliability index, Q: quality index, Brier: Brier score (average 

squared difference in predicted and actual probabilities), Emax/E90/Eavg: Maximum/90th quantile, 

average absolute difference in predicted and smoothed calibrated probabilities, S:z/S:p the z and two 

sided p-value of the Spiegelhalter test for calibration accuracy. Graphs generated by the “val.prob” 

function in the RMS R-package. Due to minor differences in algorithms, there is a difference in the 

third significant decimal from the AUC values reported in Table 1 of the main text.  
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