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Abstract 18 

Background: Tuberculosis (TB) disease reactivates from distant latent infection or recent 19 

(re)infection. Progression risks increase with age. Across the World Health Organisation 20 

Western Pacific region, many populations are ageing and have the highest per capita TB 21 

incidence rates in older age groups. However, methods for analysing age-specific TB 22 

incidence and forecasting epidemic trends while accounting for demographic change remain 23 

limited.  24 

 25 

Methods: We applied the Lee-Carter models, which were originally developed for mortality 26 

modelling, to model the temporal trends in age-specific TB incidence data from 2005 to 2018 27 

in Taiwan. Females and males were modelled separately. We combined our demographic 28 

forecasts, and age-specific TB incidence forecasts to project TB incidence until 2035. We 29 

compared TB incidence projections with demography fixed in 2018 to projections accounting 30 

for demographic change.    31 

 32 

Results: Our models quantified increasing incidence rates with age and declining temporal 33 

trends. By 2035, the forecast suggests that the TB incidence rate in Taiwan will decrease by 34 

54% (95% Prediction Interval (PI): 45%-59%) compared to 2015, while most age-specific 35 

incidence rates will reduce by more than 60%. In 2035, adults aged 65 and above will make 36 

up 78% of incident TB cases. Forecast TB incidence in 2035 accounting for demographic 37 

change will be 39% (95% PI: 36%-42%) higher than without population ageing. 38 

 39 

Conclusions: Age-specific incidence forecasts coupled with demographic forecasts can 40 

inform the impact of population ageing on TB epidemics. The TB control programme in 41 

Taiwan should develop plans specific to older age groups and their care needs.  42 

 43 
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infectious disease epidemiology; statistical modelling; time-series analysis; demographic 45 

transition; disease burden 46 

 47 

Introduction 48 

In 2018, tuberculosis (TB) was still the top infectious killer in the world [1]. The End TB 49 

strategy aims at a 90% reduction in TB incidence rate by 2035 compared with 2015, but the 50 

current global rate of decline of around 2% per year is not on track to achieve this [2]. Latent 51 

TB infection risk accumulates over lifetimes while TB transmission is ongoing. The 52 

prevalence of latent TB infection is highest in older age groups [3], who not only have had 53 

the longest exposure, but were often exposed to higher TB transmission rates in the past. 54 

ageing, with associated higher rates of progression [4], thus acts as a demographic driver 55 

towards higher per capita TB incidence [5]. In the Western Pacific region, many countries 56 

have their highest per capita TB incidence rates among older age groups [1]. Among 57 

Western Pacific region countries, China, Hong Kong (China), Japan, Korean, Singapore, and 58 

Taiwan are facing both high TB burden and population ageing[6,7].  59 

 60 

The age profile of future TB incidence is critical for forecasting public health needs and 61 

rational policy design [8]. First, older populations will have higher TB (and background) 62 

mortality rates [9,10], which implies added difficulty in meeting treatment success targets. 63 

Secondly, older adults have more comorbidities and more complex health care needs, which 64 

may lead to a longer care-seeking process and higher healthcare expenditure per case. For 65 

instance, patients with chronic lung diseases may have signs or symptoms overlapping with 66 

TB, making correctly diagnosing their TB slower and more costly [11]. Thirdly, the proportion 67 

of TB cases in older age groups should inform policy making, for example suggesting 68 

integrating TB care entry points into long-term care programmes, or through clinician training 69 
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highlighting older people as a TB risk group with their own diagnostic and management 70 

challenges [11]. 71 

 72 

Quantitatively forecasting the TB incidence age profile needs combined models forecasting 73 

demographic change and statistical forecasts of age-specific TB incidence. However, a time 74 

series analysis producing age-specific forecasts of the TB incidence has not been published 75 

to our knowledge. Use of autoregressive integrated moving average models, often including 76 

the seasonality of TB incidence is more common [12], and comoving time series analysis 77 

has been applied [13] without age-specific information. Age-specific TB incidence modelling, 78 

including the use of age-period-cohort models, has been undertaken but without producing 79 

epidemic forecasts (e.g. Iqbal et al. [14] and Wu et al. [15]). Mechanistic mathematical 80 

modelling, with age structure, also has the potential to generate forecasts [5,16–18]. 81 

However, age-specific forecasting and the impact of demographic change have yet to be 82 

analyzed. 83 

 84 

In many settings, the demographic transition and population ageing are outpacing declines 85 

in TB incidence, so methods to understand and forecast the impact of changing demography 86 

on TB epidemics are needed. We, therefore, developed a statistical method capturing age-87 

specific incidence trends and forecasting future epidemics while accounting for demographic 88 

change. 89 

 90 

Materials and Methods 91 

Setting and data sources 92 

TB incidence in Taiwan has steadily declined from 64 confirmed TB cases per 100,000 in 93 

2007 to 41 per 100,000 in 2017. Since 2005, the proportion of TB cases in Taiwan over 65 94 
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years of age has been over 50% and increasing. Between 2007 and 2017, the average age 95 

in Taiwan increased from 36 to 40, and the proportions of adults above 65 rose from 10% to 96 

14% [7]. 97 

 98 

Notification data of culture-confirmed TB cases, excluding foreigners, were obtained from the 99 

Taiwan Center for Disease Control surveillance system. Counts were reported by age group, 100 

sex, month, and county. Ages were reported as (0-4, 5-9, ..., 65-69, 70+) years. The 101 

demographic data were obtained from the Department of Statistics, the Ministry of the 102 

Interior, Taiwan. These data included the mid-year population estimators, deaths, migration 103 

in single-year ages, and fertility in five-year age groups (15-19, ..., 45-49). We used data in 104 

2005-2018 as a training set. The demographic data from 2005 to 2017 were collected for the 105 

population demographic modelling (a shorter period because of the release schedule). All 106 

the training data in this article were published by the Taiwan officials and free access on the 107 

internet; the usage is licensed by the Open Government Data License: 108 

[https://data.gov.tw/license].  109 

 110 

Importantly, we assumed no case detection gaps existed during the time frame covered by 111 

this article. We, therefore, regard “TB notification” and “TB incidence” as synonymous with 112 

the number culture-confirmed tuberculosis cases notified during a specific period. 113 

 114 

Age-specific incidence modelling and forecasting 115 

We considered annual incidence rates by age and sex. The incidence rates by age groups 116 

and sex were calculated as the yearly notification counts divided by corresponding mid-year 117 

population estimates. Females and males were analysed separately with the same 118 

parameterisation. We modelled the incidence rates using Lee-Carter Models (LCMs) [19] 119 

formulated with age and time-varying terms. The LCMs were initially designed for mortality 120 
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rate modelling, where they now predominate. Estimation, forecasting, bootstrapping 121 

methods for LCMs are well-developed.   122 

 123 

We performed a likelihood-based LCM estimation, and also the comparable Poisson 124 

regression [20]:  125 

log (𝐸(𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑐𝑎𝑠𝑒𝑠𝑎𝑔𝑒,𝑦𝑒𝑎𝑟)) = 𝛼𝑎𝑔𝑒 + 𝛽𝑎𝑔𝑒𝜅𝑦𝑒𝑎𝑟 + log (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑔𝑒,𝑦𝑒𝑎𝑟) 126 

, where 𝐸(. ) is expectation function, 𝑦𝑒𝑎𝑟 ∈ {2005, … , 2018} is the calendar year, 127 

𝛼𝑎𝑔𝑒 is age effect term, 𝜅𝑦𝑒𝑎𝑟 is period effect term, and 𝛽𝑎𝑔𝑒 is coefficients adjusting 128 

period effects for different age groups, and 𝑎𝑔𝑒 ∈ {0 − 4, 5 − 9, … ,70+}  represents 129 

the age categories. To maintain identifiability, we imposed the constraints 130 

Σ𝑦𝑒𝑎𝑟𝜅𝑦𝑒𝑎𝑟 = 0 and Σ𝑎𝑔𝑒𝛽𝑎𝑔𝑒 = 1 . Two nested Poisson models, one using an age-131 

profile and a discrete period effect, i.e. 𝛼𝑎𝑔𝑒 + 𝜅𝑦𝑒𝑎𝑟, and another using an age-profile 132 

and a linear effect, i.e. 𝛼𝑎𝑔𝑒 + 𝑦𝑒𝑎𝑟 × 𝜅, were used as comparators. Akaike 133 

information criterion (AIC), Bayesian information criterion (BIC), and log-likelihood 134 

were considered as goodness of fit metrics. 135 

 136 

For forecasting, inspired by the Lee-Carter demographic forecasting, we used 137 

Autoregressive Integrated Moving Average models with drift [21], constructed from the LCM 138 

period effects. In forecasting, the death and birth processes applied semiparametric 139 

bootstrap sampling [22]. 140 

 141 

Population modelling and forecasting 142 

We constructed a synthetic population with birth, death and migration processes. The 143 

demographic methods adapted from those used in the Taiwan National Development 144 

Council’s population projection report [7]. The demography was modelled by single age (0-145 
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100 years old) and sex. Mortality forecasting used the Lee-Carter model [19] below 84 years 146 

of age and the Coale-Kisker method [23] for above 85. The birth forecasting used the fertility 147 

rates of women in childbearing ages, from 15 to 49, with a modified LCM [24]. For 148 

consistency with incidence forecasting, semiparametric bootstrap sampling was used for 149 

deaths and births [22]. The Migration process was modelled by linear regression with age 150 

effects and a linear trend; the forecasting applied residual bootstrap sampling with the age-151 

specific parameters seen in 2017. The forecasts were used for the next step by aggregating 152 

to the age groups as that of the incidence data.  153 

 154 

Forecasting overall TB incidence 155 

The TB incidence model and the demographic model were built independently. Forecasts of 156 

age-specific TB incidence were weighted by forecasted population demography to obtain 157 

forecasts of per capita TB incidence for the whole population. TB incidence was calculated 158 

as per 100,000 rates by given strata. TB incidence rate reductions were calculated with 159 

respect to the incidence in 2015 and presented as percentages. For simplicity, some results 160 

were presented with age groups of 0-14, 15-34, 35-64, and above 65. In forecasting, the 161 

95% prediction intervals and mean values were computed from 10,000 bootstrap samples. 162 

Uncertainty was propagated from every submodel. To compare with the global reduction 163 

target of the End TB strategy [2], we forecasted the incidence until 2035. The milestones of 164 

2020, 2030 and 2035 of the End TB strategy of percentage reductions in per capita TB 165 

incidence from 2015 were used as intermediate outcomes.  166 

 167 

Incidence attributable to demographic change 168 

We performed a scenario analysis to clarify the potential impact of demographic change. 169 

While forecasting the age-specific TB incidence to 2035, we kept the population size and 170 
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age structure fixed as it was in 2018. This TB incidence was compared against values 171 

including projected changes in population structure by computing the fraction of total TB 172 

incidence attributable to demographic change in each year as (𝐼1,𝑦𝑒𝑎𝑟 − 𝐼0,𝑦𝑒𝑎𝑟)/𝐼1,𝑦𝑒𝑎𝑟, 173 

where 𝐼1,𝑦𝑒𝑎𝑟 and 𝐼0,𝑦𝑒𝑎𝑟 are the incident cases with and without demographic change 174 

respectively and  is the calendar year. This corresponds to the definition of population 175 

attributable fraction [25].  176 

 177 

All the analyzes were performed using R 3.5 [26] and analyzed/visualized by R package 178 

StMoMo, TSA, ggplot2 [27–29]. All analysis code is available at 179 

[https://github.com/TimeWz667/AgeingTB].  180 

 181 

Results 182 

Incidence modelling 183 

Fig 1 shows the estimators of the Lee-Carter models of the incidence data. The age effect 184 

estimators (𝛼𝑎𝑔𝑒) suggested the baseline incidence rates increase with age. In both 185 

sexes, the higher levels in age groups older than fifteen years correspond to higher 186 

TB incidence rates. The point estimators of age-period adjustments (𝛽𝑎𝑔𝑒) showed 187 

no specific trend. However, there are large uncertainties for all estimates pertaining 188 

to under 15-year age groups, excepting the reference group aged 0-4. The period 189 

effect estimators (𝜅𝑦𝑒𝑎𝑟) had nearly constant trends with calendar years. Fig 1 also 190 

demonstrates the forecasting of period effects with 95% prediction intervals: prediction 191 

intervals of both sexes grew at a constant rate with calendar time. Table 1 shows the 192 

goodness of fit of the LCMs, the nested age-period Poisson models, and age-trend Poisson 193 
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models. In AIC, BIC and log-likelihood on the training data, the LCM result is preferred over 194 

the other two although it cost a higher degree of freedom. See S1 Appendix for the details of 195 

the goodness of fit, and residuals plots.  196 

 197 

 198 

Table 1. Summary of model comparison 199 

 Age-Trend Age-Period Lee-Carter Model 

Model family Poisson Regression 

Period effect Linear Discrete 

No. observations 420 

No. parameters 32 56 84 

Log(Likelihood) -1855 -1819 -1682 

AIC 3773 3751 3531 

BIC 3902 3977 3871 

AIC: Akaike information criterion, BIC: Bayesian information criterion    200 

 201 

Population forecasting 202 

Fig 2 shows the demographic change from 2005 to 2035. In Fig 2A, the population will reach 203 

a maximum of 23.6 million in 2023, and will start shrinking to 23.2 million in 2035. The 204 

proportion of the population aged over 65 is increasing across the period and will reach 27% 205 

in 2035. The proportion of the population aged under 15 is declining to around 11%. Fig 2B 206 

compares the age structure of the Taiwanese population in 2018 and 2035, highlighting the 207 

population ageing.   208 

 209 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted June 28, 2019. ; https://doi.org/10.1101/19001115doi: medRxiv preprint 

https://doi.org/10.1101/19001115
http://creativecommons.org/licenses/by/4.0/


10 
 

Incidence forecasting and age structure 210 

Fig 3 demonstrates the trends of the population TB incidence rate and TB incidence rates by 211 

age-group (<15, 15-34, 35-64, >65). The forecast in Fig 3A suggests that the TB incidence in 212 

2035 will be 22 (95% Prediction Interval (PI): 19-25) per 100 000. The overall incidence 213 

reduction will reach 54% (95% PI: 45%-59%) in 2035, which is 37% short of the 90% 214 

reduction in the End TB Strategy. Fig 3B shows the age-specific incidence rates will have 215 

60% to 80% reductions from 2015 to 2035 apart from the 5-9 group. The rate reductions in 216 

most age groups will be higher than the forecast reduction of 44% in the whole population. 217 

Fig 3C decomposes the overall incidence rates by age groups. The TB incidence rates from 218 

age groups below 65 will be gradually decreasing whereas the above 65 will nearly stay 219 

constant from 2018 to 2035. Fig 3D shows the proportion of TB incidence in each age group. 220 

The proportion among adults aged over 65 years will reach 68% (95% PI: 67%-69%) and 221 

79% (95% PI: 78%-81%) in 2025 and 2035, respectively. In 2035, more than 97% of incident 222 

cases will occur among those aged 35 years or older.  223 

 224 

Impact of demography on TB incidence 225 

Fig 4 shows the forecast incidence rates with and without demographic change. In the 226 

scenario without demographic change, the forecast suggests that the incidence in 2035 will 227 

be around 13 per 100,000 compared to 23 with demographic change and the 90% reduction 228 

target of 4.5 per 100,000. The 95% prediction intervals for forecasts with demographic 229 

change continuously expand year by year, whereas without demographic change they 230 

converge to a constant width within five years.  Table 2 shows the impact of demographic 231 

change. Up to 2020, TB incidence rates will have 23% and 27% reductions with and without 232 

demographic change respectively. Considering demographic change, the incidence rates 233 

are projected to reduce by 54% (95% PI: 45%-59%) from 2015 to 2035; without 234 
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demographic change, the reduction will be 72% (95% PI: 67%-76%). In both scenarios, the 235 

trends of incidence rates showed diminishing reductions to the time scale. In 2035, the 236 

forecasts suggested that 39% (95% PI: 36%-42%) of incident TB cases can be attributed to 237 

demographic change.  238 

 239 

Table 2. Summary of reductions in TB incidence reductions with and without 240 

demographic change 241 

 
Year 

Percentage reduction in per capita TB incidence 
from 2015: 

 
Percentage of total TB 
incidence attributable to 
demographic change  with demographic 

change 
without demographic 
change after 2018 

2020 23.1% (18.2%, 27.2%) 26.6% (22.2%, 30.8%) 4.6% (1.6%, 7.5%) 

2025 35.2% (27.2%, 40.7%) 47.0% (41.0%, 52.2%) 18.3% (15.5%, 21.2%) 

2030 45.0% (35.9%, 50.5%) 61.6% (56.0%, 66.4%) 30.0% (27.3%, 33.0%) 

2035 53.7% (44.5%, 58.9%) 72.1% (67.1%, 76.1%) 38.8% (36.1%, 41.7%) 

 242 

Discussion 243 

 244 

A substantial proportion of tuberculosis (TB) incidence in Taiwan is among people aged over 245 

65 years. Social and economic development typically bring reductions in TB incidence but 246 

also reduced birth and death rates and population ageing. This study provides a novel 247 

investigation into the potential impact on TB incidence from population ageing using 248 

statistical modelling and forecasting. Current trends of TB incidence declines and 249 

demographic change suggest TB incidence rates in Taiwan will decrease to 25 per 100,000 250 

by 2035. This represents a 45% reduction since 2015, missing the End TB goal of 90% 251 

reductions in TB incidence rates. We have shown that higher age-specific incidence rates in 252 
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older age groups can mean that population ageing acts against reductions in TB rates, with 253 

TB incidence in 2035 projected to be 39% higher than without demographic change. 254 

 255 

Previous studies have employed statistical methods either to forecast TB incidence, 256 

[12,13,30,31] or to analyze patterns by age using age-period-cohort models, [14,15] but we 257 

are the first study to statistically forecast age-specific TB incidence. Some transmission 258 

modelling studies [16,18] have explored issues related to age-structure, but without 259 

forecasts or formal assessment of fit. We made novel use of Lee-Carter models (LCMs), 260 

[19,21] which employ an elegant low-dimensional decomposition of age-specific rates to 261 

model trends and overall shape. LCMs were originally introduced for mortality rate modelling 262 

and are now the dominant approach, but have been applied elsewhere. Within demography, 263 

Hyndman [24] and Rueda-Sabater and Alvarez-Esteban [32] used LCMs to forecast the 264 

fertility rates, and Cowen [33] fitted LCMs to abortion rates. Kainz et al. [34] modelled 265 

chronic kidney disease prevalence as rate data, and Yue et al. [35] modelled cancer 266 

incidence and mortality. However, we are the first to apply LCMs to TB, finding they fitted 267 

better than Poisson Age-Period models. Our approach offers a generalizable and easily-268 

implemented method for forecasting age-specific TB incidence and the impact of 269 

demographic change on total TB incidence.  270 

 271 

For Taiwan and many other high-income settings, TB notifications are thought to parallel TB 272 

incidence with only a small gap. In settings where this gap is larger and changing over time, 273 

interpretation of TB notification data is more problematic and notifications may not be a good 274 

proxy for incidence. Taiwan does not have United Nations Population Division demographic 275 

forecasts, hence our bespoke demographic modelling. For most nations, these forecasts 276 

could be used ‘off the shelf’. We have presented results on percentage reductions in both 277 

per capita TB incidence rates and in total TB incidence (e.g. Table 2), which are similar 278 

because of Taiwan’s small projected population change over the period considered; this may 279 

not be true in all settings. 280 
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 281 

The decline in TB incidence in Taiwan probably has multiple contributory causes, including 282 

improvements in TB control, socio-economic development, and the reductions in the 283 

prevalence of latent TB as a result of declining transmission. For an infectious disease like 284 

TB, reduced transmission can amplify and sustain over time changes in underlying causative 285 

factors, complicating their analysis. The low TB rates in children aged under fifteen may 286 

reflect low exposure to TB in this group or potentially lower rates of case detection. Our 287 

assessment of the impact of population ageing on TB incidence and case-mix has particular 288 

current relevance to many WHO Western Pacific region countries [1] and will be relevant to 289 

many more countries and regions in the future. Our analysis could provide a template for 290 

analysts who wish to explore issues related to future TB incidence and demography where 291 

age-specific data are available.  292 

 293 

Our analysis accounted for cohort propagation of latent tuberculosis infection (LTBI) in a 294 

phenomenological way. LTBI represents accumulated lifetime risk of infection by exposure to 295 

active tuberculosis disease. Older individuals in most settings have higher LTBI prevalence 296 

due both to longer cumulative exposure and (in declining epidemics) exposure to a higher 297 

mean infection rate over their lifetime. The ageing through of these LTBI positive cohorts 298 

thus generates a secular time trend in reactivation disease rates at a particular age. Our 299 

approach does not explicitly model LTBI prevalence, because this would introduce additional 300 

parameters and, without LTBI data, identifiability issues. However, LTBI cohort effects are 301 

accounted for in our current approach indirectly by modelling the secular trends in age-302 

specific incidence rates.  303 

 304 

Extending the model by adding exogenous variables is possible. Our analysis did not 305 

address the impact of other variables for simplicity and clarity. Important predictors could 306 

include socioeconomic status and comorbidities such as diabetes mellitus. [36] However, 307 
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projections would require additional time-series analysis to forecast these explanatory 308 

variables. 309 

 310 

Older age as a risk factor for TB disease has perhaps been under-explored since age is not 311 

a modifiable risk factor, and since in most current high-burden settings populations and the 312 

typical age of TB cases are fairly young. Our result that population ageing will act to slow 313 

declines in TB incidence does not seem to have been previously noted. However, the 314 

importance of older age groups to TB control is already evident in many Asian populations, 315 

[16] and this will be an increasingly widespread facet of global TB control if reductions in 316 

incidence continue and accelerate in the future. Older populations will also have their own 317 

particular challenges in terms of access, diagnosis and comorbidities complicating their care. 318 

Public health planning to develop adapted strategies for care and control to meet these 319 

changing population needs is essential.   320 

 321 

In summary, the Lee-Carter model provides a tool to project age-specific tuberculosis 322 

incidence and hence forecast overall TB incidence while accounting for demographic 323 

change. In Taiwan, population ageing may slow the decline of TB incidence by 39% over the 324 

period 2015 - 2035. TB care and control programmes will increasingly need to address the 325 

needs of older adults, who will comprise a growing majority of the TB epidemic.  326 
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Figures 421 

Fig 1. Lee-Carter model fitting and forecasting of the TB incidence. (Data: 2005-2018, 422 

Forecasting: 2019-2035). 95% confidence intervals of estimators and prediction intervals of 423 

forecasts were calculated through bootstrapping with 10 000 sample size.  424 

 425 
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Fig 2. Demographic change. Data: 2005-2017, Forecasting: 2018-2035426 

  427 
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Fig 3. TB incidence rate forecasting. (A) Overall incidence rate per 100 000. In the 428 

forecasting, dashed line features the mean values and the shaded area is 95% prediction 429 

interval. (B) Incidence rate reductions by five-year age groups during 2015-2035 with 95% 430 

prediction interval. (C) Incidence rates attributed to age groups. (D) Proportions of age 431 

groups in Incidence cases. 432 

 433 

  434 
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Fig 4. TB incidence with and without demographic change. ribbons show 95% prediction 435 

intervals. 436 

 437 

 438 

Supporting information 439 

S1 Appendix. Residual analysis and the goodness of fit. 440 
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