Forecasting the impact of population

ageing on tuberculosis incidence

4					
5	Authors				
6	Chu-Chang Ku ^{1*} and Peter J Dodd ¹				
7					
8					
9	1. School of Health and Related Research, University of Sheffield, Sheffield, United				
10	Kingdom				
11					
12					
13					
14	Corresponding author:				
15	* Email: cku1@sheffield.ac.uk(CCK)				
16					
17	These authors contributed equally to this work.				

Abstract

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Background: Tuberculosis (TB) disease reactivates from distant latent infection or recent (re)infection. Progression risks increase with age. Across the World Health Organisation Western Pacific region, many populations are ageing and have the highest per capita TB incidence rates in older age groups. However, methods for analysing age-specific TB incidence and forecasting epidemic trends while accounting for demographic change remain limited. Methods: We applied the Lee-Carter models, which were originally developed for mortality modelling, to model the temporal trends in age-specific TB incidence data from 2005 to 2018 in Taiwan. Females and males were modelled separately. We combined our demographic forecasts, and age-specific TB incidence forecasts to project TB incidence until 2035. We compared TB incidence projections with demography fixed in 2018 to projections accounting for demographic change. Results: Our models quantified increasing incidence rates with age and declining temporal trends. By 2035, the forecast suggests that the TB incidence rate in Taiwan will decrease by 54% (95% Prediction Interval (PI): 45%-59%) compared to 2015, while most age-specific incidence rates will reduce by more than 60%. In 2035, adults aged 65 and above will make up 78% of incident TB cases. Forecast TB incidence in 2035 accounting for demographic change will be 39% (95% PI: 36%-42%) higher than without population ageing. Conclusions: Age-specific incidence forecasts coupled with demographic forecasts can inform the impact of population ageing on TB epidemics. The TB control programme in Taiwan should develop plans specific to older age groups and their care needs. Keywords:

- infectious disease epidemiology; statistical modelling; time-series analysis; demographic
- 46 transition; disease burden

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

Introduction

In 2018, tuberculosis (TB) was still the top infectious killer in the world [1]. The End TB strategy aims at a 90% reduction in TB incidence rate by 2035 compared with 2015, but the current global rate of decline of around 2% per year is not on track to achieve this [2]. Latent TB infection risk accumulates over lifetimes while TB transmission is ongoing. The prevalence of latent TB infection is highest in older age groups [3], who not only have had the longest exposure, but were often exposed to higher TB transmission rates in the past. ageing, with associated higher rates of progression [4], thus acts as a demographic driver towards higher per capita TB incidence [5]. In the Western Pacific region, many countries have their highest per capita TB incidence rates among older age groups [1]. Among Western Pacific region countries, China, Hong Kong (China), Japan, Korean, Singapore, and Taiwan are facing both high TB burden and population ageing[6,7]. The age profile of future TB incidence is critical for forecasting public health needs and rational policy design [8]. First, older populations will have higher TB (and background) mortality rates [9,10], which implies added difficulty in meeting treatment success targets. Secondly, older adults have more comorbidities and more complex health care needs, which may lead to a longer care-seeking process and higher healthcare expenditure per case. For instance, patients with chronic lung diseases may have signs or symptoms overlapping with TB, making correctly diagnosing their TB slower and more costly [11]. Thirdly, the proportion of TB cases in older age groups should inform policy making, for example suggesting integrating TB care entry points into long-term care programmes, or through clinician training

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

highlighting older people as a TB risk group with their own diagnostic and management challenges [11]. Quantitatively forecasting the TB incidence age profile needs combined models forecasting demographic change and statistical forecasts of age-specific TB incidence. However, a time series analysis producing age-specific forecasts of the TB incidence has not been published to our knowledge. Use of autoregressive integrated moving average models, often including the seasonality of TB incidence is more common [12], and comoving time series analysis has been applied [13] without age-specific information. Age-specific TB incidence modelling. including the use of age-period-cohort models, has been undertaken but without producing epidemic forecasts (e.g. Iqbal et al. [14] and Wu et al. [15]). Mechanistic mathematical modelling, with age structure, also has the potential to generate forecasts [5,16–18]. However, age-specific forecasting and the impact of demographic change have yet to be analyzed. In many settings, the demographic transition and population ageing are outpacing declines in TB incidence, so methods to understand and forecast the impact of changing demography on TB epidemics are needed. We, therefore, developed a statistical method capturing agespecific incidence trends and forecasting future epidemics while accounting for demographic change. Materials and Methods Setting and data sources TB incidence in Taiwan has steadily declined from 64 confirmed TB cases per 100,000 in

2007 to 41 per 100,000 in 2017. Since 2005, the proportion of TB cases in Taiwan over 65

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

years of age has been over 50% and increasing. Between 2007 and 2017, the average age in Taiwan increased from 36 to 40, and the proportions of adults above 65 rose from 10% to 14% [7]. Notification data of culture-confirmed TB cases, excluding foreigners, were obtained from the Taiwan Center for Disease Control surveillance system. Counts were reported by age group, sex, month, and county. Ages were reported as (0-4, 5-9, ..., 65-69, 70+) years. The demographic data were obtained from the Department of Statistics, the Ministry of the Interior, Taiwan. These data included the mid-year population estimators, deaths, migration in single-year ages, and fertility in five-year age groups (15-19, ..., 45-49). We used data in 2005-2018 as a training set. The demographic data from 2005 to 2017 were collected for the population demographic modelling (a shorter period because of the release schedule). All the training data in this article were published by the Taiwan officials and free access on the internet; the usage is licensed by the Open Government Data License: [https://data.gov.tw/license]. Importantly, we assumed no case detection gaps existed during the time frame covered by this article. We, therefore, regard "TB notification" and "TB incidence" as synonymous with the number culture-confirmed tuberculosis cases notified during a specific period. Age-specific incidence modelling and forecasting We considered annual incidence rates by age and sex. The incidence rates by age groups and sex were calculated as the yearly notification counts divided by corresponding mid-year population estimates. Females and males were analysed separately with the same parameterisation. We modelled the incidence rates using Lee-Carter Models (LCMs) [19] formulated with age and time-varying terms. The LCMs were initially designed for mortality

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

rate modelling, where they now predominate. Estimation, forecasting, bootstrapping methods for LCMs are well-developed. We performed a likelihood-based LCM estimation, and also the comparable Poisson regression [20]: $\log \left(E \big(incident \; cases_{age,year} \big) \right) = \alpha_{age} + \beta_{age} \kappa_{year} + \log (population_{age,year})$, where E(.) is expectation function, $year \in \{2005, ..., 2018\}$ is the calendar year, α_{age} is age effect term, κ_{vear} is period effect term, and β_{age} is coefficients adjusting period effects for different age groups, and $age \in \{0-4, 5-9, ..., 70+\}$ represents the age categories. To maintain identifiability, we imposed the constraints $\Sigma_{vear} \kappa_{vear} = 0$ and $\Sigma_{age} \beta_{age} = 1$. Two nested Poisson models, one using an ageprofile and a discrete period effect, i.e. $\alpha_{age} + \kappa_{year}$, and another using an age-profile and a linear effect, i.e. $\alpha_{age} + year \times \kappa$, were used as comparators. Akaike information criterion (AIC), Bayesian information criterion (BIC), and log-likelihood were considered as goodness of fit metrics. For forecasting, inspired by the Lee-Carter demographic forecasting, we used Autoregressive Integrated Moving Average models with drift [21], constructed from the LCM period effects. In forecasting, the death and birth processes applied semiparametric bootstrap sampling [22]. Population modelling and forecasting We constructed a synthetic population with birth, death and migration processes. The demographic methods adapted from those used in the Taiwan National Development Council's population projection report [7]. The demography was modelled by single age (0100 years old) and sex. Mortality forecasting used the Lee-Carter model [19] below 84 years of age and the Coale-Kisker method [23] for above 85. The birth forecasting used the fertility rates of women in childbearing ages, from 15 to 49, with a modified LCM [24]. For consistency with incidence forecasting, semiparametric bootstrap sampling was used for deaths and births [22]. The Migration process was modelled by linear regression with age effects and a linear trend; the forecasting applied residual bootstrap sampling with the age-specific parameters seen in 2017. The forecasts were used for the next step by aggregating to the age groups as that of the incidence data.

Forecasting overall TB incidence

The TB incidence model and the demographic model were built independently. Forecasts of age-specific TB incidence were weighted by forecasted population demography to obtain forecasts of per capita TB incidence for the whole population. TB incidence was calculated as per 100,000 rates by given strata. TB incidence rate reductions were calculated with respect to the incidence in 2015 and presented as percentages. For simplicity, some results were presented with age groups of 0-14, 15-34, 35-64, and above 65. In forecasting, the 95% prediction intervals and mean values were computed from 10,000 bootstrap samples. Uncertainty was propagated from every submodel. To compare with the global reduction target of the End TB strategy [2], we forecasted the incidence until 2035. The milestones of 2020, 2030 and 2035 of the End TB strategy of percentage reductions in per capita TB incidence from 2015 were used as intermediate outcomes.

Incidence attributable to demographic change

We performed a scenario analysis to clarify the potential impact of demographic change.

While forecasting the age-specific TB incidence to 2035, we kept the population size and

age structure fixed as it was in 2018. This TB incidence was compared against values including projected changes in population structure by computing the fraction of total TB incidence attributable to demographic change in each year as $(I_{1,year} - I_{0,year})/I_{1,year}$, where $I_{1,year}$ and $I_{0,year}$ are the incident cases with and without demographic change respectively and is the calendar year. This corresponds to the definition of population attributable fraction [25].

All the analyzes were performed using R 3.5 [26] and analyzed/visualized by R package StMoMo, TSA, ggplot2 [27–29]. All analysis code is available at [https://github.com/TimeWz667/AgeingTB].

Results

Incidence modelling

Fig 1 shows the estimators of the Lee-Carter models of the incidence data. The age effect estimators (α_{age}) suggested the baseline incidence rates increase with age. In both sexes, the higher levels in age groups older than fifteen years correspond to higher TB incidence rates. The point estimators of age-period adjustments (β_{age}) showed no specific trend. However, there are large uncertainties for all estimates pertaining to under 15-year age groups, excepting the reference group aged 0-4. The period effect estimators (κ_{year}) had nearly constant trends with calendar years. Fig 1 also demonstrates the forecasting of period effects with 95% prediction intervals: prediction intervals of both sexes grew at a constant rate with calendar time. Table 1 shows the goodness of fit of the LCMs, the nested age-period Poisson models, and age-trend Poisson

models. In AIC, BIC and log-likelihood on the training data, the LCM result is preferred over the other two although it cost a higher degree of freedom. See S1 Appendix for the details of the goodness of fit, and residuals plots.

Table 1. Summary of model comparison

	Age-Trend	Age-Period	Lee-Carter Model	
Model family	Poisson Regression			
Period effect	Linear	Discrete		
No. observations	420			
No. parameters	32	56	84	
Log(Likelihood)	-1855	-1819	-1682	
AIC	3773	3751	3531	
BIC	3902	3977	3871	

AIC: Akaike information criterion, BIC: Bayesian information criterion

Population forecasting

Fig 2 shows the demographic change from 2005 to 2035. In Fig 2A, the population will reach a maximum of 23.6 million in 2023, and will start shrinking to 23.2 million in 2035. The proportion of the population aged over 65 is increasing across the period and will reach 27% in 2035. The proportion of the population aged under 15 is declining to around 11%. Fig 2B compares the age structure of the Taiwanese population in 2018 and 2035, highlighting the population ageing.

Incidence forecasting and age structure

Fig 3 demonstrates the trends of the population TB incidence rate and TB incidence rates by age-group (<15, 15-34, 35-64, >65). The forecast in Fig 3A suggests that the TB incidence in 2035 will be 22 (95% Prediction Interval (PI): 19-25) per 100 000. The overall incidence reduction will reach 54% (95% PI: 45%-59%) in 2035, which is 37% short of the 90% reduction in the End TB Strategy. Fig 3B shows the age-specific incidence rates will have 60% to 80% reductions from 2015 to 2035 apart from the 5-9 group. The rate reductions in most age groups will be higher than the forecast reduction of 44% in the whole population. Fig 3C decomposes the overall incidence rates by age groups. The TB incidence rates from age groups below 65 will be gradually decreasing whereas the above 65 will nearly stay constant from 2018 to 2035. Fig 3D shows the proportion of TB incidence in each age group. The proportion among adults aged over 65 years will reach 68% (95% PI: 67%-69%) and 79% (95% PI: 78%-81%) in 2025 and 2035, respectively. In 2035, more than 97% of incident cases will occur among those aged 35 years or older.

Impact of demography on TB incidence

Fig 4 shows the forecast incidence rates with and without demographic change. In the scenario without demographic change, the forecast suggests that the incidence in 2035 will be around 13 per 100,000 compared to 23 with demographic change and the 90% reduction target of 4.5 per 100,000. The 95% prediction intervals for forecasts with demographic change continuously expand year by year, whereas without demographic change they converge to a constant width within five years. Table 2 shows the impact of demographic change. Up to 2020, TB incidence rates will have 23% and 27% reductions with and without demographic change respectively. Considering demographic change, the incidence rates are projected to reduce by 54% (95% PI: 45%-59%) from 2015 to 2035; without

demographic change, the reduction will be 72% (95% PI: 67%-76%). In both scenarios, the trends of incidence rates showed diminishing reductions to the time scale. In 2035, the forecasts suggested that 39% (95% PI: 36%-42%) of incident TB cases can be attributed to demographic change.

Table 2. Summary of reductions in TB incidence reductions with and without

demographic change

Year	Percentage reduction in per capita TB incidence from 2015:		Percentage of total TB
	with demographic change	without demographic change after 2018	incidence attributable to demographic change
2020	23.1% (18.2%, 27.2%)	26.6% (22.2%, 30.8%)	4.6% (1.6%, 7.5%)
2025	35.2% (27.2%, 40.7%)	47.0% (41.0%, 52.2%)	18.3% (15.5%, 21.2%)
2030	45.0% (35.9%, 50.5%)	61.6% (56.0%, 66.4%)	30.0% (27.3%, 33.0%)
2035	53.7% (44.5%, 58.9%)	72.1% (67.1%, 76.1%)	38.8% (36.1%, 41.7%)

Discussion

A substantial proportion of tuberculosis (TB) incidence in Taiwan is among people aged over 65 years. Social and economic development typically bring reductions in TB incidence but also reduced birth and death rates and population ageing. This study provides a novel investigation into the potential impact on TB incidence from population ageing using statistical modelling and forecasting. Current trends of TB incidence declines and demographic change suggest TB incidence rates in Taiwan will decrease to 25 per 100,000 by 2035. This represents a 45% reduction since 2015, missing the End TB goal of 90% reductions in TB incidence rates. We have shown that higher age-specific incidence rates in

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

older age groups can mean that population ageing acts against reductions in TB rates, with TB incidence in 2035 projected to be 39% higher than without demographic change. Previous studies have employed statistical methods either to forecast TB incidence. [12,13,30,31] or to analyze patterns by age using age-period-cohort models, [14,15] but we are the first study to statistically forecast age-specific TB incidence. Some transmission modelling studies [16,18] have explored issues related to age-structure, but without forecasts or formal assessment of fit. We made novel use of Lee-Carter models (LCMs), [19,21] which employ an elegant low-dimensional decomposition of age-specific rates to model trends and overall shape. LCMs were originally introduced for mortality rate modelling and are now the dominant approach, but have been applied elsewhere. Within demography, Hyndman [24] and Rueda-Sabater and Alvarez-Esteban [32] used LCMs to forecast the fertility rates, and Cowen [33] fitted LCMs to abortion rates. Kainz et al. [34] modelled chronic kidney disease prevalence as rate data, and Yue et al. [35] modelled cancer incidence and mortality. However, we are the first to apply LCMs to TB, finding they fitted better than Poisson Age-Period models. Our approach offers a generalizable and easilyimplemented method for forecasting age-specific TB incidence and the impact of demographic change on total TB incidence. For Taiwan and many other high-income settings, TB notifications are thought to parallel TB incidence with only a small gap. In settings where this gap is larger and changing over time, interpretation of TB notification data is more problematic and notifications may not be a good proxy for incidence. Taiwan does not have United Nations Population Division demographic forecasts, hence our bespoke demographic modelling. For most nations, these forecasts could be used 'off the shelf'. We have presented results on percentage reductions in both per capita TB incidence rates and in total TB incidence (e.g. Table 2), which are similar because of Taiwan's small projected population change over the period considered; this may not be true in all settings.

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

The decline in TB incidence in Taiwan probably has multiple contributory causes, including improvements in TB control, socio-economic development, and the reductions in the prevalence of latent TB as a result of declining transmission. For an infectious disease like TB, reduced transmission can amplify and sustain over time changes in underlying causative factors, complicating their analysis. The low TB rates in children aged under fifteen may reflect low exposure to TB in this group or potentially lower rates of case detection. Our assessment of the impact of population ageing on TB incidence and case-mix has particular current relevance to many WHO Western Pacific region countries [1] and will be relevant to many more countries and regions in the future. Our analysis could provide a template for analysts who wish to explore issues related to future TB incidence and demography where age-specific data are available. Our analysis accounted for cohort propagation of latent tuberculosis infection (LTBI) in a phenomenological way. LTBI represents accumulated lifetime risk of infection by exposure to active tuberculosis disease. Older individuals in most settings have higher LTBI prevalence due both to longer cumulative exposure and (in declining epidemics) exposure to a higher mean infection rate over their lifetime. The ageing through of these LTBI positive cohorts thus generates a secular time trend in reactivation disease rates at a particular age. Our approach does not explicitly model LTBI prevalence, because this would introduce additional parameters and, without LTBI data, identifiability issues. However, LTBI cohort effects are accounted for in our current approach indirectly by modelling the secular trends in agespecific incidence rates. Extending the model by adding exogenous variables is possible. Our analysis did not address the impact of other variables for simplicity and clarity. Important predictors could include socioeconomic status and comorbidities such as diabetes mellitus. [36] However,

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

projections would require additional time-series analysis to forecast these explanatory variables. Older age as a risk factor for TB disease has perhaps been under-explored since age is not a modifiable risk factor, and since in most current high-burden settings populations and the typical age of TB cases are fairly young. Our result that population ageing will act to slow declines in TB incidence does not seem to have been previously noted. However, the importance of older age groups to TB control is already evident in many Asian populations, [16] and this will be an increasingly widespread facet of global TB control if reductions in incidence continue and accelerate in the future. Older populations will also have their own particular challenges in terms of access, diagnosis and comorbidities complicating their care. Public health planning to develop adapted strategies for care and control to meet these changing population needs is essential. In summary, the Lee-Carter model provides a tool to project age-specific tuberculosis incidence and hence forecast overall TB incidence while accounting for demographic change. In Taiwan, population ageing may slow the decline of TB incidence by 39% over the period 2015 - 2035. TB care and control programmes will increasingly need to address the needs of older adults, who will comprise a growing majority of the TB epidemic.

References

327

348

328		
329	1.	World Health Organization. Global tuberculosis report 2018. World Health Organization;
330		2018;
331	2.	World Health Organization. Global strategy and targets for tuberculosis prevention, care
332		and control after 2015. Geneva: World Health Organization. 2014;
333	3.	Houben RMGJ, Dodd PJ. The Global Burden of Latent Tuberculosis Infection: A Re-
334		estimation Using Mathematical Modelling. PLoS Med. 2016;13: e1002152.
335	4.	Schaaf HS, Collins A, Bekker A, Davies PDO. Tuberculosis at extremes of age.
336		Respirology. 2010;15: 747–763.
337	5.	Vynnycky E, Borgdorff MW, Leung CC, Tam CM, Fine PEM. Limited impact of
338		tuberculosis control in Hong Kong: attributable to high risks of reactivation disease.
339		Epidemiol Infect. 2008;136: 943–952.
340	6.	United Nations Publications. World Population Ageing, 2015. UN; 2017.
341	7.	National Development Council, Taiwan. Population Projections for the R.O.C. (Taiwan):
342		2018-2065. National Development Council, Taiwan; 2018.
343	8.	Dye C, Williams BG. The population dynamics and control of tuberculosis. Science.
344		2010;328: 856–861.
345	9.	Pratt RH, Winston CA, Steve Kammerer J, Armstrong LR. Tuberculosis in Older Adults
346		in the United States, 1993-2008 [Internet]. Journal of the American Geriatrics Society.
347		2011. pp. 851–857. doi:10.1111/j.1532-5415.2011.03369.x

10. Hagiya H, Koyama T, Zamami Y, Minato Y, Tatebe Y, Mikami N, et al. Trends in

- 349 incidence and mortality of tuberculosis in Japan: a population-based study, 1997-2016. Epidemiol Infect. 2018; 1-10. 350 351 11. Negin J. Abimbola S. Marais BJ. Tuberculosis among older adults – time to take notice 352 [Internet]. International Journal of Infectious Diseases. 2015. pp. 135–137. 353 doi:10.1016/j.ijid.2014.11.018 354 12. Bras AL, Gomes D, Filipe PA, de Sousa B, Nunes C. Trends, seasonality and forecasts 355 of pulmonary tuberculosis in Portugal. Int J Tuberc Lung Dis. 2014;18: 1202-1210. 356 13. van Aart C, Boshuizen H, Dekkers A, Altes HK. Time Lag Between Immigration and 357 Tuberculosis Rates in Immigrants in the Netherlands: A Time-Series Analysis. 358 International Journal of Tuberculosis and Lung Disease. 2017;21: 486–492. 359 14. Iqbal SA, Winston CA, Bardenheier BH, Armstrong LR, Navin TR. Age-Period-Cohort 360 Analyses of Tuberculosis Incidence Rates by Nativity, United States, 1996-2016. Am J 361 Public Health. 2018;108: S315-S320. 362 15. Wu P, Cowling BJ, Schooling CM, Wong IOL, Johnston JM, Leung C-C, et al. Age-363 period-cohort analysis of tuberculosis notifications in Hong Kong from 1961 to 2005. 364 Thorax. 2008;63: 312-316. 365 16. Harris RC, Sumner T, Knight GM, Evans T, Cardenas V, Chen C, et al. Age-targeted 366 tuberculosis vaccination in China and implications for vaccine development: a modelling 367 study. Lancet Glob Health. Elsevier; 2019;7: e209-e218.
- study. Lancet Glob Health. Elsevier; 2019;7: e209–e218.
 17. Brooks-Pollock E, Cohen T, Murray M. The impact of realistic age structure in simple
- 18. Arregui S, Iglesias MJ, Samper S, Marinova D, Martin C, Sanz J, et al. Data-driven
 model for the assessment of Mycobacterium tuberculosis transmission in evolving
- demographic structures. Proc Natl Acad Sci U S A. 2018;115: E3238–E3245.

models of tuberculosis transmission. PLoS One. 2010;5: e8479.

- 373 19. Lee RD, Carter LR. Modeling and Forecasting U. S. Mortality. J Am Stat Assoc.
- [American Statistical Association, Taylor & Francis, Ltd.]; 1992;87: 659–671.
- 375 20. Brouhns N, Denuit M, Vermunt JK. A Poisson log-bilinear regression approach to the
- 376 construction of projected lifetables [Internet]. Insurance: Mathematics and Economics.
- 377 2002. pp. 373–393. doi:10.1016/s0167-6687(02)00185-3
- 378 21. Lee R. The Lee-Carter Method for Forecasting Mortality, with Various Extensions and
- Applications. N Am Actuar J. Routledge; 2000;4: 80–91.
- 380 22. Renshaw AE, Haberman S. On simulation-based approaches to risk measurement in
- mortality with specific reference to Poisson Lee–Carter modelling [Internet]. Insurance:
- 382 Mathematics and Economics. 2008. pp. 797–816.
- 383 doi:10.1016/j.insmatheco.2007.08.009
- 384 23. Coale AJ, Kisker EE. Defects in data on old-age mortality in the United States: new
- procedures for calculating mortality schedules and life tables at the highest ages. Coale
- 386 Kisker 1990 Asian and Pacific Population Forum. Honolulu Hawaii Coale Ansley J. 1990
- 387 Spring.; 1990;
- 388 24. Hyndman RJ, Booth H. Stochastic population forecasts using functional data models for
- mortality, fertility and migration. Int J Forecast. 2008;24: 323–342.
- 390 25. Steenland K, Armstrong B. An overview of methods for calculating the burden of
- disease due to specific risk factors. Epidemiology. JSTOR; 2006;17: 512–519.
- 392 26. R Core Team. R: A Language and Environment for Statistical Computing [Internet].
- 393 Vienna, Austria: R Foundation for Statistical Computing; 2018. Available: https://www.R-
- 394 project.org/
- 395 27. Wickham H. ggplot2: Elegant Graphics for Data Analysis [Internet]. Springer-Verlag
- New York; 2016. Available: http://ggplot2.org

- 397 28. Andres V, Millossovich P, Vladimir K. StMoMo: Stochastic Mortality Modeling in R. J
- 398 Stat Softw. arts.units.it; 2018;84: 1–38.
- 399 29. Chan K-S, Ripley B. TSA: Time Series Analysis [Internet]. 2018. Available:
- 400 https://CRAN.R-project.org/package=TSA
- 401 30. Onozaki I, Law I, Sismanidis C, Zignol M, Glaziou P, Floyd K. National tuberculosis
- 402 prevalence surveys in Asia, 1990-2012: an overview of results and lessons learned.
- 403 Trop Med Int Health. 2015;20: 1128–1145.
- 404 31. Suarez PG, Watt CJ, Alarcon E, Portocarrero J, Zavala D, Canales R, et al. The
- 405 Dynamics of Tuberculosis in Response to 10 Years of Intensive Control Effort in Peru. J
- 406 Infect Dis. 2001;184: 473–478.
- 407 32. Rueda-Sabater C, Alvarez-Esteban PC. The analysis of age-specific fertility patterns via
- 408 logistic models. J Appl Stat. Taylor & Francis; 2008;35: 1053–1070.
- 409 33. Cowan SK. Cohort Abortion Measures for the United States. Popul Dev Rev. 2013;39:
- 410 289–307.
- 411 34. Kainz A, Hronsky M, Stel VS, Jager KJ, Geroldinger A, Dunkler D, et al. Prediction of
- 412 prevalence of chronic kidney disease in diabetic patients in countries of the European
- 413 Union up to 2025. Nephrol Dial Transplant. 2015;30 Suppl 4: iv113–8.
- 414 35. Yue JC, Wang H-C, Leong Y-Y, Su W-P. Using Taiwan National Health Insurance
- Database to model cancer incidence and mortality rates. Insur Math Econ. 2018;78:
- 416 316–324.

- 417 36. Marais BJ, Lönnroth K, Lawn SD, Migliori GB, Mwaba P, Glaziou P, et al. Tuberculosis
- 418 comorbidity with communicable and non-communicable diseases: integrating health
- services and control efforts. Lancet Infect Dis. 2013;13: 436–448.

Figures

421

422

- Fig 1. Lee-Carter model fitting and forecasting of the TB incidence. (Data: 2005-2018,
- 423 Forecasting: 2019-2035). 95% confidence intervals of estimators and prediction intervals of
- forecasts were calculated through bootstrapping with 10 000 sample size.

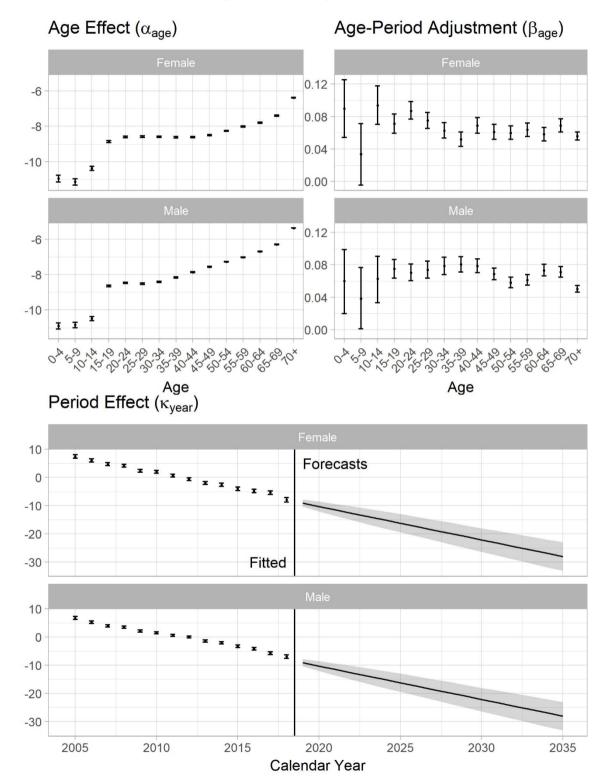


Fig 2. Demographic change. Data: 2005-2017, Forecasting: 2018-2035

426

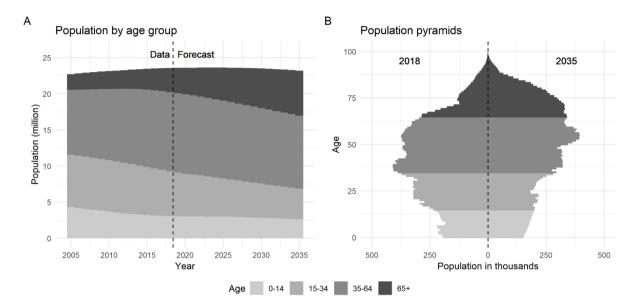


Fig 3. TB incidence rate forecasting. (A) Overall incidence rate per 100 000. In the forecasting, dashed line features the mean values and the shaded area is 95% prediction interval. (B) Incidence rate reductions by five-year age groups during 2015-2035 with 95% prediction interval. (C) Incidence rates attributed to age groups. (D) Proportions of age groups in Incidence cases.

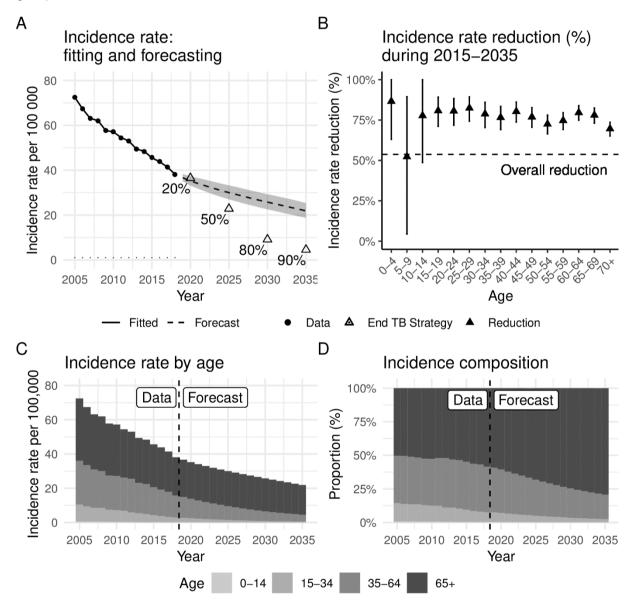


Fig 4. TB incidence with and without demographic change. ribbons show 95% prediction

intervals.

435

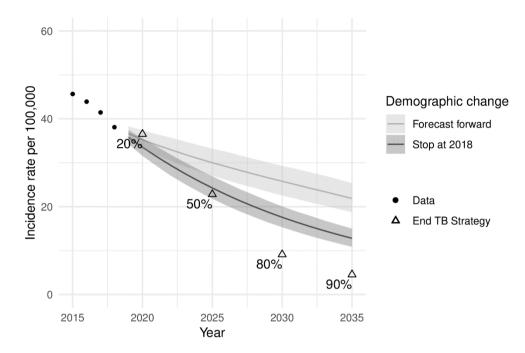
436

437

438

439

440



Supporting information

S1 Appendix. Residual analysis and the goodness of fit.