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RUNNING TITLE: lncRNA-based nomogram to assist tuberculosis diagnosis 

 

LIST OF ABBREVIATIONS 

TB: tuberculosis; PTB: pulmonary tuberculosis; MTB: Mycobacterium tuberculosis; TB-

IGRA: interferon-gamma release assays for tuberculosis; lncRNA: long noncoding RNA; 

LTBI: latent TB infection; DE: differentially expressed; EHR: electronic health record; TBM: 

tuberculous meningitis; non-TB DC: non-TB disease control; PBMC: peripheral blood 

mononuclear cell; VIF: variance inflation factor; DCA: decision curve analysis; LV: 

lentivirus vector; BCG: Bacillus Calmette-Guerin; LDH: lactate dehydrogenase. 
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ABSTRACT 

Background Clinically diagnosed pulmonary tuberculosis (PTB) patients lack 

Mycobacterium tuberculosis (MTB) microbiologic evidence, and misdiagnosis or delayed 

diagnosis often occurs as a consequence. We investigated the potential of lncRNAs and 

corresponding predictive models to diagnose these patients. 

Methods We enrolled 1372 subjects, including clinically diagnosed PTB patients, non-TB 

disease controls and healthy controls, in three cohorts (Screening, Selection and Validation). 

Candidate lncRNAs differentially expressed in blood samples of the PTB and healthy control 

groups were identified by microarray and qRT-PCR in the Screening Cohort. Logistic 

regression models were developed using lncRNAs and/or electronic health records (EHRs) 

from clinically diagnosed PTB patients and non-TB disease controls in the Selection Cohort. 

These models were evaluated by AUC and decision curve analysis, and the optimal model 

was presented as a Web-based nomogram, which was evaluated in the Validation Cohort. 

The biological function of lncRNAs was interrogated using ELISA, lactate dehydrogenase 

release analysis and flow cytometry. 

Results Three differentially expressed lncRNAs (ENST00000497872, n333737, n335265) 

were identified. The optimal model (i.e., nomogram) incorporated these three lncRNAs and 

six EHR variables (age, hemoglobin, weight loss, low-grade fever, CT calcification and TB-

IGRA). The nomogram showed an AUC of 0.89, sensitivity of 0.86 and specificity of 0.82 in 

the Validation Cohort, which demonstrated better discrimination and clinical net benefit than 

the EHR model. ENST00000497872 may regulate inflammatory cytokine production, cell 

death and apoptosis during MTB infection.  
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Conclusion LncRNAs and the user-friendly nomogram could facilitate the early 

identification of PTB cases among suspected patients with negative MTB microbiologic 

evidence. 

Key Messages 

What is the key question? Does integrating immune-related lncRNA signatures and 

electronic health records (EHRs) promote the early identification of PTB patients who are 

symptomatic but lack microbiologic evidence of Mycobacterium tuberculosis (MTB)? 

What is the bottom line? We found three long non-coding RNAs (lncRNAs), i.e., 

ENST00000497872, n333737 and n335265, were potential diagnostic biomarkers for 

clinically diagnosed PTB patients; and we further developed and validated a novel nomogram 

incorporating these three lncRNAs and six electronic health records (EHRs), which were 

readily obtainable even in a resource-constrained setting and achieved a c-statistic of 0.89, 

sensitivity of 0.86 and specificity of 0.82 in a separate validation cohort. 

Why read on? This study focuses on the challenge of accurately diagnosing PTB patients 

with negative MTB microbiological evidence and serves as the first proof-of-concept that 

integrating lncRNA signatures and EHR data could be a more promising diagnostic approach 

for clinically diagnosed PTB patients. 

 

SUMMARY  This study developed and validated a novel nomogram that incorporated three 

lncRNAs and six EHR fields could be a useful predictive tool in identifying PTB patients 

who lack MTB microbiologic evidence. 
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INTRODUCTION 

TB is the leading cause of death from an infectious agent [1], but only 56% of PTB cases 

reported to WHO in 2017 were bacteriologically confirmed. Thus, approximately half of all 

PTB cases are clinically diagnosed worldwide, and this proportion can reach 68% in China 

[1]. Clinically diagnosed PTB cases are symptomatic but lack evidence of MTB infection by 

smear microscopy, culture or nucleic acid amplification test [1–3]. The diagnostic procedure 

for clinically diagnosed PTB is inadequate and time-consuming and often results in 

misdiagnosis or delayed diagnosis [3], leading to an increased risk of morbidity and mortality 

[4], or overtreatment [5]. There is thus an urgent need to develop rapid and accurate strategies 

to diagnose PTB cases without MTB microbiologic evidence [6, 7]. The exploration of 

effective host immune-response signatures represents an attractive approach for this type of 

assay.  

Long noncoding RNAs (lncRNAs) can function as critical regulators of inflammatory 

responses to infection, especially for T-cell responses [8, 9]. Increasing evidence indicates 

that blood lncRNA expression profiles are closely associated with TB disease [10–12], 

suggesting lncRNAs could function as potential noninvasive biomarkers for TB detection. 

However, previous studies have suffered from small sample size (ranging from 66 to 510) 

and lack independent validation. 

Recent effort has focused on establishing clinical prediction rules or predictive models for 

TB diagnosis based on patients’ electronic health record (EHR) information [13–16]. Such 

models can cost-effectively facilitate PTB diagnosis with a limited number of clinical-

radiological predictors. For example, a 6-signature model from Griesel et al. (a cough lasting 

≥14 days, the inability to walk unaided, a temperature > 39°C, chest radiograph assessment, 

hemoglobin level and white cell count) attained an AUC of 0.81 [0.80-0.82] in seriously ill 

HIV-infected PTB patients [13]. However, despite these advances, current EHR models 
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remain insufficient for precise TB diagnosis. Compelling studies have proposed that models 

incorporating biomarkers and EHR information attain better performance for prediction of 

sepsis [17] and abdominal aortic aneurysm [18]. We previously reported that combining 

exosomal microRNAs and EHRs in the diagnosis of tuberculous meningitis (TBM) achieved 

AUCs of up to 0.97 versus an AUC of 0.67 obtained using EHR alone [19]. Based on these 

studies, we hypothesized that combining lncRNAs with well-defined EHR predictors could 

be used to develop improved predictive models to identify PTB cases that lack microbiologic 

evidence of  MTB infection. 

This study was therefore performed to investigate the diagnostic potential of lncRNAs and 

predictive models incorporating lncRNA and EHR data for the identification of PTB cases 

without microbiologic MTB evidence. This study also explored the regulatory functions of 

lncRNA candidates during MTB infection to evaluate the biological basis for their predictive 

abilities. 

 

MATERIAL AND METHODS  

Study design 

We performed this study through a four-stage approach. LncRNAs that were differentially 

expressed (DE) between clinically diagnosed PTB patients and healthy subjects were profiled 

by microarray in the Screening Step. The expression of top five lncRNAs were then analyzed 

in a large prospective cohort in the Selection Step of the study, which reduced the number of 

five lncRNAs to three based on expression difference among groups. In the Model Training 

Step, lncRNAs and EHRs were used to develop predictive models for clinically diagnosed 

PTB patients and non-tuberculosis disease control (non-TB DC) patients, and the optimal 

model was visualized as a nomogram. Finally, we validated lncRNAs and the nomogram in 
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an independent prospective cohort. Functional analyses were also performed to elucidate the 

biological significance of lncRNAs. The study strategy is shown in Figure 1. 

Subjects enrolment  

Screening Cohort We retrospectively collected age- and gender-matched 7 PTB cases and 5 

healthy controls as the Screening Cohort. They were 6 males and 6 females from ages 22 to 

59 years. PTB cases were clinically confirmed PTB patients with positive TB symptoms, 

negative MTB pathogenic examinations, and good response to anti-TB therapy. Healthy 

subjects had a normal physical examination and no history of TB. 

Selection Cohort and Validation Cohort Inpatients with clinical-radiological suspicion of 

PTB but lacking evidence of MTB infection were prospectively enrolled from West China 

Hospital between Dec 2014 and May 2017. The inclusion criteria for highly suspected 

patients were: (a) new patients with high clinical-radiological suspicion of PTB, (b) anti-TB 

therapy < 7 days on admission, (c) patients with negative MTB evidence (i.e., at least two 

consecutive negative smears, one negative MTB-DNA PCR and one negative culture result), 

(d) age ≥ 15 years, and (e) patients without severe immunosuppressive disease, HIV infection, 

or cardiac or renal failure. Two experienced pulmonologists reviewed and diagnosed all 

presumptive PTB patients, and final diagnoses for all cases were based on the combination of 

clinical assessment, radiological and laboratory results, response to the treatment [1, 2]. A 12-

month follow-up observation was used to confirm the classification of PTB and non-TB 

patients. The detailed description of patients’ symptoms and recruitment, inclusion and 

exclusion criteria, laboratory examinations, diagnostic criteria and procedure, treatment, and 

sample size estimate are provided in Supplemental Methods, Section 1–2. In addition, healthy 

subjects were simultaneously recruited from a pool of healthy donors with a normal physical 

examination and no history of TB.  
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We finally enrolled a Selection Cohort of 878 participants (141 clinically diagnosed PTB, 

159 non-TB DC, and 578 healthy subjects) and an independent Validation Cohort of 482 

participants (97 clinically diagnosed PTB, 140 non-TB DC, and 245 healthy subjects). 

Details of the non-TB DC are listed in Table S1. Ethical approval was obtained from the 

Clinical Trials and Biomedical Ethics Committee of West China [no. 2014 (198)]. Informed 

consents were obtained from every participant.  

LncRNA detection  

RNA isolation and cDNA preparation Peripheral blood mononuclear cell (PBMC) samples 

were isolated from fresh 3 ml blood samples of each participant using a Human Lymphocyte 

Separation Tube Kit (Dakewe Biotech Company Limited, China). Total RNA was extracted 

from PBMC isolates using Trizol reagent (Invitrogen, USA). RNA concentration and purity 

were evaluated spectrophotometrically, and RNA integrity was determined using agarose gel 

electrophoresis (Figure S1A). The PrimeScriptTM RT reagent Kit with gDNA Eraser (Takara, 

Japan) was used to remove contaminating genomic DNA and synthesize cDNA.  

LncRNA microarray profiling LncRNA profiles were detected using Affymetrix Human 

Transcriptome Array 2.0 Chips based on a standard protocol [20]. Raw data were normalized 

using the Robust Multi-Array Average Expression Measure algorithm. DE lncRNAs with p-

values < 0.05 and fold-changes > 2 were identified using the empirical Bayes moderated t-

statistics and presented by hierarchical clustering and volcano plot [21]. Microarray data have 

been deposited in the Gene Expression Omnibus under the accession GSE119143.  

qRT-PCR for lncRNAs LncRNA expression was measured using the SYBR® Green PCR Kit 

(Takara, Japan) in a blinded fashion, normalized to the endogenous control GAPDH, and 

calculated according to the 2 -ΔΔ Cq method where and Cq < 35 was considered acceptable 

[22]. Specific primers are presented in Table S2. PCR curves and the standard curve are 
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shown in Figure S1B-C. Detailed methodology for RNA isolation, reverse transcription, 

qRT-PCR detection (procedure, quality control, product verification, and stability test) are 

presented in Supplemental Methods, Section 3. 

Modeling 

Data used for modeling A total of 41 EHRs, including demographic, clinical, laboratory, and 

radiological findings were collected (see Supplemental Methods, Section 4), and a 20% 

missing value threshold was applied to remove incomplete features. Features with p-values < 

0.05 in univariate analysis or definite clinical significance were included for modeling. A 

total of 14 of the 44 original variables (41 EHRs and 3 lncRNAs) remained after filtering, 

including 11 EHRs and 3 lncRNAs (see Supplemental Methods, Section 4). 

Diagnostic modeling Multivariable logistic regression was used to develop predictive models 

to distinguish clinically diagnosed PTB from patients with suspected PTB cases in the 

Selection Cohort. Feature subsets were selected and compared using the best subset selection 

procedure [23] and 10-fold cross-validation. The "EHR+lncRNA", "lncRNA only" and "EHR 

only" models were developed according to their respective best feature subset in the Selection 

Cohort. A cutoff of each model was determined by combining the Youden’s index and the 

sensitivity for the samples in the training dataset equal to or greater than 0.85. The models 

including their cutoff were used for evaluation of the Validation Cohort.  

Nomogram presentation and evaluation We further adopted the nomogram to visualize the 

optimal model with the best AUC [24, 25]. Nomogram calibration was assessed with the 

calibration curve and Hosmer-Lemeshow test (p-value > 0.05 suggested no departure from 

perfect fit). The performance of the nomogram was tested in the independent Validation 

Cohort, with total points for each patient calculated. Decision curve analysis (DCA) [25] was 

performed by evaluating the clinical net benefit of the nomogram and "EHR only" model 
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across the overall datasets. Assessing clinical value involves comparing the nomogram and 

“EHR only” model using the 500 bootstrap method. The nomogram was implemented as a 

Web-based app using R Shiny. 

Analysis of ENST00000497872 (lnc AL) function 

The lncRNA with the most significant difference in our analysis, ENST00000497872 (lnc AL) 

was analyzed in functional studies. THP-1 cells with stable overexpression and knockdown 

of lnc AL were constructed using recombinant lentivirus vector (LV). THP-1 cells transfected 

with these vectors were incubated with Bacillus Calmette-Guerin (BCG) to imitate active 

MTB-infection [26]. This study examined the effect BCG exposure on THP-1 cells in five 

groups transfected with vectors to overexpress (LV-lnc AL) or suppress (shRNA-lnc AL) lnc 

AL expression, their respective empty vector constructs (LV-control and shRNA-control), or 

with no vector (blank control). Cell culture supernatants were harvested to measure lnc AL 

and the expression of six cytokines (TNF-α, IL-1β, IL-12 p70, IL-10, IFN-γ, and IL-6). Cell 

apoptosis and cytotoxicity after 24 h infection were detected by flow cytometry and the 

lactate dehydrogenase (LDH) release analysis, respectively. Detailed methodology for these 

experiments is presented in Supplementary Methods, Section 5. 

Statistical analysis 

Categorical variables were analyzed by univariate analysis with a Chi-square test and 

continuous variables were analyzed using Mann-Whitney U tests or Student’s t-tests. All tests 

were 2-sided, and p-values < 0.05 were considered statistically significant. Modeling was 

constructed and validated by individuals who were blinded to diagnostic categorizations. R 

code and data for modeling are available from 

https://github.com/xuejiaohu123/TBdiagnosisModel. 
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RESULTS 

Characteristics of prospectively enrolled participants  

The demographic and clinical characteristics of participants in the Selection and Validation 

Cohorts are provided in Table 1. PTB patients were younger and had greater IGRA positivity 

rates than their non-TB DC (p-value < 0.0001 for both the Selection and Validation Cohorts), 

but these groups did not differ by gender, BMI, or smoking status. Healthy subjects were age-, 

gender-, and BMI-matched with PTB patients, who had significantly different blood test 

results compared with PTB patients (Table 1). 

    Clinically diagnosed PTB patients were responsible for 29.82% (238/798) of all active 

PTB patients (Supplemental Methods Section 1). This rate is markedly lower than a 

nationwide estimate of 68% based on primary public health institutions [1], but represents the 

clinically diagnosed PTB rate in a referral hospital with experienced specialists. 

LncRNAs microarray profiles and candidate selection 

In the Screening Step, microarray profiling identified a total of 325 lncRNAs that were 

differentially expressed (287 upregulated and 38 downregulated) in the clinically diagnosed 

PTB patients versus healthy subjects. Hierarchical clustering and a volcano plot revealed 

clearly distinguishable lncRNA expression profiles (Figure S2). Top five lncRNA candidates 

were chosen based on a set of combined criteria: fold-change > 2 between groups, p-value < 

0.05, signal intensity > 25 [27], and including unreported lncRNAs in TB literature [28]. 

Three of these five lncRNAs were upregulated (n335265, ENST00000518552 and 

TCONS_00013664) and two were downregulated (n333737 and ENST00000497872) in PTB 

versus control subjects (Table S3). 

Differentially expressed lncRNAs in clinically diagnosed PTB 
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The expression level of these five candidate lncRNAs was measured by qRT-PCR in the 

Selection Cohort, which consisted of 141 clinically diagnosed PTB, 159 non-TB DC, and 578 

healthy subjects. Two lncRNAs (ENST00000518552 and TCONS_00013664) were excluded 

from further analysis due to their low abundance expression (Cq > 35) in this cohort. Of the 

three remaining lncRNAs, ENST00000497872 and n333737 were downregulated and 

n335265 was upregulated in PTB patients versus healthy subjects (Table S4). Comparison 

between clinically diagnosed PTB cases and non-TB DC patients revealed a decreased 

expression of ENST00000497872 and n333737 in PTB patients (Figure S3A), age-adjusted p-

values both < 0.0001). 

    Short-term stability, an essential prerequisite of a potential lncRNA biomarker, was 

assessed in PBMC samples. This study found that incubation up to 24 h had minimal effect 

on the expression of ENST00000497872, n333737, and n335265 (Table S5), in accordance 

with a previous report of lncRNA stability in blood [29].  

Diagnostic modeling and nomogram visualization 

Three logistic regression models, "EHR+lncRNA", "EHR only", and "lncRNA only" were 

evaluated as part of the training step in the Selection Cohort (Supplemental Methods, Section 

4). The variance inflation factors between the features ranged from 1.02 to 1.29, indicating no 

collinearity within models. The "EHR+lncRNA" model yielded the highest AUC (0.92) for 

distinguishing clinically diagnosed PTB from suspected PTB patients, compared to AUCs of 

0.87 and 0.82 for the "EHR only" and "lncRNA only" models, respectively (Figure 2A). The 

"EHR+lncRNA" model also had the best performance in sensitivity, specificity, accuracy, 

positive predictive value, and negative predictive value (Table 2).  

The optimal "EHR+lncRNA" model was displayed as a nomogram (Figure 3A), and the 

top five features of the nomogram were ENST00000497872, age, n333737, CT calcification, 

and TB-IGRA results (Table S6). Seneitivity and specificity of the nomogram for prediction 
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of clinically diagnosed PTB was 0.89 (0.82-0.93) and 0.80 (0.73-0.85) at a cutoff of 0.37 

(Table 2). A calibration curve in the Selection Cohort (Figure 3B) indicated a good 

agreement between nomogram prediction and actual PTB cases and was confirmed by the 

nonsignificant Hosmer-Lemeshow test (p-value = 0.957). This nomogram was generated as a 

free online app (available at https://xuejiao.shinyapps.io/shiny/) to facilitate its access for 

other studies. This app allows the user to insert the values of specific predictors and provides 

the risk prediction as a whole number percentage. 

Validation for lncRNAs and the nomogram  

In the Validation Step, the three candidate lncRNAs were analyzed in an independent 

Validation Cohort contains 97 clinically diagnosed PTB cases, 140 non-TB DC and 245 

healthy subjects. This analysis observed an lncRNA expression pattern similar to that 

observed in the Selection Cohort (Table S4, Figure S3B). All three models were applied to 

the Validation Cohort, and as reported in Table 2 and Figure 2 it was found that the 

nomogram achieved superior discrimination (AUC: 0.89 [0.84-0.93]), good calibration 

(Figure 3B, and p-value = 0.668 for Hosmer-Lemeshow test) for clinically diagnosed PTB 

prediction. The sensitivity and specificity of the nomogram at the cutoff of 0.37 in the 

Validation Cohort was 0.86 (0.77-0.90) and 0.82 (0.75-0.87), respectively. DCA indicated 

that the nomogram outperformed the conventional "EHR only" model with a higher clinical 

net benefit within a threshold probability range from 0.2 to 1 (Figure 3C).  

LncRNA response to anti-TB treatment 

LncRNAs were next analyzed for the ability to predict anti-TB treatment response. Paired 

samples were collected from 22 clinically diagnosed PTB patients before and after 2-month 

intensive therapy [30], and the expressions of  ENST00000497872, n333737, and n335265 

were measured by qRT-PCR. All these patients had good response to therapy based on the 
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clinical and radiological findings, and ENST00000497872 and n333737 levels significantly 

increased post-treatment (p-values = 0.005 and 0.0005, respectively, Figure 4), suggesting 

that lncRNA expression increased in response to therapy.  

Functional studies of ENST00000497872 

We investigated whether ENST00000497872 (i.e., lnc AL) could affect the host immune 

response. At 24 h and 48 h post BCG-infection, lnc AL overexpression (Figure S4) led to 

decreased production of proinflammatory cytokines TNF-α and IL-1β and an increase in INF-

γ (Figure 5A). Conversely, knockdown of lnc AL resulted in a significant TNF-α and IL-1β 

increases and an INF-γ reduction. Lnc AL knockdown was also associated with an increasing 

trend of cell apoptosis (Figure 5B and 5C) and cell death (Figure 5D). These results implicate 

an inflammatory regulation of lnc AL during MTB-infection.  

 

DISCUSSION 

The present work focused on the challenge of accurately diagnosing PTB patients without 

microbiological evidence of MTB infection. Our study showed that three lncRNAs 

(ENST00000497872, n333737, and n335265) were potential biomarkers for clinically 

diagnosed PTB patients. Addition of three lncRNAs (ENST00000497872, n333737 and 

n335265) to a conventional EHR model improved its ability to identify PTB cases from TB 

suspects, with the AUCs increasing from 0.83 to 0.89. The lncRNA that was most 

significantly enriched in the PTB group of this study, ENST00000497872 (chr14:105703964-

105704602), is located close to IGHA1 (chr14: 105703995-105708665), and functional 

analyses indicated that expression of this lncRNA was involved in the regulation of 

inflammatory cytokine production and cell apoptosis in MTB-infected macrophages, 
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although further studies are needed to investigate the mechanisms responsible. Consistent 

with published lncRNA data [8–12, 31], this data provide new evidence that lncRNAs could 

participate in TB immunoregulation and serve as promising biomarkers for TB diagnosis.  

In addition to the three lncRNAs, we identified six EHR predictors (age, CT calcification, 

positive TB-IGRA, low-grade fever, elevated hemoglobin, and weight loss) that were 

essential in TB case finding, as proposed by prior findings [15, 16]. Age was an important 

negative predictor for clinically diagnosed PTB, which appears to conflict with the consensus 

that advanced age correlates with higher TB susceptibility [32]. This may be explained by 

differences in the enrollment of the PTB patients and control subjects. Previous studies 

included healthy and/or vulnerable subjects as controls, while we enrolled inpatients with a 

wide range of pulmonary diseases and older ages as disease controls.  

This study serves as a first proof-of-concept study to show that integrating lncRNA 

signatures and EHR data could be a more promising diagnostic approach for PTB patients 

with negative MTB pathogenic evidence. The "EHR+lncRNA" model had good 

discrimination (through AUC and diagnostic parameters), reliable calibration (via calibration 

curve and Hosmer-Lemeshow test), and potential clinical utility for decision-making (using 

DCA). The "EHR+lncRNA" model avoided some common problems associated with 

sputum-based features, such as poor sputum quality or problematic sampling [33], to improve 

its reliability and clinical utility. Nomogram has been shown to remarkably promote early 

diagnosis of intestinal tuberculosis [24] and prognosis prediction in PTB [34] and TBM [35].  

"EHR+lncRNA" model herein was visualized as a nomogram and further implemented in an 

app. The online nomogram uses readily obtainable predictors and automatically outputs a 

personalized quantitative risk estimate for PTB. Utilizing this user-friendly tool may facilitate 

the rapid identification of PTB cases among suspected TB patients without MTB 
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microbiologic evidence to improve TB diagnosis, especially in resource-constrained areas 

with high TB prevalence.  

Our study has several limitations. Modeling in this study was conducted based on data 

from a single large hospital, and multi-center validation studies are needed. Further, because 

Xpert MTB/RIF is still not routinely available in most clinical laboratories of China, and 

since previous Xpert studies reported moderate sensitivities ranged from 28% to 73% [36–38] 

in smear-negative PTB patients, we did not consider Xpert in our research, which may limit 

the generalization of our findings.  

In summary, a novel nomogram we developed and validated in this study that incorporated 

three lncRNAs and six EHR fields may be a useful predictive tool in identifying PTB patients 

with negative MTB pathogenic evidence, and merits further investigation. 
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TABLES 

Table 1. Demographic and clinical features of participants in the Selection and Validation Cohorts. 

Clinical features 
Suspected clinically diagnosed PTB patients Selection HS Selection 

(n=578) 
p2  

Suspected clinically diagnosed PTB patients Validation  
HS Validation (n=245) p4 Clinically diagnosed 

PTB (n=141) 
Non-TB DC 
(n=159)  

p1  Clinically diagnosed 
PTB (n=97) 

Non-TB DC 
(n=140)  

p3  

Gender, male  84 (59.57%) 95 (59.75%) 0.976 284 (49.13%) 0.026 58 (59.79%) 87 (62.14%) 0.715 126 (51.43%) 0.162 

Age (years) 37.81 ± 17.93 56.68 ± 14.52 < 0.0001 40.59 ± 13.11 0.084 38.29 ± 17.57 57.96 ± 16.66 < 0.0001 36.82 ± 9.28 0.436 

BMI (kg/m2) 20.81 ± 2.99 20.43 ± 4.03 0.359 20.65 ± 3.19 0.57 21.59 ± 3.43 21.29  ± 3.62 0.52 21.51 ± 3.52 0.843 

Smoking 61 (43.26%) 72 (45.28%) 0.725 161 (27.85%) < 0.0001 41 (42.27%) 66 (47.14%) 0.458 84 (34.29%) 0.167 

Radiologic pathology 116(82.26%) 140 (88.05%) 0.158  - 
 

86 (88.66%) 130 (92.86%) 0.264  - 
 

Laboratory tests   
         

Positive TB-IGRA  97 (68.88%) 56 (35.22%) < 0.0001  - 
 

64 (66.00%) 42 (30.00%) < 0.0001  - 
 

C-reactive protein (mg/L) 16.30 (5.32-54.05) 17.80 (6.47-60.20) 0.427  - 
 

13.60 (3.34-43.55) 18.60 (6.56-70.63) 0.037  - 
 

Hematocrit 0.37 ± 0.06 0.36 ± 0.07 0.162 0.44 ± 0.04 < 0.0001 0.38 ± 0.07 0.35 ± 0.07 0.002 0.43 ± 0.04 < 0.0001 

Erythrocytes (×1012/L)  4.33 ± 0.72 4.03 ± 0.81 0.001 4.78 ± 0.46 < 0.0001 4.46 ± 0.80 3.89 ± 0.91 < 0.0001 4.80 ± 0.46 < 0.0001 

Hemoglobin (g/L) 122.57 ± 23.22 115.82 ± 25.20 0.017 144.46 ± 13.88 < 0.0001 125.08 ± 24.25 113.11 ± 25.52 < 0.0001 145.82 ± 13.73 < 0.0001 

Platelets (×109/L) 238.00 (177.00-
305.00) 

233.00 (149.00-
299.00) 

0.171 193.00 (158.00-
223.00) 

< 0.0001 220.00 (160.50-
313.00) 

199.50 (137.00-
290.75) 

0.059 190.00 (165.00-
230.00) 

0.001 

Leukocytes (×109/L) 6.03 (4.76-8.25) 6.36 (4.71-9.07) 0.488 5.92 (5.18-6.67) 0.184 6.96 (5.06-9.14) 5.93 (4.34-8.33) 0.009 5.70 (4.91-6.55) 0.217 

Lymphocytes (×109/L) 1.15 (0.80-1.52) 1.28 (0.87-1.87) 0.056 1.86 (1.55-2.19) < 0.0001 1.29 (0.91-1.80) 1.22 (0.86-1.62) 0.343 1.85 (1.57-2.55) < 0.0001 

Neutrophils (×109/L) 4.02 (3.23-5.93) 4.08 (2.71-6.32) 0.956 3.47 (2.87-4.09) < 0.0001 4.03 (2.51-5.69) 4.85 (3.21-6.70) 0.023 3.36 (2.75-3.92) 0.006 

Monocytes (×109/L) 0.47 (0.35-0.65) 0.42 (0.26-0.61) 0.015 0.36 (0.29-0.44) < 0.0001 0.43 (0.30-0.64) 0.46 (0.34-0.71) 0.211 0.31 (0.25-0.39) < 0.0001 

Alb (g/L) 36.66 ± 6.78 36.60 ± 6.66 0.973 48.24 ± 2.67 < 0.0001 37.33 ± 7.47 36.69 ± 7.22 0.509 47.06 ± 2.25 < 0.0001 

Globin (g/L) 31.69 ± 7.66 30.68 ± 8.10  0.269 28.92 ± 3.29 0.041 30.41 ± 7.89 29.73 ± 7.91 0.514 27.41 ± 3.19 < 0.0001 
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Subscripted "Selection" or "Validation" refers to the Selection or Validation Cohort, respectively. Radiologic pathology refers to abnormal chest imaging, including at least one of the signs: polymorphic abnormality, 

calcification, cavity, bronchus sign, and pleural effusion. Abbreviations: non-TB DC, non-tuberculosis disease control patients; HS, healthy subjects. p1, p-value for the comparison of clinically diagnosed PTB patients 

and non-TB DCs in the Selection Cohort; p2, p-value for the comparison of clinically diagnosed PTB patients and healthy subjects in the Selection Cohort; p3, p-value for the comparison of clinically diagnosed PTB 

patients and non-TB DCs in the Validation Cohort; p4, p-value for the comparison of clinically diagnosed PTB patients and healthy subjects in the Validation Cohort.
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Table 2. Performances of the comparative diagnostic models. 

Model performance 
Selection Cohort  

  
Validation Cohort 

EHR+lncRNA 
EHR only lncRNA only  EHR+lncRNA 

EHR only lncRNA only 
 

(Nomogram) (Nomogram)  

Sensitivity 0.89 (0.82-0.93) 0.89 (0.83-0.93) 0.85 (0.76-0.88) 
 

0.86 (0.77-0.90) 0.89 (0.82-0.94) 0.85 (0.76-0.90) 
 

Specificity  0.80 (0.73-0.85) 0.62(0.54-0.68) 0.55 (0.46-0.61) 
 

0.82 (0.75-0.87) 0.65 (0.56-0.72) 0.54 (0.47-0.62) 
 

Accuracy 0.84 (0.80-0.88) 0.75 (0.69-0.79) 0.69 (0.63-0.74) 
 

0.84 (0.78-0.88) 0.75 (0.69-0.81) 0.67 (0.60-0.73) 
 

Positive predictive value 0.80 (0.73-0.85) 0.67  (0.60-0.74) 0.62 (0.55-0.69) 
 

0.77 (0.68-0.83) 0.64 (0.56-0.72) 0.56 (0.48-0.63) 
 

Negative predictive value 0.89 (0.83-0.93) 0.87 (0.79-0.91) 0.80 (0.72-0.86) 
  

0.89 (083-0.93) 0.90 (0.83-0.94) 0.83 (0.75-0.89)  

Note: The cutoff probability in the Selection Cohort was 0.37 for "EHR+lncRNA" model, 0.26 for "EHR only" model, and 0.32 for "lncRNA" model, respectively. Features in each model are 

provided in Supplemental Methods, Section 4.4. The "EHR+lncRNA" formula that was developed to classify patients as PTB cases or non-TB disease controls was: -3.32 - 0.053×[age] - 

0.94×log(ENST00000497872) - 0.39×log(n333737) + 1.51×[CT calcification] + 1.16×[TB-IGRA] + 1.09×[low-grade fever] + 0.014×[hemoglobin] + 0.23×log(n335265) + 0.43×[weight loss]. 
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FIGURES CAPTIONS 

Figure 1. Overview of the strategy for investigating lncRNA and prediction model for clinically diagnosed PTB differential diagnosis.  

Abbreviations: PTB, pulmonary tuberculosis; PBMC, peripheral blood mononuclear cell; non-TB DC, non-tuberculosis disease control; DE, differentially expressed; 

EHR, electronic health record; DCA, decision curve analysis. LDH, lactate dehydrogenase. 

Figure 2. Receiver operator curves of different models in the Selection and Validation Cohort. 

(A), ROC of the Selction Cohort. The 10-fold cross-validation ROC of "EHR+lncRNA" model is provided in the Figure S5. P-values for model AUC comparisons in 

the Selection Cohort: 0.00012 ("EHR+lncRNA" vs "EHR only"), 1.402×10-7 ("EHR+lncRNA" vs "lncRNA only"), and 0.103 ("EHR only" vs "lncRNA only"), 

respectively. P-values < 0.016 (0.05/3) were considered statistically significant. 

 (B), ROC of the Validation Cohort. P-values for model AUC comparisons in the Validation Cohort: 0.004 ("EHR+lncRNA" vs "EHR only"), 0.0003 

("EHR+lncRNA" vs "lncRNA only"), and 0.361 ("EHR only" vs "lncRNA only"), respectively.  

Figure 3. Nomogram for the prediction of clinically diagnosed PTB based on the optimal models.  

(A), Nomogram to predict the risk of clinically diagnosed PTB patients, in which points were assigned based on the feature rank order of the effect estimates. A 

vertical line is drawn between the "Point" axis and the corresponding point for each feature to generate a total point score and PTB probability. 

(B), Calibration plot in the Selection Cohort (left in B) and Validation Cohort (right in B), with lines indicating the ideal (dashed), apparent (dotted) and bias-

corrected (unbroken) predictions of the nomogram.  

(C), Decision curve analysis for the nomogram and "EHR only" model with lines indicating the nomogram (blue), "EHR only" model (red dash), and 

assumptions that no patients or all patients have PTB (black and grey, respectively). 
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Figure 4. Alteration of lncRNAs before and after 2-month intensive therapy.  

LncRNA expressions before (blue) and after (red) a 2-month intensive anti-TB treatment regimen. Altered lncRNA expressions were calculated using log2 lncRNA 

(post-treatment expression / pre-treatment expression) and the Wilcoxon matched-paired rank test was used for comparisons among 22 paired samples. 

The median and interquartile range of log2 lncRNA were as follows: ENST00000497872 (before: -1.91 [-2.74, -1.11]; after: -1.55 [-2.61, -0.79]),  n333737: (before: -

3.88 [-4.81, -3.33] ; after: -2.30 [-2.99, -0.50]), n335265 (before: 2.12 [1.05, 2.34]; after: 1.29 [0.85, 1.69]), respectively.  

Figure 5. Regulation of lncRNA on inflammatory cytokine, cell apoptosis and cytotoxicity in BCG-infected THP-1 cells.  

(A), Cytokine expression. (B), Flow cytometry analysis of cell apoptosis. (C), Graph of apoptosis data. (D), LDH release analysis of cell cytotoxicity for BCG-

infected THP-1 cells. LV-control and shRNA-control mean values considered negative control values, and the blank control is not shown. Three cytokines (IL-12 p70, 

IL-10 and IL-6) did not significantly differ and are not shown. Difference between groups were analyzed by one-way ANOVA and Bonferroni’s post-test comparison 

among groups (*p-value < 0.05, **p-value < 0.01, and ***p-value < 0.001).  

 

SUPPLEMENRARY FIGURE CAPTIONS 

Figure S1. RNA electrophoresis, amplification curve of qRT-PCR and standard curve of control cDNA 

Figure S2. Hierarchical clustering and volcano plot for differentially expressed lncRNA profiles in the Screening Cohort 

Figure S3. LncRNA expression between clinically diagnosed PTB patients and non-TB disease controls in the Selection and Validation Cohorts 

Figure S4. qPCR analysis of ENST00000497872 expression in BCG-infected THP-1 cells 

Figure S5. Ten-fold cross-validation ROC of "EHR+lncRNA" model developed using the data from the Selection Cohort 
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SUPPLEMENRARY TABLE CAPTIONS  

Table S1. Disease controls in the present study 

Table S2. Specific qRT-PCR primers for lncRNAs 

Table S3. Expression of five candidate lncRNAs in the Screening Cohort  

Table S4. Comparison of lncRNA expression between clinically diagnosed PTB patients and healthy subjects in the Selection and Validation 
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