ABSTRACT
The Delta (B.1.617.2) variant has caused major devastation in India and other countries around the world. First detected in October 2020, it has now spread to more than 100 countries, prompting WHO to declare it as a global variant of concern (VOC). The Delta (B.1.617.2), Delta plus (B.1.617.2.1) and Kappa (B.1.617.1) variants are all sub-lineages of the original B.1.617 variant. Prior to the inception of B.1.617, vaccine rollout, safe-distancing and timely lockdowns greatly reduced COVID-19 hospitalizations and deaths. However, the Delta variant, allegedly more infectious and for which existing vaccines seemed less effective, has catalyzed the resurgence of cases. Therefore, there is an imperative need for increased surveillance of the B.1.617 variants. While the Beta variant is increasingly outpaced by the Delta variant, the spread of the Beta variant remains of concern due to its vaccine resistance. Efforts have been made to utilize wastewater-based surveillance for community-based tracking of SARS-CoV-2 variants, however wastewater with its low SARS-CoV-2 viral titers and mixtures of viral variants, requires assays to be variant-specific yet accurately quantitative for meaningful interpretation. Following on the design principles of our previous assays for the Alpha variant, here we report allele-specific and multiplex-compatible RT-qPCR assays targeting mutations T19R, D80A, K417N, T478K and E484Q, for quantitative detection and discrimination of the Delta, Delta plus, Kappa and Beta variants in wastewater. This method is open-sourced and can be implemented using commercially available RT-qPCR protocols, and would be an important tool for tracking the spread of B.1.617 and the Beta variants in communities.
Competing Interest Statement
EJA is an advisor to Biobot Analytics and holds shares in the company.
Funding Statement
This research is supported by the National Research Foundation, Prime Minister's Office, Singapore, under its Campus for Research Excellence and Technological Enterprise (CREATE) program funding to the Singapore-MIT Alliance for Research and Technology (SMART) Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG) and the Intra-CREATE Thematic Grant (Cities) grant NRF2019-THE001-0003a to JT and EJA and funding from the Singapore Ministry of Education and National Research Foundation through an RCE award to Singapore Centre for Environmental Life Sciences Engineering (SCELSE) to JT.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
No IRBs are required for wastewater work.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Source data will be made available upon request.