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Abstract 16 

Background: Environmental enteric dysfunction (EED) is a syndrome characterized by epithelial 17 

damage including blunting of the small intestinal villi and altered digestive and absorptive capacity 18 

which may negatively impact linear growth in children. The 13C-sucrose breath test (13C-SBT) has 19 

been proposed to estimate sucrase-isomaltase (SIM) activity, which is thought to be reduced in EED.  20 

We previously showed how various summary measures of the 13C-SBT breath curve reflect SIM 21 

inhibition. However, it is uncertain how the performance of these classifiers is affected by test 22 

duration. 23 

Methods: We leveraged SBT data from a cross-over study in 16 adults who received 0, 100, and 750 24 

mg of Reducose, a natural SIM inhibitor. We evaluated the performance of a pharmacokinetic-model-25 

based classifier, ρ, and three empirical classifiers (cumulative percent dose recovered at 90 minutes 26 

(cPDR90), time to 50% dose recovered, and time to peak dose recovery rate), as a function of test 27 

duration using receiver operating characteristic curves. We also assessed the sensitivity, specificity, 28 

and accuracy of consensus classifiers. 29 

Results: Test durations of less than 2 hours generally failed to accurately predict later breath curve 30 

dynamics. The cPDR90 classifier had the highest area-under-the-curve and, by design, was robust to 31 

shorter test durations. For detecting mild SIM inhibition, ρ had a higher sensitivity. 32 

Conclusions: We recommend SBT tests run for at least a 2-hour duration. Although cPDR90 was the 33 

classifier with highest accuracy and robustness to test duration in this application, concerns remain 34 

about its sensitivity to misspecification of CO2 production rate. More research is needed to assess 35 

these classifiers in target populations.   36 

Keywords: environmental enteric dysfunction, 13C-sucrose breath test, sucrase-isomaltase inhibition, 37 

mechanistic model, classifier 38 
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Introduction 40 

Environmental enteric dysfunction (EED) is characterized by atrophy of the small intestinal villi, 41 

resulting in increased intestinal permeability and nutrient malabsorption. It is thought to be highly 42 

prevalent among people in low- and middle-income countries who lack access to improved water, 43 

sanitation, and hygiene [1] and are therefore highly exposed to enteric pathogens [2,3]. EED is 44 

thought to play a central role in impaired linear growth (stunting) in infants and young children,[4] 45 

which impacts about 150 million children globally.   46 

EED may be detected through the identification of histological features in small intestinal biopsies 47 

[5]. However, biopsies are invasive, require specialist skills and settings and are ethically questionable 48 

in sub-clinical EED, limiting the ability to accurately, efficiently, and inexpensively identify EED, 49 

especially in low-resource settings [6]. The most widely accepted non-invasive test, the 50 

lactulose:mannitol/rhamnose dual sugar urine absorption test, is time-consuming to administer and 51 

results may be inconsistent across laboratory platforms [7]. The 13C sucrose breath test (13C-SBT) has 52 

been proposed as an alternative [8]. The 13C-SBT is a stable-isotope breath test in which an individual 53 

ingests a dose of non-radioactive, 13C-labeled sucrose substrate, which is digested, absorbed, and 54 

metabolized, appearing on the breath as 13CO2. The 13C-SBT is intended to assess the activity of 55 

intestinal enzyme sucrase-isomaltase (SIM), a glucosidase enzyme that catalyzes the hydrolysis of 56 

carbohydrates [9]. Expression of SIM increases towards the tips of intestinal villi and therefore its 57 

activity is thought to be diminished in a damaged intestine [10-12]. Slower recovery of the tracer 58 

breath 13CO2 therefore indicates reduced gut enzyme metabolic function.        59 

Although the 13C-SBT is attractive as a potential, non-invasive test of EED, it also has some 60 

limitations, which are common across 13C breath tests. Traditional measures used to interpret breath 61 

tests consist of empirically fitting a parametric curve to the percent dose recovery rate (PDRr) of 62 

13CO2  on the breath, and calculating summary statistics, such as the cumulative percent dose 63 

recovered at 90 minutes (cPDR90), the time to peak PDRr (�����), or the time to 50 percent dose 64 

recovered (���)  [13, 14]. However, these empirical measurements do not necessarily capture the 65 

underlying biological processes giving rise to the PDRr curve, and thus may be confounded by 66 

multiple aspects of the metabolism, some of which are unrelated to gut function. To address this 67 

concern we developed a mechanistic, pharmacokinetic model whose parameters represent the 68 

underlying biological processes occurring in the metabolism of the 13C-labeled sucrose tracer [15]. A 69 

model-based diagnostic ρ performed comparably to the highest-performing summary statistics in 70 

identifying experimentally induced sucrase-isomaltase inhibition in healthy adults [16].  71 

In this analysis, we revisit these experiments to assess how the performance of the four highest 72 

performing classifiers, namely ρ, cPDR90, ����� and ���, depend on the test duration. While 73 

experiments establishing and evaluating the SBT have used test durations of 4-8 hours [8, 15], there is 74 



a strong need to reduce the testing burden on participants, particularly for the target population of 75 

infants and children under 5 years. Additionally, because cPDR90, �����, ���, and ρ capture different 76 

information about the breath curve, we will determine if consensus classifiers combining two or more 77 

classifiers can produce a more reliable diagnosis. In this research, we address these research gaps by 78 

assessing the accuracy of SBT curve projections based on shorter test duration, the performance of 79 

these three classifiers across test durations, and performance of consensus classifiers.  80 

Methods  81 

Data  82 

The 13C-SBT breath curves used in this study were obtained in a crossover study conducted in  83 

Glasgow, United Kingdom, as previously described [16]. In brief, eighteen healthy adults were 84 

recruited to complete three breath test experiments under different experimental conditions designed 85 

to simulate different degrees of SIM inhibition.  In this analysis, we only use data from the 16 86 

participants who completed all three breath tests. The participants consisted of 8 female and 8 male 87 

participants with a mean age of 24.2 (SD= 5.0) and mean BMI of 24.5 (SD = 5.2). Participants 88 

were instructed to follow a low 13C diet for the three days preceding the experiments and to fast 89 

for eight hours prior to the test. In the first experiment, participants ingested 25 mg (0.84 mmol 90 

13C) of highly enriched sucrose (≥99 atom% enriched; Sigma-Aldrich) to complete a baseline test. 91 

Breath samples were collected every 15 minutes for 4 hours into 12mL Exetainer breath-sample vials 92 

(Labco, United Kingdom). The relative difference in parts per thousand between the ratio 93 

�� �[13C]/[12C] in the sample and the ratio (Rstd) of the laboratory CO2 standard (calibrated to the 94 

international calibration standard, VPDB, � �0.0112372) were determined by isotope ratio mass 95 

spectrometry (IRMS, AP-2003, Manchester, United Kingdom). Details on how this was converted to 96 

percent dose recovery rate are described in previous publications [15]. In the remaining experiments, 97 

participants were given in a random order either 100 and 750 mg of Reducose® (Phynova Group Ltd., 98 

Oxford, UK), a mulberry leaf extract (MLE) containing 5% 1-Deoxynojirimycin (an active α-99 

glucosidase inhibitor) immediately prior to ingesting the 25 mg sucrose. Mulberry leaf extract has 100 

been shown to function as an intestinal SIM inhibitor, thus it is expected to induce similar 13CO2 101 

excretion patterns to those that would be observed in patients with EED. The low dose of 100 mg 102 

Reducose was given to induce mild SIM inhibition, and the high dose of 750 mg was given to induce 103 

severe inhibition. Investigators received written informed consent from all participants and the study 104 

design was approved by the University of Glasgow College of Medical Veterinary and Life Sciences 105 

Research Ethics Committee (Application Number: 200190155). 106 

Mechanistic Model 107 

In previous work [15], we developed a mechanistic, compartmental differential equation model that 108 



captured 13C-SBT breath curve dynamics and was practically identifiable, i.e., had parameters that 109 

could be uniquely estimated from data. In this model, the breath curve dynamics can be approximated 110 

as a combination of a gamma-distributed process with pharmacokinetic rate parameter ρ/2 and shape 111 

parameter 2 and an exponentially distributed process with rate parameter πρ. Because of the 112 

limitations of only observing the breath, the specific metabolic processes that these model processes 113 

represent are unknown a priori. In previous work [16], we demonstrated that both sucrase-isomaltase 114 

inhibition and the difference between fructose and glucose in the transport to and metabolism by the 115 

liver were reflected in the gamma-distributed process. In the model, we also account for the fraction 116 

of 13C that is exhaled, κ, as opposed to being secreted in urine or sequestered in adipose tissue.  117 

When � � 1, there is a closed-form solution for PDRr, 118 

���	 � 100���
�1 
 �	� ������ � ��� 
 1	�� 
 1������, �1	 

and the cPDR is given by  119 

���	 �  100� �1 
 �����  � ��� 
 1	�� � � 
 2������  
�1 
 �	� � . #�2	  

 120 

The classifiers we consider in this analysis are all obtained directly from the above equations: 121 

cPDR90 = Y(90), ����� � argmax
�

���	, �����	 �  � | ���� � �	
�

2
", where � is the test length, and � 122 

is the model-based classifier based on previous work [16].   Note that the definition of  ��� used here, 123 

50% of the cumulative percent dose recovered at test length �, is different from previous work, [15] 124 

which defined it as time to recovery of 50% of the dose given. We use our definition here because 125 

most test participants do not recover 50% of the full dose over the testing period, especially in the 126 

case of mild-to-severe SIM inhibition.127 

128 

Parameter estimation 129 

We estimated the parameter set # �  �, ��, �" corresponding to the best fit model by minimizing the 130 

negative log-likelihood (NLL), given by 131 

$%%�#	 � &
2 log(2�')+ &

2 log�(�	 � 1
2(�

)���#; �
	 
 +
	�



, #�3	  

where ��#;  �
	 is the value of the modeled PDR at time �
 , & is the number of data points, �' is the 132 

mathematical circle constant, ( is the standard deviation previously estimated to be 0.555 from best-133 

fit curves [15], and �
  is the time at which measurement +
  was taken. In the case where the peak 134 

PDRr is not observed during the testing period, which was common among the 750 mg Reducose 135 

samples, �� and � are not identifiable. In this case, we added a penalty of size 0.1� onto the NLL to 136 

force the optimizer to select lower values of �. This forces the optimizer to choose larger values of �� 137 
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that generate more realistic PDRr curves that do not extend over unrealistically long periods of time. 138 

Analytic Approach  139 

The three objectives of this analysis were to 1) compare the accuracy of model projections as a 140 

function of test duration, 2) compare the performance of cPDR, �����, ���, and ρ, as a function of test 141 

duration, and 3) assess the performance of consensus classifiers that combine two or more of the 142 

single classifiers. In this analysis, we examined test durations of 60, 90, 120, and 240 minutes. The 143 

following analysis plan outlines our approach: 144 

1.) Comparing model fits for 60-, 90-, 120-, and 240-minute duration tests. For each participant j, we 145 

estimated ����,� , ����,� , �����,�, and ���	�,�, corresponding to the nine parameters that minimized the 146 

NLL for the baseline, 100 mg Reducose, and 750 mg Reducose breath curves, assuming that we 147 

only had the data from the first 60, 90, 120, and full 240 minutes, respectively. Then, to compare 148 

the model fits for the 60-, 90-, and 120-minute tests to the full dataset, we simulated the model for 149 

240 minutes using each parameter set and calculated the NLL from each simulation against the 150 

full 240-minute data. 151 

2.) Comparing receiver operator characteristic (ROC) curves for ρ, cPDR, ��� and �����  for 60-, 90-152 

, 120-, and 240-minute duration tests. We first noted that breath test curves that are initially 153 

slower (have a lower PDRr) also sustain a higher PDRr longer than the faster curves, allowing 154 

them to “catch up” to cumulative dose recovered of faster curves over time, which have a higher 155 

maximum PDRr, but a sharper curve around the peak. Therefore, the value of cPDR at a later time 156 

may be a less effective classifier than the value at an earlier time, and the cPDR with the highest 157 

dialogistic capability should be near the median �����. Thus, we first determined which cPDR 158 

classifier (cPDR60, cPDR90, cPDR120, or cPDR240) resulted in the most accurate classification 159 

using ���	�,�. As discussed in the results, we selected cPDR90. Then, we simulated the model for 160 

each parameter set ���,� , ���,�, ����,�, and ��	�,�, and estimated ρ, cPDR90, ��� and ����� in each 161 

case. We generated receiver operator characteristic (ROC) curves (which plot the true positive 162 

rate against the false positive rate as the classification threshold is varied) for all 12 combinations 163 

of test duration and classifier, for each of 4 groupings of the MLE experiments, corresponding to 164 

different clinical scenarios: 165 

1. Detection of any SIM inhibition (baseline versus either 100 or 750 mg MLE), 166 

2. Distinguishing between severe SIM inhibition vs none-to-mild (baseline or 100 mg MLE 167 

versus 750 mg MLE),  168 

3. Detection of mild SIM inhibition (i.e., baseline versus 100 mg MLE),  169 

4. Detection of severe SIM inhibition (baseline versus 750 mg MLE).  170 

The goal of the first two diagnostic groupings is to offer a single metric that captures the test’s 171 
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ability to generate a binary diagnosis of SIM inhibition when the classifier takes any level of 172 

inhibition as an input, as would be the case in real-world applications. The last two classifiers 173 

assess the classifiers’ ability to identify differences in each of the three groups. For each ROC 174 

curve, we calculated the area under the curve (AUC) statistic, which represents the probability 175 

that a randomly selected positive sample is ranked as more likely to have SIM inhibition than a 176 

randomly selected negative sample [17].  177 

3.) Assessment of single and consensus classifiers. We assessed the accuracy, sensitivity, specificity, 178 

and Matthew’s correlation coefficient (MCC) of each classifier at their optimal thresholds (the 179 

cutoff threshold that maximizes the sum of the sensitivity and specificity of the test [18]). The 180 

MCC is an alternative accuracy measurement that is preferred for unbalanced datasets and has a 181 

range of [-1,1] where 1 means perfect classification, 0 corresponds to a coin toss classifier, and -1 182 

is perfect misclassification [19]. We further examined the accuracy, sensitivity, specificity, and 183 

Matthew’s correlation coefficient (MCC) of consensus classifiers consisting of each combination 184 

of the individual metrics �, cPDR90, ���, and ����� at their optimal thresholds. To generate these 185 

statistics for each participant in each experiment, we generated consensus diagnoses for each 186 

participant based on each combination of the individual classifiers. For example, assuming that a 187 

positive diagnosis of SIM inhibition is defined by both � and cPDR90 (� ∩ cPDR90) indicating 188 

inhibition or assuming that a positive diagnosis is defined by either � and cPDR90 (� � cPDR90) 189 

indicating inhibition. We assessed this for each possible combination of three classifiers at a time. 190 

For example, for ρ, cPDR90, and ���that is: ρ only, cPDR90 only, ��� only, ρ ∩ cPDR90, ρ ∩ ���, 191 

cPDR90 ∩ ���, ρ ∩ cPDR90 ∩ ���, ρ � cPDR90, ρ � ���, cPDR90 � ���, and a majority rules 192 

classifier. For the majority rules classifier, a positive diagnosis was generated if at least two of the 193 

individual classifiers are positive. To compare consensus classifier performances for each of the 194 

three MLE doses, we generated this result for each of the same four comparison groups outlined 195 

in step 2. We repeated this for the 60-, 90-, and 120-minute test lengths to assess classifier 196 

robustness to decreased data.197 

198 

Results 199 

Comparing model fits for 60-, 90-, 120-, and 240-minute tests. Projections from fitting the model only 200 

to the first 60 minutes of the data were consistently poor fits for the later data (illustrative examples 201 

given in Fig. 1a, with full results in Fig S1 in the SI appendix). For the 60-min test duration, random 202 

variations present in each data point had a higher influence on the model fit than it did with longer test 203 

periods, causing model trajectories in hours 1–4 to be heavily impacted by these fluctuations. 204 

Additionally, the inability to observe the peak PDRr in the first hour—particularly for the 750 mg 205 

group—meant that πρ and κ were unidentifiable at this test duration, severely limiting the model’s 206 
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inferential ability for later hours. While the 90-minute test duration generally improved the fit 207 

somewhat, the improvement was not consistent across participants, and many curves fit to 90 minutes 208 

were poorly predictive of later dynamics. When comparing the NLLs between the models fit to data 209 

from each test length (Figure 1b), we found substantial heterogeneity in the impact of test length on 210 

model fit, depending on the participant. The fits at shorter tests lengths were typically better in 211 

participants for whom the peak PDRr was reached within the respective test length (see Fig S1 in the 212 

SI appendix). In general, the projections from curve fit to the data from the first 120 minutes are very 213 

similar to the curves fit to the full data, with some outliers. In the following sections, we assessed how 214 

the improvement in model fit is reflected in the diagnostic capability of the test. 215 

 216 

Figure 1: a) Model best fits for 60-, 90-, 120-, and 240-minute test durations for two study 217 

participants b) Boxplot of negative log-likelihoods (NLLs), a measure of how well the model fits the 218 

data, for each test duration, with larger values indicating poorer fit. Plots for all participants are given 219 

in Fig S1 in the SI appendix.220 

 221 

We also plot the value of each classifier for each participant and test duration across the three MLE 222 

doses to visualize each classifier’s sensitivity to MLE dosage (Fig. 2). The plots for cPDR90 (Fig. 2a) 223 

show that this classifier has the strongest distinction between the lowest two doses (i.e., baseline or 224 

100 mg MLE) and the 750 mg dose; however, the distinction between the baseline and 100 mg MLE 225 

dose is minor. By contrast, the figure for ρ (Fig. 2b) shows a better separation between the value of ρ 226 

and MLE dose, indicating that this classifier may be more sensitive to detecting lower MLE doses, 227 

which represent mild SIM inhibition.  228 

 229 

Figure 2: Classifier values for 60-, 90-, 120-, and 240-minute 13C-sucrose breath test durations for 230 

baseline, 100, and 750 mg doses of Reducose®, a mulberry leaf extract (MLE) that acts as a sucrase-231 

isomaltase inhibitor for (a) cPDR90, (b) �, (c) �
��
, and (d) ���. 232 

 233 

Comparing ROC curves for ρ, cPDR, time to 50% dose recovered (���), and time to peak (�����) for 234 

60-, 90-, 120-, and 240-minute duration tests. We found that cPDR90 and cPDR60 outperformed 235 

cPDR120, and cPDR240 in ROC curves (Fig. S3). Prior literature has used cPDR90, so, for 236 

consistency, we selected cPDR90 as the cPDR classifier to compare to ρ, ��� and �����. Our ROC 237 

curves for baseline versus either 100 or 750 mg MLE (Fig 3, blue) and baseline or 100 mg MLE 238 

versus 750 mg MLE (Fig 3, yellow) showed that cPDR90 had the highest AUC for each test length 239 

and comparison group. The cPDR90 classifier also maintained the same AUC (0.99) for each test 240 

length for 0 or 100 mg v. 750 mg and only saw a slight decrease in the AUC for the other comparison 241 
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group (0.79 at 240 minutes versus 0.77 at 60 minutes). The ROC curves corresponding to baseline 242 

versus 100 mg (Fig S2) show that ρ outperforms cPDR90 for distinguishing mild SIM inhibition from 243 

none (AUC ranges: 0.61-0.66 for ρ and 0.55-0.60 for cPDR90). However, because ρ was not as 244 

accurate at distinguishing severe inhibition from no inhibition in these data (AUC range: 0.58-0.93), 245 

its AUC is always below the AUCs corresponding to cPDR90 in Fig 3. Additional ROC curves 246 

assuming the data is available at 15 min for hours 0-1, every 30 min for hours 1-4 is available in the 247 

SI appendix as an additional sensitivity analysis (Fig. S4). 248 

Assessment of consensus classifiers. Table 1 shows the results of the consensus classifiers including 249 

cPDR90, ρ, and ���, which were the three highest performing classifiers according to Fig. 2. The 250 

consensus classifiers including �����  are available in the Supplementary Material, (Tables S1 through 251 

S4). Consistent with the results from the ROC curves, the performance statistics of the consensus 252 

classifiers (Table 1) show that cPDR90 alone has the highest accuracy and MCC for each of the four 253 

Reducose dose comparison groupings. However, for sensitivity, cPDR90 is outperformed by ρ and ��� 254 

for the baseline versus 100 mg group, and by ρ � cPDR90 for 0 versus 750 mg and 0/100 versus 750 255 

mg. For the shorter test durations, cPDR90 continues to be the best classifier for all comparison 256 

groups for the 120-minute test length (Table S1). However, ρ and ��� surpass cPDR90 by the 90- and 257 

60-minutes lengths for the baseline versus 100 mg and 0 v 100/750 mg comparison groups (Tables S1 258 

and S2). The consensus classifiers also perform better than the individual classifiers at these shorter 259 

test durations. For example, at the 60-minute test duration, cPDR ∩ ����� and ρ ∩ cPDR ∩ ����� 260 

had the highest accuracy and MCC for the baseline versus 100 mg group (Table S1).261 

Figure 3: ROC curves for 60-, 90-, 120-, and 240-minute 13C-sucrose breath test durations for 262 

baseline versus either 100 or 750 mg doses of Reducose®, a mulberry leaf extract (MLE) that acts as 263 

a sucrase-isomaltase inhibitor (blue), and baseline or 100 mg MLE versus 750 mg MLE (orange). 264 
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Table 1: Accuracy, sensitivity, specificity, and Matthew’s Correlation Coefficient (MCC) of 265 

consensus metrics for the 240-minute duration test. 266 

 ρ cPDR ��� ρ ∩ 

cPDR 

ρ ∩ 

��� 

cPDR 

∩ ��� 

ρ � 

cPDR � 

��� 

ρ � 

cPDR 

ρ � 

��� 

cPDR 

� ��� 

Majority 

rules 

Accuracy    

0 v. 100 mg 0.66 0.72 0.66 0.72 0.66 0.72 0.66 0.66 0.66 0.66 0.66 

0 v. 750 mg 0.88 0.97 0.91 0.91 0.91 0.91 0.94 0.94 0.88 0.97 0.91 

0/100 v. 750 mg 0.85 0.98 0.92 0.94 0.92 0.94 0.90 0.9 0.85 0.96 0.92 

0 v. 100/750 mg 0.71 0.81 0.62 0.73 0.62 0.62 0.79 0.79 0.71 0.81 0.73 

Sensitivity 

0 v. 100 mg 0.94 0.81 0.94 0.81 0.94 0.81 0.94 0.94 0.94 0.94 0.94 

0 v. 750 mg 0.88 0.94 0.81 0.81 0.81 0.81 1.00 1.00 0.88 0.94 0.81 

0/100 v. 750 mg 0.88 0.94 0.81 0.81 0.81 0.81 1.00 1.00 0.88 0.94 0.81 

0 v. 100/750 mg 0.72 0.91 0.44 0.72 0.44 0.44 0.91 0.91 0.72 0.91 0.72 

Specificity 

0 v. 100 mg 0.38 0.63 0.38 0.63 0.38 0.62 0.38 0.38 0.38 0.38 0.38 

0 v. 750 mg 0.88 1.00 1.00 1.00 1.00 1.00 0.88 0.88 0.88 1.00 1.00 

0/100 v. 750 mg 0.84 1.00 0.97 1.00 0.97 1.00 0.84 0.84 0.84 0.97 0.97 

0 v. 100/750 mg 0.69 0.63 1.00 0.75 1.00 1.00 0.56 0.56 0.69 0.62 0.75 

MCCs 

0 v. 100 mg 0.38 0.45 0.38 0.45 0.38 0.45 0.38 0.38 0.38 0.38 0.38 

0 v. 750 mg 0.75 0.94 0.83 0.83 0.83 0.83 0.88 0.88 0.75 0.94 0.83 

0/100 v. 750 mg 0.69 0.95 0.81 0.86 0.81 0.86 0.80 0.80 0.69 0.91 0.81 

0 v. 100/750 mg 0.39 0.56 0.45 0.45 0.45 0.45 0.51 0.51 0.39 0.56 0.45 

 267 

  268 
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Discussion 269 

In this analysis, we leveraged a mechanistic model to compare the performance of traditional, 270 

empirical classifiers (i.e., cPDR90, ��� and �����) of 13C-SBT breath test to that of a mechanistic, 271 

pharmacokinetic model-based classifier. We found that, under typical data variation, 60-minute 272 

duration tests were insufficient to adequately project breath trajectories, primarily due to limited 273 

ability to observe some of the post-peak PDRr trajectory in these time lengths (Figure 1). Thus, we 274 

recommend 13C-SBT future protocols use a 120-minute or longer test duration.  For the 13C-SBT, test 275 

durations up to 240 minutes saw enhanced accuracy and improvement in the performance of the 276 

���, ����� and model-based classifier, but the ability to estimate SIM activity from a shorter-duration 277 

test supports the wider use of the 13C-SBT for gut dysfunction research and, potentially, for future 278 

clinical usage. However, other 13C breath tests may have different recommended durations if the 279 

distribution of peak PDRr is different for a different isotopic tracer, so further study of potential 280 

tracers could identify a substrate with a further reduced testing burden. 281 

Our results from the classifier performance comparison show that cPDR90 was the best classifier (by 282 

AUC) at each test length, compared to ρ, ���, and ����� (Fig. 2). These results suggest that, even 283 

though cPDR is not directly measuring the underlying biological mechanisms, slow cumulative 284 

recovery of the breath is highly informative. We also found that the consensus classifiers generally 285 

performed worse than the individual ones, largely because cPDR90 was highly accurate on its own for 286 

this population. However, as we see in Eq 2, the cumulative percent dose recovery is highly 287 

dependent on κ, the fraction of tracer that is excreted through the breath. Hence, the performance of 288 

cPDR will be highly sensitive to variations in this fraction or, as we previously showed [15], to 289 

misestimation of the production rate of C02, VCO2, which is estimated based on body size. As a result, 290 

associations between cPDR and demographic or anthropometric variables may be introduced through 291 

differential bias In VCO2 estimates. This limits the application of the cPDR to the 13C-as a test of EED 292 

in young children, because poorer growth is posited to be a key consequence of EED. We will explore 293 

anthropometric and demographic associations with breath curve dynamics in future work). Hence, we 294 

caution against taking our results as evidence that cPDR90 is the only classifier needed. Additionally, 295 

we note that both ρ and ����� outperform cPDR90 for model sensitivity (Table 1) and for 296 

distinguishing the 100 mg dose from baseline (Fig. S2). Currently, it is unknown whether SIM 297 

inhibition in typical a case of EED is more similar to the inhibition induced by the 100 mg MLE dose 298 

or the 750 mg dose. 299 

We found that some classifiers were quite accurate at shorter test lengths or even had a higher AUC at 300 

shorter test lengths. For example, the ����� AUC for 0 mg v. 100 mg has a higher AUC (0.68) when 301 

generated from the 60-minute data as opposed to the 240-minute data (AUC = 0.61). However, this 302 

result does not necessarily indicate that those classifiers were robust to a shorter test length. Rather, 303 
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this behavior is a data artifact: the curves estimated at the shorter test lengths are often poor fits to the 304 

full breath curve (Fig S1), and thus they happen to have better classifier performance only by 305 

accident. The same classifier might perform drastically worse on a different dataset for that test 306 

duration. This phenomenon is not a limitation of our analysis but a limitation of short-duration breath 307 

tests, and it has implications for future studies. Participants do not always complete the full breath 308 

collection protocol, but researchers may want to include the data that were collected. We advise 309 

having a clear exclusion criterion in 13C-SBT studies for participants who do not complete at least 90-310 

min of breath collection. 311 

The primary strength of this study is the crossover study design. The experimental design artificially 312 

induced SIM inhibition in the study participants, making the comparison between experiments 313 

unconfounded by other factors that would be likely present in cases and controls from separate 314 

populations.  However, because the data is from healthy adult participants for whom SIM was 315 

experimentally inhibited, the performance of the classifiers may be different from the target 316 

population, i.e., children in low-resource settings, which means that the external generalizability may 317 

be limited. In addition, the small samples size makes the results more sensitive to random 318 

measurement error. For the 13C-SBT to move from being a specialized research tool to wider 319 

useability, further research that includes a larger sample size and inclusion of study participants from 320 

the target population will be needed. Our results facilitate this work by suggesting a shortened, 120-321 

minute test duration, that may be more feasible for infants and young children compared to the prior, 322 

standard 4-hour test.  323 

Conclusion 324 

We assessed the performance of two empirical classifiers, cPDR90, ���,  and �����, and one model-325 

based classifier, ρ for the SBT over different test lengths.  Based on curves fit to different test lengths, 326 

we recommend that 13C-SBT protocols include 120-min or longer test durations and that participants 327 

who collect less than 90 min of breath be excluded. We found that, overall, cPDR90 was the most 328 

accurate classifier in these data; however, limitations of this classifier include uncertainty around its 329 

performance in the target population and lower sensitivity in detecting cases of mild SIM inhibition. 330 

The model-based classifier ρ addresses both concerns because it is more reflective of the underlying 331 

biological processes giving rise to the PDRr curves. We recommend multiple classifiers continue to 332 

be considered in future work assessing the performance of the 13C-SBT as a diagnostic test of EED or 333 

other dysfunctions that reduce SIM activity.  334 

 335 
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