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Abstract 

Background: The incidence and mortality rates of hepatocellular carcinoma (HCC) 

among Hispanics in the United States are much higher than those of non-Hispanic 

whites. We conducted comprehensive multi-omics analyses to understand molecular 

alterations in HCC among Hispanic patients. 

 

Methods: Paired tumor and adjacent non-tumor samples were collected from 31 

Hispanic HCC in South Texas (STX-Hispanic) for genomic, transcriptomic, proteomic, 

and metabolomic profiling. Additionally, serum lipids were profiled in 40 Hispanic and 

non-Hispanic patients with or without clinically diagnosed HCC. 

  

Results: Exome sequencing revealed high mutation frequencies of AXIN2 and 

CTNNB1 in STX Hispanic HCCs, suggesting a predominant activation of the Wnt/β-

catenin pathway. The TERT promoter mutation frequency was also remarkably high in 

the Hispanic cohort. Cell cycles and liver functions were identified as positively- and 

negatively-enriched, respectively, with gene set enrichment analysis. Gene sets 

representing specific liver metabolic pathways were associated with dysregulation of 

corresponding metabolites. Negative enrichment of liver adipogenesis and lipid 

metabolism corroborated with a significant reduction in most lipids in the serum samples 

of HCC patients. Two HCC subtypes from our Hispanic cohort were identified and 

validated with the TCGA liver cancer cohort. The subtype with better overall survival 

showed higher activity of immune and angiogenesis signatures, and lower activity of 

liver function-related gene signatures. It also had higher levels of immune checkpoint 

and immune exhaustion markers. 

 

Conclusions: Our study revealed some specific molecular features of Hispanic HCC 

and potential biomarkers for therapeutic management of HCC and provides a unique 

resource for studying Hispanic HCC. 

 
Keywords: Genomics, Transcriptomics, Proteomics, Metabolomics, Serum lipidomics, 
Gene Set Enrichment Analysis (GSEA), metabolite set enrichment analysis (MSEA). 
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 Background 

 

Liver cancer is the sixth most commonly diagnosed cancer, with the third highest 

mortality rate among all cancers worldwide [1]. For all stages combined, the 5-year 

survival is the second lowest (~21%) for liver cancer across all races in the US [2]. 

Hepatocellular carcinoma (HCC) accounts for the majority (> 90%) of all primary liver 

cancers [3]. Texas residents have the highest age-adjusted HCC incidence rate, which 

was estimated to be 45% higher than the US national average. Texas-based Hispanics 

were the major contributor to this high rate [4]. Though HCC incidence rates started 

declining very recently in the US, Hispanics had the highest rate among ethnic groups 

[5]. Earlier studies have implicated liver metabolic disorders associated with obesity and 

diabetes, which are prevalent in Hispanics, as potential contributors to the high 

incidence of HCC [6–9]. However, the underlying molecular alterations that contribute to 

hepatocarcinogenesis remain to be elucidated. Ancestral genetic and epigenetic traits 

are known to contribute to cancer incidence and prognosis [10], but the factors, 

including the differences in the genomic, epigenomic, and metabolomic features 

contributing to the elevated risk of HCC development among Hispanics, are poorly 

understood. 

Recently, there have been large-scale multi-omic studies on HCC to identify the 

molecular mechanisms for hepatocarcinogenesis. Genomic profiling of HCC identified 

recurrent somatic mutations in TP53, CTNNB1, AXIN1, and TERT promoter [11–14]. 

These studies have shown frequent mutations and copy number changes in the various 

driver genes leading to aberrant RTK/RAS/PI3K, TP53/cell cycle, Wnt/β-catenin, 

AKT/mTOR, Notch pathways, and DNA damage regulation in HCC. Transcriptome, 

proteome, and phosphoproteome-based molecular subclasses of HCC have shown 

significant differences in their clinicopathological characteristics [11,13,14]. Classification 

of HCC based on immune-related gene signatures and pathways provided insights into 

immunotherapy response and patient prognosis [15,16]. Other groups have studied the 

metabolomic and lipid profiles of HCC in patient tissue and serum samples [17–19]. 

While published studies have reported proteogenomic or metabolomic/lipidomic 

approaches to characterize and cluster HCC tumors of different etiologies and clinical 
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stages in various ethnic groups, integrative analyses of HCC tumors involving both 

proteogenomic and metabolomic/lipidomic approaches appear lacking.  

We performed comprehensive analyses of genomic, transcriptomic, proteomic, 

and metabolomic profiles of paired tumor and adjacent non-tumor samples of Hispanic 

HCC patients from South Texas (STX-Hispanics) to investigate specific and common 

features of Hispanic HCC. Serum lipids were profiled in STX-Hispanic and STX-non-

Hispanic patients with or without clinically diagnosed HCC. Our study provides a unique 

resource of multi-omics data sets from STX-Hispanic HCC patients. 

 

Methods 

Study population and patient ancestry 

The discovery cohort comprised 31 HCC patients of self-reported Hispanic origin 

recruited from South Texas (STX-Hispanic). The tumor and adjacent non-tumor tissue 

samples were collected from each patient. A pathologist reviewed each normal sample 

to ensure no contamination of tumor cells. Due to insufficient samples or poor RNA 

quality, we were not able to obtain all omics data from every patient sample in our 

discovery cohort. Additional tumor tissues were collected from an independent set of 38 

STX-Hispanic HCC patients (validation cohort).  

We confirmed the genetic ancestry of 27 HCC patients (discovery cohort) that 

underwent WES using a panel of 250 ancestry informative markers (AIMs) carefully 

designed within exon regions from selected panels of genomic data from 1000 Genome 

Project [20]. Detailed methods have been described elsewhere [21]. 

Serum samples were collected from unrelated 40 local patients with (n=20) or 

without (n=20) clinically diagnosed HCC. Within each group, 10 patients were Hispanic 

(STX-Hispanic) and the other 10 patients belonged to other ethnicities (STX-Non-

Hispanic). Written informed consent was obtained from all participants recruited in this 

study. The study was approved by UT Health San Antonio Institutional Review Board. 

DNA extraction and whole-exome sequencing (WES)  
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Genomic DNA was extracted from paired tumor and adjacent non-tumor samples 

of 27 patients (discovery cohort) and tumor-only samples of unrelated 38 patients 

(validation cohort) of Hispanic origin (STX-Hispanic). Fresh tumor and non-tumor liver 

tissues were sliced into small pieces of 2-3 mm3 and stored at -80 °C. Genomic DNA 

was isolated from frozen liver tissues (~10-20 mg) using QIAamp DNA Mini (Cat 

#51304) after being mechanically disrupted in a sterile glass homogenizer. The quality 

of the genomic DNA was confirmed by an agarose gel. 

The TruSeq Rapid Exome Library Prep kit (Illumina, CA) was used to capture 

about 45 Mb of all (~ 99.5% of NCBI RefSeq) coding regions of the human genome. 

The 100�bp paired-end sequencing of every 6-plex whole exome library pool was 

performed on a Illumina HiSeq 3000 system according to the manufacturer’s 

recommended protocol to achieve an average coverage of ~100X. The library 

preparation and sequencing were done at the institutional Genome Sequencing Facility. 

The paired-end reads were aligned to the human reference genome (hg19) with decoy 

sequences (as used in the 1000 Genomes Project) using BWA (v0.7.5a) software [22]. 

The duplicate reads were marked and subsequently removed using Picard (v1.140) 

(https://broadinstitute.github.io/picard/) and SAMtools (v0.1.19) [23], respectively. Local 

realignment around insertions/deletions (indels) and base quality recalibration were 

performed using GATK (v3.6) [24]. 

Somatic variant analysis  

Two somatic mutation callers, VarScan2 (v2.3.9) [25] and MuTect2 [26], were 

used to detect somatic variants. Somatic variants detected by VarScan2 were further 

filtered by variant allele frequency (VAF) ≥ 0.1 and a minimum depth of coverage of 30 

in tumor samples. MuTect2 module of GATK was run in tumor-normal mode with default 

settings to detect somatic variants. All the variants were annotated using ANNOVAR 

[27]. We considered variants, including SNVs (single-nucleotide variants) and indels, 

identified by both callers in our analyses. The combined Mutation Annotation Format 

(MAF) file from all patients was used as an input for the MutSigCV (v4.41) [28] to identify 

significantly mutated genes.  
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For tumor-only samples, only varScan2 caller was used (mpileup2cns option) for 

both SNP and indel calling per tumor sample. The Variant Call Format (VCF) files were 

combined and annotated using ANNOVAR similar to the somatic variant analysis 

pipeline. 

Validation of somatic mutations from selected genes using DuplexSeq 

For a selected 10 HCC samples with MTOR and AXIN2 mutations detected by 

WES, the extracted DNA was used for Duplex sequencing library preparation according 

to TwinStrand's protocols (TwinStrand Biosciences Inc., Seattle WA, USA). Briefly, 

200�ng of DNA was prepared by ultrasonically shearing to a mean fragment size of 

~300�bp followed by end-polishing, A-tailing and ligating to Duplex Sequencing 

Adapters (Custom designed to cover MTOR and AXIN2 genes, for a total of 27 exon 

regions, 6,321bp covered footprint). After initial PCR amplification, target regions were 

enriched using a pool comprising 120-nucleotide biotinylated oligonucleotides following 

TwinStrands' instruction. 

Prepared libraries were sequenced on the HiSeq 3000 (Illumina, CA) using an 

average of 89.8 million raw reads per sample. Resulting sequence data were 

demultiplexed into FASTQ and processed using “TwinStrand Duplex FASTQ to VCF 

Parallel App” hosted on the DNAnexus platform (v3.17.1). The analysis pipeline 

includes Duplex Tag extraction, alignment to the UCSC hg38 genome and then 

grouping the reads by unique molecular identifiers (UMIs, maximum on target coverage 

>7000 fold), performing duplex consensus calling and post-processing, and finally 

variant calling as described in [29]. VCF file for each HCC samples were further 

organized and compared to the corresponding whole exome sequences to confirm the 

mutations reported for MTOR and AXIN2 genes. 

Comparison of mutation frequencies across the ethnic population 

The mutation and clinical data for TCGA samples were obtained from the TCGA 

Pan-Cancer Atlas (https://gdc.cancer.gov/about-data/publications/pancanatlas). To 

compare with our discovery cohort, we used non-synonymous somatic mutations of 356 

LIHC (liver cancer) patients from the TCGA. Cases without ethnicity information were 

excluded from the analysis. Additionally, we obtained ICGC liver cancer mutation data 
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from the ICGC PCAWG data portal (https://dcc.icgc.org/) [30]. Non-synonymous SNVs and 

indels were used for comparing mutation rates of cancer genes across the four cohorts.  

 

TERT promoter sequencing 

The specific primer for TERT promoter region was designed as previously 

published [31] following Illumina overhang primer strategy to enable direct sequencing of 

PCR products. Primer sequences are:  

[Forward] TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAGCGCTGCCTGAAACTC, and  

[Reverse] GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTCCTGCCCCTTCACCTT. 

 Amplification with overhang primer sequence was done using KAPA HiFi HotStart PCR 

kit (Roche Diagnostics). Briefly, a 20-µl reaction mixture containing 10 ng genomic DNA 

and 1 µM final concentration of forward and reverse primers. PCR amplification was 

carried out according to the following protocol: initial denaturation for 3 min at 95°C, 

followed by 30 cycles of denaturation at 98°C for 30s, annealing at 57°C for 30s, and 

elongation at 72°C for 30s, with the final extension step at 72°C for 5 mins. PCR 

products were examined by Fragment Analyzer and purified by AMPure beads at a ratio 

of 1.8: 1 (beads to PCR products) and an elution volume of 40 µl. Nextera XT index was 

added during the second PCR step according to the Illumina protocol. The final PCR 

products went through one round of AMPure beads purification (1:1) to ensure clean 

products for sequencing. PCR products were sequenced with 100 bp paired-end 

sequencing using Illumina HiSeq 3000 sequencer (Illumina, San Diego, CA) with an 

average of about 1.8M reads per sample. Sequence reads were aligned to the TERT 

promoter sequence using BWA followed by VarScan2 (v2.3.9) with the following 

parameters (mpileup2snp --min-coverage 100 --min-var-freq 0.005 --strand-

filter 0) to detect SNPs with at leave 100-fold coverage and minimal variant 

frequency at 0.5% in at least one HCC sample (either tumor or adjacent no-tumor 

sample). 

Identification of mutational signatures 

The VCF files containing somatic variants (VAF ≥ 0.1) were read into 

R/Bioconductor based MutationalPatterns (v3.0.1) [32] package and annotated with the 
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contexts of single nucleotide variants (SNVs). The 96 classes of single base substitution 

(SBS) mutation signatures were accessed from the publication by Alexandrov et al. [33]. 

We selected 49 (of 67) SigProfiler SBS mutational signatures, found to be the 

signatures of potential biological origin [33], as our reference signature matrix. We 

performed signature decomposition to identify the contributions of 49 signatures for 

each tumor sample. A signature refit was performed using MutationalPatterns 

bootstrapping method with 1000 iterations to avoid signature misattribution. The 

signature decomposition from 1000 replicates was used to calculate the percentage and 

mean contributions of all signatures with non-zero contributions (where contributions > 

0). 

Somatic copy number alteration (SCNA) analysis  

We applied the copy number module of the VarScan2 package, with default 

parameters, to identify the preliminary somatic copy number changes from WES. 

Adjustment for GC content to filter out minimum region size was performed using the 

copycaller command of VarScan2, with default parameters. The circular binary 

segmentation (CBS) algorithm was applied using the R/Bioconductor-based DNAcopy 

package to find segmented regions. Finally, we applied the GISTIC2.0 (v 2.0.23) 

algorithm [34] on merged segmented files using the GISTIC_2.0 GenePattern web 

module (https://cloud.genepattern.org/), with default parameters. The copy number of 

the DNA segments found amplified/deleted with a q-value cutoff of 0.25 and confidence 

level ≥ 0.9 were considered as significantly altered SCNAs in STX-Hispanic HCC. A 

threshold value (GISTIC 2.0) of +/- 2 was considered as high-level copy number gain 

(amplification)/loss (deletion) for a gene, respectively. 

Identification of frequently altered oncogenic signaling pathways based on 

mutation data 

We downloaded the 10 oncogenic signaling pathways from the study by 

Sanchez-Vega et al. [35]. All annotated somatic SNVs, small indels, and significantly 

altered CNAs in our 27 STX-Hispanic HCC cohort were used to filter out putative 

passenger mutations and CNAs based on the curated list of oncogenic and clinically 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 30, 2024. ; https://doi.org/10.1101/2024.04.27.24306447doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.27.24306447


 

 

10 

 

actionable mutations compiled in the OncoKB database [36]. We have only considered 

the oncogenic/likely oncogenic/predicted oncogenic somatic alterations. Furthermore, 

known oncogenes and tumor suppressor genes (OncoKB database) found within the 

recurrent copy number amplified, and deleted regions, respectively, were retained. As 

an additional validation step, each gene (with significant CNAs) should have positive 

correlation between copy-number status and gene expression from HCC patients with 

both mutation and transcriptome data. The selected genes were mapped to identify all 

oncogenic pathways altered in STX-Hispanic HCC. 

RNA sequencing and differential gene expression analysis 

Total RNA was isolated from the tumor and adjacent non-tumor tissue samples 

of 13 STX-Hispanic HCC patients using RNA Mini Spin Column of Enzymax LLC 

(Lexington, KY) according to the manufacturer’s protocol. The quality of RNA samples 

was assessed using Agilent 2100 Bioanalyzer (Agilent Technologies, CA). Samples with 

RNA Integrity Number (RIN) ≥ 7.0 was used for the preparation of RNA sequencing 

libraries using the poly(A)-based TruSeq Stranded mRNA Library Prep kit (Illumina, CA) 

according to the manufacturer's protocol. The sequencing libraries were pooled and 

100�bp paired-end sequencing was performed on HiSeq 2000, HiSeq 3000, or 

NovaSeq 6000 Systems (Illumina, CA). The library preparation and sequencing process 

was done at the institutional Genome Sequencing Facility. 

The paired-end reads were aligned to the human reference transcript (build 

hg19) and reference genome (hg19 with decoy sequence) using TopHat2 (v2.0.8b) [37], 

with default parameters. The alignment (BAM) files were processed using Expectation 

Maximization (RSEM) (v1.2.31) algorithm [38] to quantify the expression level of genes 

as expected counts and normalized expression as FPKM (fragments per kilobase of 

transcript per million mapped reads). The RSEM counts from paired tumor-nontumor 

samples were analyzed using the R/Bioconductor-based DESeq2 (v1.30.1) and edgeR 

(v3.30.3) packages [39,40] to identify the differentially expressed genes. We considered 

results in agreement with both pipelines. Genes with significant (corrected p-

value<0.05) dysregulation by at least 2-fold change (i.e. |log2 FC|�≥�1), in tumor 

compared to adjacent non-tumor samples, were defined as significantly differentially 
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expressed genes (DEGs). To identify genes potentially associated with HCC 

tumorigenesis, we have reported DEGs found considerably expressed (average FPKM 

> 1) in our cohort of 13 STX-Hispanic HCC. 

Fusion gene detection 

Fusion events were identified using PRADA2 (v2018) [41], STAR-Fusion (v1.9.0) 

[42] with default parameters. The Trinity Cancer Transcriptome Analysis Toolkit (CTAT) 

genome library (Apr062020) was used to run STAR-Fusion. We removed fusion events 

found in both HCC tumor and adjacent non-tumor tissues. Fusion genes nominated by 

both algorithms were considered for further analysis.  

Detection of alternative splicing (AS) events 

The RNA-seq reads aligned by TopHat2 (v2.0.8b) were used to run rMATS 

(v4.0.2) [43] for identifying AS events in HCC tumors (excluding HCC_33, HCC_164, 

and HCC_165). An AS event - skipped exon (SE), mutually exclusive exons (MXE), 

alternative 5′ splice site (A5SS), alternative 3′ splice site (A3SS), and retained intron 

(RI) – with FDR corrected p-value<0.05 and |IncLevelDifference|>0.1 were considered 

significant. We further used the MISO (Mixture of Isoforms) (v0.5.4) framework [44] to 

identify AS events across all samples. Insert length for each paired-end library was 

computed before the MISO run by setting other parameters at default. Only those 

significant AS events also identified by MISO in one or more HCC tumors were 

validated. 

Curation of TCGA RNA-Seq data 

The gene expression quantification (RSEM and FPKM) and clinical data for liver 

cancer (LIHC) patients from the TCGA study were downloaded using the 

R/Bioconductor based TCGAbiolinks (v2.18.0) package [45]. The gene expression from 

paired tumor and adjacent normal tissues were available for 50 (out of 371) TCGA-LIHC 

patients. 

Sample preparation and mass spectrometry analysis of proteomic data  
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Approximately 3 mg of tissue (paired tumor and adjacent non-tumor) samples 

were separately homogenized in a buffer containing 10% SDS/50 mM 

triethylammonium bicarbonate (TEAB) in the presence of protease and phosphatase 

inhibitors (HALT; Thermo Scientific) and nuclease (Pierce™ Universal Nuclease for Cell 

Lysis; Thermo Scientific) in a Barocycler (Pressure BioSciences) for 60 cycles at 35 °C. 

The homogenates were centrifuged at 21,000 g for 10 min and the supernatants were 

removed. Aliquots corresponding to 100 µg protein (EZQ™ Protein Quantitation Kit; 

Thermo Scientific) were reduced with tris(2-carboxyethyl)phosphine hydrochloride 

(TCEP), alkylated in the dark with iodoacetamide and applied to S-Traps (mini; Protifi) 

for tryptic digestion (sequencing grade; Promega) in 50 mM TEAB. Peptides were 

eluted from the S-Traps with 0.2% formic acid in 50% aqueous acetonitrile and 

quantified using Pierce™ Quantitative Fluorometric Peptide Assay (Thermo Scientific). 

Data-independent acquisition mass spectrometry (DIA-MS) was conducted on an 

Orbitrap Fusion Lumos mass spectrometer (Thermo Scientific). On-line HPLC 

separation was accomplished with an RSLC NANO HPLC system (Thermo 

Scientific/Dionex: column, PicoFrit™ (New Objective; 75 μm i.d.) packed to 15 cm with 

C18 adsorbent (Vydac; 218MS 5 μm, 300 Å); mobile phase A, 0.5% acetic acid 

(HAc)/0.005% trifluoroacetic acid (TFA) in water; mobile phase B, 90% acetonitrile/0.5% 

HAc/0.005% TFA/9.5% water; gradient 3 to 42% B in 120 min; flow rate, 0.4 μl/min. 

Peptide aliquots (2-µg) were analyzed using gas-phase fractionation and six 4-m/z 

windows (30k resolution for precursor and product ion scans, all in the orbitrap) to 

create an empirically-corrected DIA chromatogram library [46] by searching against a 

panhuman spectral library comprised of 139,449 proteotypic peptides and 10,316 

proteins [47]. Experimental samples were blocked by subject and randomized by tissue 

designation for sample preparation and analysis; injections of 1.5 or 2 µg of peptides 

and a 2-h HPLC gradient were employed. MS data for experimental samples were 

acquired in the orbitrap using 12-m/z windows (staggered; 30k resolution for precursor 

and product ion scans) and searched against the chromatogram library. Scaffold DIA 

(v1.3.1; Proteome Software) was used for all DIA-MS data processing. Quartile 

normalization was applied on the log10 peptide intensities across replicates. Reports of 
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protein identification metrics and normalized intensities were exported directly from 

Scaffold DIA. 

Identification of differentially abundant proteins 

We identified abundances of 6229 proteins from tumor-nontumor paired samples 

of 15 STX-Hispanic HCC. We performed a paired sample two-tailed t-test using R 

package (v4.0.4) to compare differential abundances of 4274 proteins (with finite 

expression at least in 8 of 15 patients) in tumors compared to non-tumor samples. 

Expression values were log2 transformed before performing the t-test. Proteins with 

corrected p-value<0.05 and average fold-change ≥ 2 (i.e. average |log2 (fold-change)| ≥ 

1) in tumor compared to adjacent non-tumor samples were considered as significantly 

differentially abundant proteins (DAPs). 

Gene Set Enrichment Analysis (GSEA) 

The list of expressed (average FPKM > 1) genes from 13 STX-Hispanic HCC 

were ranked using average log2 (fold-change) in tumor compared to paired non-tumor 

samples. The ranked genes were used to run the GSEA algorithm with R package 

clusterProfiler (v3.18.1) [48] for assessing the enrichment of 50 hallmark gene set 

collections of the Molecular Signatures Database (MSigDB v7.4) [49]. Enrichment 

analysis (GSEA) was also performed for tumor-normal paired samples from 50 TCGA-

LIHC in the similar method described above. Furthermore, we also applied GSEA 

algorithm to the ranked list of proteins identified from 15 STX-Hispanic HCC cases. All 

parameters were set at default while performing GSEA using clusterProfiler. 

Hoshida molecular subtypes of STX-Hispanic HCC 

Prediction of the Hoshida’s molecular subtypes [50] was performed for all STX-

Hispanic HCC tumors samples using nearest template prediction method with 

transcriptome or proteome data in R-based CMScaller package (v0.9.2). For proteome 

data, only detected proteins available in our datasets were considered. Hoshida’s HCC 

subclass was assigned to each tumor samples with significant (FDR<0.05) confidence. 

Transcriptome and proteome-based classification of HCC 
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The list of genes used for GSEA analyses described above was ranked using 

log2 (fold-change) between tumor and paired non-tumor tissues for each STX-Hispanic 

HCC (n=13) and TCGA-LIHC (n=50). Similarly, we ranked the list of proteins for each 

HCC patient (STX-Hispanic). Single-sample gene set enrichment analysis (ssGSEA) to 

investigate the enrichment of 50 hallmark gene sets was performed with the R-based 

ssGSEA2.0 package (https://github.com/broadinstitute/ssGSEA2.0) using the ranked 

genes or proteins. Like other studies [15], we used enrichment scores for patient 

clustering. Unsupervised clustering of STX-Hispanic and TCGA HCC patients was done 

with Ward’s agglomeration method using correlation distance of the normalized 

enrichment scores (NES) in R-based pheatmap package (v1.0.12). The 50 hallmark 

gene sets were similarly clustered based on Euclidean distance calculated from 13 

STX-Hispanic HCC. 

Characterization of the immune microenvironment 

To analyze the infiltration level of immune cells in each HCC tumor from STX-

Hispanics (n=13) and non-Hispanics from TCGA-LIHC (n=50), we applied the 

ESTIMATE algorithm [51] using the R-based estimate package (v1.0.13). We used the 

CIBERSORT algorithm [52] to deconvolute the transcriptome profiles of all tumor and 

non-tumor samples into 22 immune cell-type (LM22) specific scores. A total of 1000 

permutations were applied to generate the p-values. ssGSEA was used to calculate the 

enrichment score of the 18 T-cell related gene sets downloaded from a previous study 

[53]. The minimal overlap between the gene set and data was fixed at three before the 

run using the ssGSEA2.0 package. 

Metabolomic analysis using UPLC-MS/MS 

Tumor and adjacent non-tumor tissue samples from 17 STX-Hispanic HCC were 

sent for profiling of global metabolites at the Metabolon Inc. (Durham, NC) facility. 

Samples were prepared using the automated MicroLab STAR system from the Hamilton 

Company (Reno, NV). Recovery standards were added before starting the extraction 

process for quality control purposes. Metabolites were extracted after precipitating 

proteins with methanol under vigorous agitation for 2 min in Genogrinder 2000 (Glen 

Mills Inc., Clifton, NJ), followed by centrifugation. The resulting extract was divided into 
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five fractions. Of the four fractions obtained from the extract, two were used for analysis 

by two separate reverse phase (RP)/UPLC-MS/MS methods with positive ion mode 

electrospray ionization (ESI), one for analysis by RP/UPLC-MS/MS with negative ion 

mode ESI, and the last one for analysis by HILIC/UPLC-MS/MS with negative ion mode 

ESI. All methods utilized an ACQUITY UPLC system (Waters Corp., MA) coupled to a 

Thermo Scientific Q Exactive high-resolution MS equipped with a heated ESI (HESI-II) 

source and an Orbitrap mass analyzer. The raw data were extracted, peak-identified 

and quality control processed using Metabolon’s proprietary hardware and software. 

Compounds were identified by comparing them with library entries of authenticated 

standards or recurrent unknown entities. More than 3300 commercially available 

purified standard compounds have been acquired and registered into LIMS for analysis 

on all platforms for determination of their analytical characteristics. The area-under-the-

curve (AUC) method was applied to quantify peaks. As our present study did not require 

more than one day of analysis, no normalization was adapted, other than for purposes 

of data visualization. Detailed methods about UPLC-MS/MS setup and analysis 

performed at Metabolon Inc. has been described in the article by Ford L. et al.[54]. 

Pre-processing of metabolomic data 

Metabolites with less than 50% missing data from our paired samples were 

considered for further analyses. The missing data were imputed separately from tumor 

and adjacent non-tumor samples using Random Forest (RF) algorithm implemented in 

the R-based missForest (v1.5) package [55] with default parameters. We further 

removed all drugs and their direct metabolites for the downstream analyses. 

Metabolite set enrichment analysis (MSEA) 

We applied the metabolite set enrichment analysis (MSEA) algorithm [56] using 

the web-based interface of MetaboAnalyst 5.0 (www.metaboanalyst.ca) [57] to identify 

sub-pathways enriched under the study conditions (tumor and adjacent non-tumor). All 

metabolites were annotated using the respective Human Metabolome Database 

(HMDB) IDs. The data were log10 transformed and normalized using the ‘auto-scaling’ 

option before performing the quantitative enrichment analysis. We used the sub-

pathways information provided by Metabolon Inc. as our customized metabolite set 
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library. Analysis was restricted to the metabolite sets containing at least five 

metabolites. 

Identification of differentially regulated metabolites 

Differential regulation of metabolites in tumor vs. paired non-tumor comparison 

was estimated based on paired sample t-test using log2 transformed data. Metabolites 

with a minimum 1.5-fold-change and p<0.05 were considered significantly dysregulated 

in tumors compared to adjacent non-tumor samples.  

GSEA using proteins 

We curated a list of gene sets by keywords search for the significantly enriched 

metabolite sets from GOBP/KEGG/REACTOME entries in the MSigDB (v7.4) 

collections. A detailed list of 22 curated gene sets has been provided in Table S9. 

GSEA, using the ranked list of proteins from 15 STX-Hispanic HCC, was conducted with 

the R package clusterProfiler (v3.18.1) to obtain enrichment scores for the curated gene 

sets. We performed GSEA using the gene sets with a minimum of 5 and a maximum of 

500 genes (proteins), respectively. 

GSEA using metabolites 

As the pathway information in our metabolomic data (by Metabolon Inc.) doesn’t 

include liver function-related hallmark gene sets (MSigDB), we curated a knowledge-

based collection of metabolite sets (Table S10). We ranked ~ 700 metabolites for (a) 

overall STX-Hispanic HCC using average log2 (fold-change) and (b) each patient using 

log2 (fold-change) metric from tumor vs. paired non-tumor comparison. Enrichment of 

curated metabolite sets from ranked metabolites was obtained using GSEA and 

ssGSEA with clusterProfiler and ssGSEA2.0, respectively. 

Serum lipidomic analysis using multi-dimensional mass spectrometry-based 

shotgun lipidomics 

Lipid species were analyzed using multidimensional mass spectrometry-based 

shotgun lipidomic analysis [58]. In brief, each serum sample (100 µl) was transferred to 

a disposable glass culture test tube. A premixture of lipid internal standards (IS) was 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 30, 2024. ; https://doi.org/10.1101/2024.04.27.24306447doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.27.24306447


 

 

17 

 

added prior to conducting lipid extraction for quantification of the targeted lipid species. 

Lipid extraction was performed using a modified Bligh and Dyer procedure [59], and 

each lipid extract was reconstituted in chloroform:methanol (1:1, v:v) at a volume of 2 

µl/µl serum. 

For shotgun lipidomics, lipid extract was further diluted to a final concentration of 

~500 fmol total lipids per microliter. Mass spectrometric analysis was performed on a 

triple quadrupole mass spectrometer (TSQ Altis, Thermo Fisher Scientific, San Jose, 

CA) and a Q Exactive mass spectrometer (Thermo Scientific, San Jose, CA), both of 

which were equipped with an automated nanospray device (TriVersa NanoMate, Advion 

Bioscience Ltd., Ithaca, NY) as described [60]. Identification and quantification of lipid 

species were performed using an automated software program [61]. Data processing 

(e.g., ion peak selection, baseline correction, data transfer, peak intensity comparison 

and quantitation) was performed as described [61]. The result was normalized to the 

serum volume (nmol lipids/mL serum). 

Statistical analyses for serum lipidomic data 

Differences in total lipid concentrations of each lipid category between HCC 

patients and non-HCC individuals were assessed using the Wilcoxon test in R package 

(v4.0.4). Differential overall lipid profiles between HCC and non-HCC, and between 

STX−Hispanic and STX−non-Hispanic were identified by Wilcoxon test using log2 

transformed average lipid concentrations. 

 
Results 
 
Patient samples and ancestry profiles 

Clinical information and tissue samples (tumor and adjacent non-tumor) were 

collected from 31 Hispanic HCC patients in South Texas (STX-Hispanic) (Fig. 1A and 

Table S1). We only included patients without evidence of any regional or distant 

metastases during the sample collections. Among the 31 patients, the majority were 

male (64.5%), HBV/HCV positive (54.8%), diabetic (54.8%), and obese (BMI ≥ 

30)/overweight (25.0 ≤ BMI < 30) (64.5%). Besides, ~52% of the tumors were high-
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grade (grades 3 and 4), and ~29% were high-stage (pathological stages T3 and T4). 

Whole exome sequencing (WES) was performed on 27 (discovery cohort) of the 31 

paired tumor-nontumor samples to identify somatic mutations. We collected another 38 

tumor-only samples (validation cohort) from STX-Hispanic HCC to validate the mutation 

frequencies observed in our discovery cohort patients. RNA sequencing was performed 

on 13 paired tumor-nontumor samples, which met quality control requirement for the 

transcriptomic analysis. Mass spectrometry (MS)-based proteomic and metabolomic 

data were generated for 15 and 17 paired tumor-nontumor samples, respectively (Fig. 

1A). 

Based on a panel of in-house curated ancestry informative markers (AIMs) from 

WES data on the non-tumor samples of the 27 HCC (discovery cohort) patients [21], we 

confirmed genetic admixture in our cohort of STX-Hispanic patients. They all showed a 

genetic admixture between European (EUR) and East Asian (EAS) and, to a lesser 

extent, African (AFR) ancestral traits (Fig. S1). 

We also performed mass spectrometry-based shotgun lipidomics analysis of 

serum samples collected from 20 STX-HCC and 20 STX-non-HCC individuals with 

equal distribution of Hispanics and non-Hispanics (Fig. 1B). We included individuals 

with no evidence of (a) HBV or HCV infections; (b) associated NAFLD/NASH; and (c) 

heavy alcohol intake, to avoid potential non-HCC-specific alterations in the serum 

lipidomic data. Their liver had no cirrhosis except in one STX-Hispanic non-HCC patient 

(Fig. 1B and Table S2). A written informed consent was provided by all study 

participants. 

 

Patient demographic and clinical parameters do not confound omics data in STX-

Hispanic HCC 

To determine whether the observed tumor-associated alterations of the omics 

data might be confounded by patient demographic and/or clinical features, we 

performed multivariate regression analysis and found that the frequently mutated genes 

reported in STX-Hispanic HCC (Fig. 2A) are not significantly (adjusted p-value=1) 

associated with any of the patient demographic and clinical features including age, sex, 

viral status, NAFLD/NASH, cirrhosis, obesity, and diabetes. We also investigated the 
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effect of age, sex, viral status, obesity, and diabetes status on mRNA/protein/metabolite 

levels in our STX-Hispanic HCC datasets, using multivariate regression models with 

mRNAs/proteins/metabolites-based log2 (fold-change) in tumor vs. adjacent non-tumor 

comparison as the outcome. Only c19orf79 (also known as PET100) had a significant 

negative association with age (FDR=0.016) and a positive association with diabetes 

status (FDR=0.028) in the mRNA data. The gene was not significantly differentially 

expressed in tumors. The log2 (fold-change) of proteins and metabolites showed no 

significant association with those demographic and clinical variables. Thus, the log2 

(fold-change) between tumor and adjacent non-tumor tissue is a feasible measurement 

for investigating HCC-specific alterations. The lack of association of the common patient 

demographic and clinical parameters with genetic and epigenetic alterations led us 

include HCC tumors with different patient demographics and etiology for multi-omic 

studies. 

 

Genetic alterations and characteristics of STX-Hispanic HCC 

We identified 1,528 somatic variants in the 27 HCCs from the discovery cohort 

using VarScan2 and MuTect2. The median non-silent mutation burden was 1.06 

mutations/Mb (range: 0.04-2.28). Ninety-five genes were mutated in at least two (~7%) 

patients. Eighty-four of these 95 genes were also found mutated in one or more patients 

in the validation cohort. Fig. 2A shows genes with somatic mutation frequency ≥ 7% that 

are either significantly mutated (MutSigCV, p<0.05) (n=9) or annotated in the cancer 

gene census (CGC, COSMIC) (n=5), or among the significantly mutated genes reported 

by the TCGA-LIHC study (n=1). All these genes were expressed (average FPKM > 0.5). 

The somatic mutation frequencies of these genes were overall consistent between our 

cohort and the TCGA-LIHC cohort (Fig. 2A, Fig. S2a). However, higher mutation 

frequencies were observed for WHSC1L1 (11.1% vs. 0.6%, p=0.00271), TAF1 (11.1% 

vs. 1.9%, p=0.0257), and AXIN2 (11.1% vs. 1.9%, p=0.0257) (Fig. S2a). Considering 

ethnic groups, AXIN2 mutation frequency was significantly higher in STX-Hispanic 

HCCs than Whites (11.1% vs. 0.6%, p=0.00912) in the TCGA-LIHC cohort [12] and 

HCC cohorts in Japan (11.1% vs. 0.3%, p=0.00091 for LINC-JP; 11.1% vs. 1.2%, 

p=0.0126 for LIRI-JP) and France (11.1% vs. 1.6%, p=0.0218) [30]. 
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To confirm all AXIN2 mutations observed in our patient cohort, we performed 

DuplexSeq-based targeted DNA sequencing. We validated all three mutations detected 

in AXIN2 (Fig. S2b, Table S3). We also validated mutations in MTOR (Fig. S2b, Table 

S3), a well-known proto-oncogene, which was relatively more frequent in STX-Hispanic 

HCCs than in other ethnic groups (7.4% vs. 1.9% in TCGA-Asian or 1.2% in TCGA-

White), even though not statistically significant (Fig. 2B, 2C). Other notable observations 

were a lower TP53 mutation frequency and a higher CTNNB1 mutation frequency in the 

STX-Hispanic cohort than the African−Americans from the TCGA (p=0.00032) (Fig. 2B) 

and HCC cohort in China (p=0.00195) (Fig. 2C), respectively.  

We sequenced two independent activating mutations located at -124 (C228T) 

and -146 (C250T) base-pairs upstream of the transcription start site frequently seen in 

the TERT promoter in many HCC cohorts including the TCGA-LIHC [12]. We identified a 

significantly higher rate of TERT promoter mutation (primarily C228T) in the STX-

Hispanic HCC cohort than that in the TCGA-LIHC White (77.8% vs. 47.8%, p=0.00535) 

and Asian patients (77.8% vs. 31.5%, p=0.00012), and another study population from 

Totoki et al. (77.8% vs. 53.9%, p=0.0167) [62] (Fig. 2D). Thus, mutations of the Wnt 

pathway genes and TERT promoter appear to play a more dominant role in hepatic 

carcinogenesis in the STX-Hispanic HCC cohort than in other ethnic cohorts. 

The mutational signature using the 96 different contexts of single base 

substitution (SBS) revealed similarities and differences among STX-Hispanic HCCs 

(Fig. S2c). Considering SBS signatures found in > 50% bootstrap iterations, eight were 

frequently identified, at least in one-third of our patient cohort. The eight SBS signatures 

and their frequencies in our HCC cohort were SBS1 (5-methylcytosine; n=19), SBS29 

(tobacco chewing; n=19), SBS2 (APOBEC; n=14), SBS24 (aflatoxin exposure; n=14), 

SBS3 (homologous recombination deficiency; n=13), SBS5 (clock-like; n=12), SBS7b 

(UV exposure; n=11), and SBS39 (n=9) (Fig. 2E). Of these signatures, SBS1, SBS24, 

SBS29, and SBS5 were previously found in HCC by ICGC pan-cancer consortium 

(PCAWG) [33]. However, SBS2, SBS3, and SBS7b were not frequently detected in HCC 

by PCAWG [33]. 

Somatic copy number alterations (SCNAs) were identified using VarScan2 and 

GISTIC2.0 algorithm from WES. We identified 5 focal amplification peaks and 11 
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deletion peaks (q-value<0.25). Nineteen genes from these regions were cataloged in 

the CGC (COSMIC) (Fig. 2F), including oncogenes BCL9 (1q21.1), PIK3CA, MAP3K13, 

TBL1XR1 (all from 3q26.31), and CCND1 (11q13.3) within the amplification peaks and 

tumor suppressor genes CDKN2A (9p21.3) and MGMT (10q26.3) within the deletion 

peaks (Fig. 2F). The recurrent gain of BCL9, CCND1, ORAOV1, and loss of CDKN2A 

shown in Fig. 2A have been reported in other HCC cohorts [12,63,64]. We also observed 

recurrent gain of EIF4A2 and RFC4, and loss of PPP2CB in our STX-Hispanic cohort 

(Fig. 2A). SCNAs of those genes were also significantly positively correlated (Pearson's 

correlation; r>0, FDR<0.01) with their mRNA expression (FPKM) levels. We observed 

no significant differences in the frequency of GISTIC2.0 high-level copy number 

amplifications/deletions between STX-Hispanic HCC tumors and other cohorts (Fig. 

S2d) in cBioPortal [65]. 

Inspecting the set of ten well-recognized oncogenic signaling pathways [35] using 

potentially oncogenic (OncoKB curated) somatic non-silent mutations and SCNAs, our 

STX-Hispanic HCC cohort showed recurrent alterations in WNT, p53, Cell cycle, 

RTK/RAS pathways. The first three pathways were altered in more than 22 percent of 

patients (Fig. 2G). 

 

Integrative analysis of transcriptomic, proteomic, and genomic profiles of STX-

Hispanic HCC 

We identified 1,188 differentially expressed protein-coding genes (DEGs) 

between 13 pairs of tumor and non-tumor samples (Fig. 3A and Table S4). We also 

identified nine fusion events (Table S5). Among the fusion genes, HSD17B2 was also 

significantly downregulated in the HCC tumors (Table S4). Ninety-two genes were found 

to undergo one or more significant alternative splicing (AS) in the tumors (Fig. S3a and 

Table S6). Of the 92 genes, nine (C10orf116, CYP4A11, ECHDC2, FAHD2A, NDRG2, 

RGN, SIGIRR, GCH1, and ZGPAT) were significantly downregulated in the HCC 

tumors. Skipped exon (SE) event was seen in the first seven genes and alternative 3′ 

splice site (A3SS) event in ZGPAT. Co-occurrence of SE and A3SS events were seen 

in GCH1. The significance of these fusion and AS events in the tumors remains to be 

investigated. 
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Using paired sample t-test, we identified 590 differentially abundant proteins 

(DAPs) between tumors and non-tumor controls (Fold-change ≥ 2, FDR<0.05) (Fig. 3B 

and Table S7). Overall, 124 genes were differentially expressed (DEGs) in parallel with 

their corresponding proteins (DAPs) (Fig. 3C), which is 33.3% (i.e. 124 of 372 common 

proteins) or 21.9% (i.e. 124 of 566 common genes) of total number of DEGs or DAPs, 

respectively. Many of the DEGs and DAPs were constituents of various oncogenic 

pathways including the top ranked Wnt, p53, and cell cycle pathways that were enriched 

with somatic alterations (Fig. 3D). 

To further examine the correlation between mRNA expression and protein 

abundance, we performed Pearson’s correlation analysis for each of 5,460 gene-protein 

pairs detected from both transcriptomic and proteomic analyses in the tumor and 

adjacent non-tumor tissues of the six cases. The majority (~76.4%) of the gene-protein 

pairs showed positive correlation (Fig. S3b, left panel) indicating a general concordance 

between mRNA and protein abundances. Consistently, gene set enrichment analysis 

(GSEA) with the 50 hallmark gene sets showed that seven of the 13 (54%) significantly 

enriched hallmark gene sets using the proteome data were also significantly enriched 

using the transcriptome data of the STX-Hispanic cohort (Fig. 3E). Mean of the pairwise 

correlation coefficients between mRNAs and proteins originated from the 2,123 genes 

of the 50 hallmark gene sets was higher (0.37 vs. 0.25) than that from the 3,337 non-

hallmark genes (Fig. S3b, right panel), suggesting a better concordance between 

mRNA and protein abundances of the hallmark genes. While the overall enrichment 

pattern is similar between STX-Hispanic and TCGA-LIHC transcriptome data (Fig. S3c), 

STX-Hispanic cohort showed more negatively enriched gene sets than the TCGA-LIHC 

cohort, including apoptosis, IL6 Jak Stat3 signaling, and epithelial mesenchymal 

transition (Fig. 3E). 

Chromosomal distributions of all genomic, transcriptomic, and proteomic 

alterations from our Hispanic HCC cohort are shown in the Fig. 3F. Integrated genomic 

and proteomic data revealed overall higher (but not significant) upregulation of mutated 

CTNNB1 protein (n=7) compared to wild-type protein (n=8) in tumors of STX-Hispanic 

HCC (Fig. S3d). Abundance of other five most recurrently mutated genes (with mutation 

frequency > 10%) could not be identified from STX-Hispanic HCC proteomic data. 
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Proteo-transcriptomic enrichment analyses of HCC identify two clusters with 

different enrichments of hallmark gene signatures 

Unsupervised clustering of STX-Hispanic HCC (transcriptome- and proteome-

based) and TCGA-LIHC (transcriptome-based) cohorts independently separated them 

to two clusters (labelled as HM-1 and HM-2). Based on function, we categorized the 

hallmark gene sets to four groups as immune related, cell-cycle related, liver function 

(fn)-related, and others (Fig. 4A). We further confirmed our two clusters using principal 

component analysis (PCA) of transcriptome-based NES from STX-Hispanic and TCGA-

LIHC combined dataset (Fig. S4a). As anticipated, the six STX-Hispanic cases with both 

transcriptomic and proteomic data were segregated into the same cluster with either the 

transcriptomic or proteomic data (Fig. 4A), suggesting again the overall concordance 

between protein abundance and mRNA expression. 

Cell-cycle-related hallmark gene sets were almost uniformly positively enriched in 

each patient. HM-1 cases showed general positive NESs of the Immune related 

hallmark gene sets, whereas HM-2 had negative NESs. The overall negative 

enrichment of the immune-related gene sets (Fig. 3E) was apparently due to a larger 

number of HM-2 cases with a negative NES (Fig. 4A). Compared with HM-2 cases, HM-

1 cases showed more negative NESs of the liver fn-related hallmark gene sets (Fig. 

4A), suggesting a negative correlation between immune function and liver function in 

HCC tumors. We further confirmed this negative correlation in both transcriptome and 

proteome data (Fig. 4B). 

Because transcriptome- and proteome-based clustering produced consistent 

results in our cohort, we were able to divide 22 patients into HM-1 (n = 8) or HM-2 (n = 

14) cluster based on either transcriptome or proteome data. We found HM-2 cluster had 

a greater percentage (50% vs. 14%) of Hoshida Class S3 patients [50] and more 

patients (83% vs. 29%) with genomic alterations in Wnt pathway than the HM-1 cluster 

(Fig. S4b). Kaplan-Meier analysis of the 50 TCGA-LIHC cohort revealed a significantly 

worse (log-rank test, p=0.037) overall survival (OS) of HM-2 patients than HM-1 patients 

(Fig. 4C). Multivariate Cox regression analysis controlling for BMI, age, tumor stage, 

viral (HBV / HCV) infection, alcohol consumption, and NAFLD (nonalcoholic fatty liver 
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disease) confirmed the independent prognostic significance of the cluster (p=0.004; Fig. 

4D). 

 

Differences between HM-1 and HM-2 HCC in tumor immune microenvironment 

The substantial differences in the enrichments of immune-related hallmark gene 

sets between HM-1 and HM-2 tumors led us to investigate the tumor immune 

microenvironment of these two HCC subtypes. Regardless of ethnicity, we found 

significantly (Wilcoxon test, p<0.05) higher immune and stromal scores, and significantly 

lower tumor purity in HM-1 tumors than HM-2 tumors (Fig. 5A). To further characterize 

the tumor immune microenvironment, we used the CIBERSORT absolute method to 

estimate the abundance of 22 immune cell types in the tumor and adjacent non-tumor 

tissues. In the TCGA-LIHC cohort, the abundance of all macrophages (i.e., M0, M1, and 

M2), activated NK cells, and resting mast cells were significantly (Welch's t-test, p<0.05) 

higher in HM-1 tumors than HM-2 tumors (Fig. S5a). Similarly, various types of T cells 

including CD8, CD4 memory resting, follicular helper, and regulatory (Tregs) cells were 

also significantly more abundant in HM-1 tumors. In the STX-Hispanic cohort, we also 

observed a similar increase of these immune cells in HM-1 tumors (Fig. S5a). We 

observed an opposite trend of infiltrated CD8 T-cell abundance in HM-1 and HM-2 

tumors when compared with paired adjacent non-tumor samples of both STX-Hispanic 

and TCGA-LIHC cohorts (Fig. S5b). 

We applied the ssGSEA algorithm to investigate the expression activities of T-

cells [53] in the STX-Hispanic and TCGA HCC cohorts. The NESs for the majority T 

cells including CD4, CD8, cytotoxic, exhausted, and natural killer T cells were 

significantly higher in HM-1 tumors than HM-2 tumors of both study cohorts (Fig. 5B). 

Considering relative expression of human leukocyte antigen (HLA) [also known as 

major histocompatibility complex (MHC)] genes in tumor vs. non-tumor tissues, the 

majority were upregulated (median log2 fold-change > 0) in HM-1 tumors and 

downregulated (median log2 fold-change < 0) in HM-2 tumors. Moreover, a significant 

difference in fold-changes of the majority of MHC genes was seen between HM-1 and 

HM-2 of both HCC cohorts (Fig. 5C). The significant enrichment of CD4+, CD8+, 

cytotoxic T-cells, and higher MHC expression in the HM-1 tumors suggest enhanced 
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host immune defense against these tumors. In contrast, HM-1 tumors showed 

increased enrichment of exhausted T cells, suggesting they may be more responsive to 

immune checkpoint blockade. Fig. 5D shows the expression of immune checkpoint (IC) 

receptors mainly upregulated in the tumors over paired non-tumor tissues and the mean 

log2 fold-changes were significantly higher in the HM-1 subtype than those in the HM-2 

subtype of both STX-Hispanic and TCGA-LIHC cohorts. Similarly, the mean fold-

changes of several IC ligands including CD274 (PD-L1), PDCD1LG2 (PD-

L2), CD80, CD86, and TNFRSF14 (HVEM) were significantly higher in the HM-1 

subtype than the HM-2 subtype of TCGA-LIHC cohort. A similar pattern was also 

observed in STX-Hispanic cohort (Fig. 5E). 

Pearson correlation analysis revealed a significant positive association between 

CD8+ T-cell abundances (CIBERSORT) and the expression (log2 FPKM) of IC 

receptors in both STX-Hispanic (Fig. S5c) and TCGA-LIHC (Fig. S5d) tumors, 

suggesting that the receptors were likely expressed by CD8 T cells. The significant 

positive correlation of the expression of some IC receptors with the expression of their 

ligands, including PD-1/PD-L1, PD-1/PD-L2, CTLA4/CD80, CTLA4/CD86, and 

CD28/CD86, in both STX-Hispanic (Fig. S5e) and TCGA-LIHC (Fig. S5f) tumors 

suggests that these IC ligands were mainly expressed by CD8 T cells. Other IC ligands, 

mostly showing a non-significant correlation with their receptors, are probably 

expressed by different cell types. Besides, positive correlation between BTLA (receptor) 

and HVEM (ligand) were nearly significant in both STX-Hispanic HCC (p=0.081, Fig. 

S5e) and TCGA-LIHC (p=0.059, Fig. S5f). 

Taken together, these data suggest that while HM-1 tumors appear “immune hot” 

with increased T cells, some of which are apparently in an exhaustion state with 

activated IC signaling. As such, HM-1 tumors should be more responsive to IC inhibition 

(ICI) therapy. On the other hand, we found that tumor mutational burden (TMB), an 

indicator of response to ICI therapy, was slightly lower in HM-1 tumors than in HM-2 

tumors (Fig. 5F). Thus, while the IC inhibitor atezolizumab plus the angiogenesis 

inhibitor bevacizumab is currently the frontline therapy for advanced HCC, whether HM-

1 tumors are more responsive to the therapy than HM-2 tumors remains to be 

investigated. 
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Significant alterations of metabolic pathways in STX-Hispanic HCC  

Using quantified metabolites (n=704), partial least squares-discriminant analysis 

(PLS-DA) was performed on the 17 paired tumor-nontumor samples (Fig. 6A). The PLS-

DA score plot result shows a clear separation between the metabolite levels in the 

tumor and adjacent non-tumor tissues accounting for 18.5% of the total variability 

observed in the data set. Eleven metabolic pathways were significantly (p<0.05) 

enriched in the tumors of HCC cohort on quantitative metabolite set enrichment analysis 

(MSEA) [56] (Fig. 6B). Differential regulation analysis using paired sample t-test 

revealed 131 metabolites with significant (p<0.05) dysregulation by ≥ 1.5-fold in the 

tumors compared to paired non-tumor tissues (Table S8). Significantly dysregulated 

metabolites associated with the 11 functionally enriched pathways are shown in Fig. 6B. 

Since altered metabolites and metabolic pathways are mainly caused by altered 

protein/enzyme abundances, we used proteome-based GSEA to find enrichment of 

gene sets (Table S9) that were functionally similar to the 11 enriched metabolic 

pathways. Eight GOBP/KEGG/REACTOME-derived gene sets corresponding to four of 

the 11 metabolic pathways were significantly negatively enriched in STX-Hispanic HCC 

(Fig. 6C, left). Metabolites associated with the four negatively enriched metabolic 

pathways were found predominantly decreased in HCC tumors (Fig. 6C, right). 

Therefore, integrated analysis of our proteome and metabolome data of STX-Hispanic 

HCC revealed potential negative enrichments of (a) glycolysis and gluconeogenesis, (b) 

TCA cycle, (c) glutamate metabolism, and (d) nicotinate and nicotinamide metabolism 

processes. Furthermore, we calculated the association between tumor vs. non-tumor 

log2 (fold-change) of substrates or products (considering only significantly differentially 

dysregulated metabolites from these four pathways) and corresponding enzymes 

(considering only DEPs) for 11 STX-Hispanic HCC with both proteome and metabolome 

data. We observed significant association (Pearson’s correlation, r = 0.68, p=0.023) of 

log2 (fold-change) between phosphoenolpyruvate (PEP) and phosphoenolpyruvate 

carboxykinase 1 (PCK1) (Fig. 6D). Thus, PCK1—a rate-limiting enzyme in the 

gluconeogenic pathway [66]— and PEP could serve as putative biomarkers for the 

identification and treatment of HCC. 
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We next investigated whether the significant negative enrichments of the four 

liver function-related hallmark gene sets (bile acid metabolism, fatty acid metabolism, 

peroxisome, and xenobiotic metabolism) from GSEA of our proteome data (Fig. 3E) are 

associated with differences in relative abundance of corresponding metabolites between 

tumor and non-tumor tissues. We performed enrichment analyses of a knowledge-

based collection of curated metabolite sets (Table S10) for overall GSEA or ssGSEA. 

Bile acids and fatty acids were significantly (corrected p-value=0.03 and 0.0004) 

negatively enriched (NES = −1.595 and −1.872) in STX-Hispanic HCC tumors (Fig. 6E). 

Comparison of the NES between proteome data and metabolome data from ssGSEA 

also showed positive associations for peroxisome, bile acid metabolism and fatty acid 

metabolism. More HM-1 tumors showed negative enrichment of these three hallmark 

gene sets and related metabolites than HM-2 tumors (Fig. 6F). We observed a similar 

enrichment pattern (the sign of NES) for bile acid metabolism in nine of 11, i.e., ~ 82% 

(considering only proteome data) or in 12 of 14, i.e., ~ 86% (considering both proteome 

and transcriptome data) cases (Fig. 6F and 6G). Similar patterns for peroxisome and 

fatty acid metabolism, particularly in the HM-1 cases, were also observed (Fig. S6a). On 

the other hand, the negative enrichment of proteome-based xenobiotic metabolism 

gene set was associated with mostly positive enrichment of metabolome-based 

xenobiotic metabolites (primarily xenobiotics) in both HM-1 and HM-2 tumors (Fig. 6F, 

Fig. S6a). Thus, the loss of liver functions in bile acid, fatty acid, and xenobiotic 

metabolism revealed by transcriptome and proteome data was validated by decreased 

bile acids and fatty acids and increased xenobiotics in STX Hispanic HCC tumors. 

While fatty acid metabolism was lower in the tumors compared to non-tumor 

tissues, as shown by the overall GSEA (Fig. 6E) and in more HM-1 tumors than in HM-2 

tumors (Fig. S6a), we found that most of the very-long-chain fatty acids (VLCFAs) with 

chain-length of ≥ 20 carbons were relatively more accumulated in the HM-1 tumors, with 

the levels of many VLCFAs considerably higher in HM-1 cases than in HM-2 cases (Fig. 

S6b, top). This difference was significant for adrenate (or docosatetraenoate, 22:4) 

(p=0.029) and eicosapentaenoate (20:5) (p=0.043) (both are polyunsaturated fatty 

acids). Overall, both monounsaturated and polyunsaturated fatty acids were at 

significantly (Wilcoxon test, p<0.05) higher levels in HM-1 tumors but not in HM-2 
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tumors (Fig. S6b, bottom). Thus, there appears to be a relatively higher accumulation of 

unsaturated VLCFAs in the HM-1 tumors than in adjacent non-tumor tissues from the 

STX-Hispanic patients. 

 

Significant reduction of serum lipids in HCC patients 

The significant negative enrichments of adipogenesis [in 14 of 22 (~64%) STX-

Hispanic HCC and 30 of 50 (=60%) TCGA-LIHC] and fatty acid metabolism [in 14 of 22 

(~64%) STX-Hispanic HCC and 41 of 50 (=82%) TCGA-LIHC] in the majority of HCC 

tumors revealed by ssGSEA of both transcriptome and proteome data (Fig. 4A) led us 

to compare serum lipid profiles between STX Hispanic and STX non-Hispanic 

individuals with or without HCC (Fig. 1B). We collected serum samples from 20 HCC 

patients (10 Hispanic, 10 non-Hispanic) and 20 non-HCC individuals (10 Hispanic, 10 

non-Hispanic). PCA analysis based on 289 serum lipids separated HCC patients from 

non-HCC individuals except for two non-HCC cases (TCB_02056 and TCB_16096) 

(Fig. 7A). A retrospective patient clinical data review found evidence of cirrhosis and/or 

steatosis for the two abnormal cases (Fig. 1B). They were considered outliers and not 

included in subsequent analyses. We found no significant difference in age and BMI 

among the four groups separated based on ethnicity and HCC status (Fig. S7a). 

We found that HCC could be clearly distinguished from non-HCC individuals 

independent of patient ethnicity (Fig. 7B). Total lipid concentration of 16 lipid-types (Fig. 

S7b) was obtained by adding individual lipid concentrations within the same type 

(number of lipids within each lipid-types ranged between 2 and 100) for every sample. 

We examined the difference in the total lipid concentrations of the 16 lipid types 

between HCC and non-HCC cases. Seventy-five percent of the serum lipid levels were 

significantly lower while only acylcarnitines (AC) was significantly higher in HCC 

patients than in non-HCC individuals (Fig. 7C). 

Comparing the mean level of each lipid between groups based on ethnicity and 

HCC status, we observed that HCC patients had a significantly lower abundance of 

lipids than non-HCC individuals regardless of ethnicity (Fig. 7D). However, the majority 

of lipids from HCC patients were more depleted in STX-Hispanics than in STX-non-

Hispanics (paired sample t-test, p=2.02e-17) (Fig. 7E). Among the individuals without 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 30, 2024. ; https://doi.org/10.1101/2024.04.27.24306447doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.27.24306447


 

 

29 

 

HCC, STX-Hispanics had a significantly higher abundance of serum lipids than STX-

non-Hispanics (Fig. 7D lower left). In contrast, among the patients with HCC, STX-

Hispanics had a significantly lower abundance of serum lipids than STX-non-Hispanics 

(Fig. 7D, lower right). 

The difference between the two ethnic groups is further illustrated in Fig. 7F, 

which shows significantly lower levels of 10 serum lipid types and higher AC in HCC 

than non-HCC STX-Hispanics. In contrast, only five serum lipid types were significantly 

lower in HCC than non-HCC STX-non-Hispanics. Finally, forty-two lipids belonging to 

nine lipid types showed a similar direction of dysregulation, mainly reduction, in tumor 

compared with paired non-tumor (tissue metabolomic) and in serum collected from HCC 

patients compared with serum from non-HCC subjects in STX-Hispanics (Fig. 7G). 

Taken together, STX-Hispanics exhibited more reductions of their serum lipids in HCC 

subjects than STX-non-Hispanics, likely due to more impairment of their liver function. 

 
 
Discussion 
 

Our cohort comprised 31 self-reported Hispanic patients from South Texas. We 

confirmed the genetic ancestry of every HCC patient in our cohort whose WES data 

was available. We found significantly more AXIN2 mutations in our STX-Hispanic cohort 

than in TCGA-LIHC non-Hispanic Whites and other non-US-based ICGC cohorts, 

including LICA−FR, LINC−JP, and LIRI−JP. The loss of function mutation of AXIN2 is 

significant as it is a downstream target and negative feedback regulator of Wnt/β-

catenin pathway [67]. The frequency of gain-of-function mutations in CTNNB1 was also 

higher in STX-Hispanic than other ethnic groups in TCGA-LIHC by 7-15%, except the 

African American group. Genomic alterations revealed Wnt/β-catenin as the most 

recurrently altered signaling pathway in STX-Hispanic HCC. Wnt/β-catenin pathway, of 

which CTNNB1, AXIN1, and AXIN2 are key components, has critical roles in various 

steps of hepatocarcinogenesis [68]. These observations suggest that constitutive 

activation of Wnt/β-catenin pathway due to AXIN2 and CTNNB1 mutation may play a 

dominant role in HCC tumorigenesis among STX Hispanics [69]. The frequency of TERT 

promoter mutations, another known driver of hepatocarcinogenesis, was higher in STX-
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Hispanic HCC cohort than the HCC from other ethnicities. The difference was significant 

in comparison to TCGA-LIHC Asian and non-Hispanic White cohorts, and a non-US-

based Asian population. mTOR signaling is known to be upregulated in HCC [70]. 

MTOR mutations were detected and validated in the STX-Hispanic HCC cohort at a 

higher frequency than in other ethnic groups in the TCGA-LIHC cohort, except the 

African-American group. The mutation frequency of TP53 was lower in the STX-

Hispanic HCC tumors than those of different ethnicities. 

We identified ageing related signatures SBS1 and SBS5 [33,71], and recurrent 

signatures related to aflatoxin exposure (SBS24) and tobacco chewing (SBS29)[33,71]. 

Unlike TCGA-LIHC [33], we observed APOBEC (SBS2), homologous recombination 

deficiency (SBS3), UV exposure (SBS7b), and other unknown (SBS39) signatures in 

our STX-Hispanic cohort. Thus, our results show ubiquitous as well as unique mutation 

signatures in STX-Hispanic HCC. Studies with larger cohorts are needed to validate 

these mutation signatures in Hispanic HCC. 

Unsupervised clustering of patients, using the enrichment scores of 50 hallmark 

gene sets from either transcriptome- or proteome-based ssGSEA, divided the same 

STX-Hispanic HCC cases into two groups, indicating the utility of genome-wide 

proteomic data for clustering diseases with different properties. The same clustering 

pattern of our Hispanic cohort was also observed in the TCGA-LIHC cohort. Regardless 

of ethnicity, the majority of tumors from the two clusters (i.e., HM-1 and HM-2) were 

positively or negatively enriched, respectively, for immune- and angiogenesis-related 

gene sets. The significantly better survival of HM-1 patients was likely due to elevated 

host immune killing of tumor cells and better response to anti-angiogenesis therapy 

such as sorafenib. 

The significant enrichment of anti-tumor immune cells including NK cells, CD4+ 

and CD8+ T-cells in HM-1 tumors suggests that HM-1 tumors were likely suppressed by 

host immune surveillance [72], which might have contributed to the better survival of the 

HM-1 patients. HM-1 tumors also have more exhausted (Tex) and regulatory (Tregs) T-

cells than HM-2 tumors, which could attenuate the anti-tumor immunity imparted by the 

helper and cytotoxic T-cells. Our observation of elevated levels of many VLCFAs in HM-

1 tumors in contrast to HM-2 tumors might explain a possible mechanism for exhaustion 
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of effector T-cells in the HM-1 patients. Enriched free polyunsaturated fatty acids 

(PUFAs) in the tumor tissues is known to induce CD8+ T cell ferroptosis and loss of 

effector function [73]. Therefore, our observation of high PUFA in the HM-1 tumors is 

consistent with higher Tex cells in HM-1 tumors. In addition, most of the immune 

checkpoint receptors, including PDCD1 (PD-1) and CTLA4, were upregulated in HM-1 

and downregulated in HM-2 tumors in comparison to their adjacent non-tumor tissues in 

STX-Hispanic and TCGA-LIHC cohorts. Similar mRNA expression difference was also 

observed in their ligands, including CD274 (PD-L1), PDCD1LG2 (PD-L2), CD80, and 

CD86, between the two subtypes of tumors. These observations plus the positively 

correlated expression between the receptor and ligand pairs, including PD-1/PD-L1 or 

PD-L2, CTLA4/CD80 or CD86, and BTLA/HVEM, suggest that HM-1 tumors should be 

more responsive than HM-2 tumors to immune checkpoint inhibition therapy. 

BTLA/HVEM may be novel targets for treating HM-1 tumors with checkpoint inhibition 

[74]. 

Our observation is consistent with the reports that Wnt/β-catenin pathway 

activation is associated with resistance to immune checkpoint inhibition therapy [75], as 

our data showed that HM-2 tumors are more frequently associated with mutational Wnt 

pathway activation, particularly in the STX-Hispanic cohort. Studies have shown that 

tumors with high TMB (usually TMB>10 mutations/Mb) respond better to PD-1/PD-L1 

inhibitors [76]. However, we found that TMB in HM-1 and HM-2 tumors of both cohorts 

was lower than 10 mutations/Mb. Thus, while immune checkpoint inhibitors (ICIs) have 

shown their efficacy and are part of the frontline therapy for advanced HCC, Hispanic 

patients with HCC may be less responsive to ICIs than HCC patients from other ethnic 

groups given the high frequency of somatic mutations of the Wnt/β-catenin pathway 

components and the low TMB in the Hispanic HCC patients. 

The analysis of our transcriptome and proteome data with ssGSEA indicated a 

general impairment of liver function in HCC tumors. This was also the case in the 

TCGA-LIHC. When metabolomic profiles of tumors were compared to adjacent non-

tumor tissues of STX-Hispanics, we identified 11 significantly enriched pathways, 

including vitamin B6; nicotinate and nicotinamide; glutamate metabolisms; TCA cycle; 

and glycolysis and gluconeogenesis. Loss of B vitamins, including B6 (pyridoxine) and 
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B3 (nicotinate or niacin), were previously reported to be associated with 

hepatocarcinogenesis [77,78]. Metabolites involved in the nicotinate and nicotinamide 

metabolism process, TCA cycle, and glycolysis and gluconeogenesis were 

predominantly found at a lower levels in HCC tumors than in adjacent non-tumor 

tissues, which was associated with significant negative enrichments of these pathways 

based on the GSEA results from the proteome data of our Hispanic HCC. Significantly 

lower abundances of phosphoenolpyruvate (PEP), and the rate-limiting hepatic 

gluconeogenic enzyme PCK1, was seen in tumors than in adjacent non-tumor tissue 

samples of our HCC cohort. Reduction of PCK1 in our HCC tumors was significantly 

positively correlated with PEP levels. PCK1 plays a key role in controlling 

gluconeogenesis and TCA cycle maintenance by regulating TCA cataplerosis [79]. 

Depletion of PCK1 was linked with hyper-O-GlcNAcylation leading to liver oncogenesis 

[80]. The metabolism of the glutamate formed in the liver can be via either glutamate 

dehydrogenase or transamination and subsequent flux to urea synthesis and 

gluconeogenesis [81].  

We observed significant negative enrichments of bile acid and fatty acid 

metabolisms in both proteome and metabolome profiles of STX-Hispanic HCC. A recent 

study has shown that aberrant bile acid metabolism facilitates HCC development by 

preventing natural killer T (NKT) cell recruitment and increasing M2-like tumor-

associated macrophage polarization [82]. Dysregulation of fatty acid metabolism, an 

important metabolic rewiring phenomenon in tumor cells and immunocytes, is known to 

be involved in HCC development and progression [19]. We observed significant 

reduction of carnitine palmitoyltransferase 2 (CPT2), which converts acylcarnitine to 

acyl-CoA, by 1.7-fold both at the transcript and protein levels of STX-Hispanic HCC 

tumors in comparison with adjacent non-tumor tissue samples. There was a 2.4-fold 

reduction in the expression of SLC25A20 (also known as CACT), a mitochondrial-

membrane carrier protein that helps in the translocation of acylcarnitine to the 

mitochondria. Relatively low abundance of CPT2 in tumor tissues causes HCC cells to 

escape from lipotoxicity by suppressing fatty acid β-oxidation pathway and accumulation 

of acylcarnitine (AC) in HCC serum samples [19]. Relatively less abundant CACT and 

CPT2, resulting in reduced acyl-CoA production from acylcarnitine, and marked 
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accumulation of the latter, was identified in high-fat diet-induced HCC [83]. We also 

observed significantly elevated acylcarnitine in the serum profiles of Hispanic HCC. 

Thus, the revelation of these aberrant metabolites and pathways may lead to identifying 

potential targets for diagnosis and treating HCC, particularly in Hispanics. 

Our serum lipid profiling showed significantly lower levels of most serum lipid 

types in HCC patients compared to non-HCC individuals, more so in Hispanic than in 

non-Hispanic patients. Acylcarnitine was the only lipid type whose level was significantly 

higher in HCC patients. This could be due to the substantial reduction of CPT2 in HCC 

tumors as discussed above. Similar to our observations, levels of serum triacylglycerols, 

phosphatidylcholines, and lyso-phosphatidylcholines were found to be lower in HBV-

related HCC than in healthy controls [84]. HCC patients were found to have reduced 

levels of phosphatidylinositols, phosphatidylglycerols, and non-esterified fatty acids 

relative to healthy normal or patients with chronic liver disease [18]. These six lipid 

classes were prominently more reduced in serum samples of Hispanic than non-

Hispanic HCC patients. Our results suggest a higher degree of dysregulation of serum 

lipid profiles of STX-Hispanic HCC compared with STX-non-Hispanic HCC patients. 

 

Conclusions 
 

Our integrative multi-omics analyses of Hispanic HCC revealed some unique 

molecular features of Hispanic HCC, including a high mutation frequency of the TERT 

promoter and predominant activation of the Wnt/β-catenin signaling pathway due to the 

high mutation frequency of AXIN2 and CTNNB1, with implications for therapy 

responsiveness. Our study also revealed significant reduction of most serum lipids in 

HCC patients, which was concomitant with dysregulation of many key hepatic enzymes 

involved in lipid metabolism, and with significant negative enrichment of adipogenesis 

and fatty acid metabolisms in the HCC tumors. Our study also revealed some common 

features between Hispanic and non-Hispanic HCC, such as significant aberration of the 

p53 pathway, activation of cell cycle pathways with positive enrichment of cell cycle-

related gene sets, and significant negative enrichment of gene sets related to liver 

metabolic functions. Our application of ssGSEA and unsupervised clustering of patients 

using the enriched hallmark gene sets add prognostic value by identifying two subtypes 
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of HCC with distinctive opposite enrichment between immune-related and liver-function 

related gene sets. The clustering may be of value for the prediction of response to 

immune checkpoint and angiogenesis inhibition therapy. 

The small sample size is a main limitation of our study. Nevertheless, because 

our study involved the comparisons between paired tumor and adjacent non-tumor 

tissues for the multiple omics analyses, we did observe many statistically significant 

changes during the development and progression of the STX-Hispanic HCC with some 

important molecular profiles different from those of other ethnic HCCs. Further studies 

on a large Hispanic HCC cohort will help to validate our findings. Since Hispanic 

patients are notably underrepresented in all cancer genomic cohorts that are available, 

our multiple omics data sets on Hispanic HCC provide a unique resource for future 

research on this population. 

 

Data availability 

The aligned BAM files from tumor-nontumor paired samples of 27 STX-Hispanic HCC 

patients (discovery cohort) were deposited to the European Genome-phenome Archive 

(EGA) under study accession id <EGAS00001007431> (for use after the dataset is 

made public). The aligned BAM files for RNA-Seq data from the 13 tumor−nontumor 

paired samples are available from the GEO database with accession # GSE233422. 

The raw mass spectrometry based proteomic data from 15 tumor−nontumor paired 

samples can be accessed from MassIVE (http://massive.ucsd.edu) with accession id 

<PXD043687> (for use after the dataset is made public). Other analyzed MS-based 

data files are available from the link https://doi.org/10.7303/syn51591313. 
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Figure legends 

 

Figure 1: Overview of demographic and clinical information of HCC patients and 

sequencing data. (A) Multi-omics data modalities for paired tumor and non-tumor 

tissues from STX-Hispanic HCC are shown in different rows. Each column indicates one 

patient. (B) The clinical characteristics of 40 samples screened for serum lipid profiles. 

 

Figure 2: The mutational landscape of HCC in STX-Hispanic patients. (A) Genetic 

profile and associated clinicopathological characteristics of 27 STX-Hispanic HCC. Bar 

plots on the right indicate mutation frequencies. Left: 27 discovery samples; middle: 38 

validation samples; right: 363 TCGA-LIHC samples. (B-C) Comparison of mutation 

frequencies of five recurrently mutated genes between STX-Hispanic HCC and TCGA-

LIHC or ICGC HCC cohorts of different ethnicities. (D) Comparison of TERT promoter 

mutation frequencies between HCC from different ethnicities. For B-D, p-values are 

calculated using Fisher’s exact test. Significance level: *, p<0.05; **, p<0.001; ***, 

p<0.001). (E) Mutational signatures in 27 HCC tumors. The size of each dot indicates 

the average contribution of that signature (in the iterations where contribution was 

higher than 0). Color of dots are representative of percentage of iterations in which the 

signature is found (contribution > 0). (F) Recurrent copy number amplifications and 

deletions across 27 STX-Hispanic HCC by GISTIC 2.0. Annotated peaks have an 

FDR<0.25. The numbers in parentheses indicate the number of genes encompassed in 

the peak. Cancer genes from CGC (COSMIC) are annotated for each peak. Red, 

amplification; Blue, deletion. (G) Alteration frequency of oncogenic signaling pathways 

in STX-Hispanic HCC. 

 

Figure 3: The integrated multi-omics profiling of STX-Hispanic HCC. Volcano plots 

illustrate (A) DEGs and (B) DAPs between tumor and adjacent non-tumor samples. 

Symbols indicates common genes and proteins among 10% most significant DEGs and 

DAPs, respectively. Red, up regulated; Green, down regulated. (C) The intersection of 

DEGs and DAPs. (D) Schematic of top three recurrently altered oncogenic signaling 

pathways in STX-Hispanic HCC. Genes with somatic mutations and copy number 
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alterations are indicated in red boxes. Color intensity indicates the frequency of 

activating alterations (red) and inactivating alterations (blue). The frequencies were 

calculated based on the discovery cohort (n=27). The cyan boxes are indicative of 

DEGs and DAPs. Up- and down-regulated DEGs (left) / DAPs (right) are shown in red 

and green arrows, respectively. (E) Hallmark gene sets significantly enriched in STX-

Hispanic HCC and TCGA-LIHC. Red dots, positive enrichments. Blue dots, negative 

enrichments. (F) Circos plot shows genomic, transcriptomic, and proteomic alterations 

in STX-Hispanic HCC. From outside to inside, the tracks depict the human genome 

(hg19) ideogram, frequency (number) of genetic alteration, GISTIC 2.0 copy-number 

amplification (red) and deletion (green), log2 (fold-change) of upregulated (pink) and 

downregulated (blue) DEGs, log2 (fold-change) of increased (purple) and decreased 

(green) DAPs, fusion genes (orange ribbons). Recurrently mutated genes are noted 

outside the ideogram. 

 

Figure 4: Proteomics and transcriptomics-based classification of HCC. (A) Left 

panel: HM-1 and HM-2 subtypes from unsupervised hierarchical clustering of pathway 

activities in STX-Hispanic HCCs. Middle: TCGA-LIHC. Right: STX-Hispanic proteomics 

cohort. Pathway activity is based on NES from ssGSEA analysis. Asterisks indicate 

significant (FDR<0.05) enrichments. (B) Comparison between enrichment correlations 

of selected immune and liver-function-related hallmark gene sets using NES from 

transcriptome and proteome data of STX-Hispanic HCC (based on 6 HCC with both 

datasets). An asterisk indicates significant (Pearson's correlation; p<0.05) association 

between a pair of gene sets. (C) Kaplan-Meier curve for overall survival in 50 TCGA-

LIHC stratified by two clusters – HM-1 and HM-2. (D) Multivariable Cox regression 

analysis of overall survival in the TCGA cohort (n=50) controlling for other 

clinicopathological factors. 

 

Figure 5: Immune-cell profiling of HCC identifies significant differences between 

the two patient clusters. (A) Comparison of the stromal score, immune score (immune 

cell infiltration levels), and tumor purity between HCC clusters in STX-Hispanic and 

TCGA cohorts. (B) HCC clusters-wise differences in the enrichment of T-cell-related 
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gene sets (n=17). (C) Comparison of log2 (fold-change) of HLA gene expression (tumor 

vs. paired non-tumor) between the two HCC clusters. (D) Differential expression of 

immune checkpoint receptors and between the clusters. (E) Differential expression of 

immune checkpoint ligands between the clusters. (F) Difference in Tumor Mutational 

Burden between HM-1 and HM-2 clusters. Upper, STX-Hispanics; Lower, TCGA-LIHC. 

Statistical significance for all comparisons in A-C and F was determined using two-sided 

Wilcoxon rank-sum tests. The p-values for D and E were calculated using unpaired two-

tailed t-test.  

 

Figure 6: Tissue metabolomic profiles of HCC in STX-Hispanics. (A) Score plot for 

PLS-DA analysis of tumor (red) and adjacent non-tumor (green) tissue samples derived 

from STX-Hispanic HCC. (B) Eleven significantly enriched pathways in HCC tumors 

(p<0.05). The right panel indicates log2 (fold-change) of significantly enriched (paired 

sample t-test, p<0.05; and ≥ 1.5 fold-change) metabolites against each pathway. (C) 

Eight significantly negatively enriched GOBP/KEGG/REACTOME pathways (p<0.05) 

were obtained from GSEA analysis using protein abundance in STX-Hispanic HCC 

(left). Pie-chart representation of the directional dysregulation of metabolites (tumor vs. 

paired non-tumor comparison) from each metabolomic pathway is shown on the right. 

(D) A scatterplot of log2 (fold-change) between PCK1 (protein) and PEP (metabolite) 

from STX-Hispanic HCC (n=11) shows a significant correlation. The interaction between 

the two is shown above. (E) Enrichment plots of two significantly negatively enriched 

pathways curated using selected metabolites. (F) Comparison of NES between hallmark 

gene sets and curated metabolite sets from ssGSEA analyses using proteome and 

metabolome data, respectively. The asterisk indicates significant enrichments 

(FDR<0.05). (G) Comparison of enrichment (NES) trends for bile acid metabolism 

between proteomic/transcriptomic and metabolomic data sets in STX-Hispanic HCC 

(n=14). Solid lines indicate concordance and dashed lines indicate discordance in the 

directionality of enrichments. 

 

Figure 7: Dysregulated lipids in the serum samples of HCC patients from different 

ethnic populations. (A) PCA of serum lipid profiles from HCC and non-HCC individuals 
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from Hispanic and non-Hispanic donors. Lipid concentrations were log10 transformed 

before analysis. (B) Independent of ethnicity, HCC (n=20) shows different lipid profiles 

than non-HCC individuals (n=18). (C) Comparison of the total concentration of 16 

profiled lipid types between HCC and non-HCC. (D) Trends of lipid concentrations 

between HCC and non-HCC samples, and between Hispanic and non-Hispanic 

samples. Each line connects the same lipids. The dot represents the average of the 

subjects in the group. (E) Boxplot representation of Hispanics vs. non-Hispanics for 

differences in log2 transformed average concentration [Δ log2 (avg. conc.)] of 289 lipids 

between non-HCC and HCC. (F) Distribution of total lipid concentrations for individual 

lipid types across four datasets. We applied two-sided Wilcoxon rank-sum tests to 

determine statistical significance for all comparisons in C and E. The p-values in D were 

calculated using paired sample t-tests. (G) Selected lipids showing a similar direction of 

dysregulation in HCC tumor vs. adjacent non-tumor tissues and HCC vs. non-HCC 

serum samples in STX-Hispanics. Abbreviations of serum lipids: FA, fatty acyl chains in 

TAG; TAG, triacylglycerol; CER, ceramide; SM, sphingomyelin; PC, 

phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; PS, 

phosphatidylserine; PG, phosphatidylglycerol; LPC, lyso-phosphatidylcholine; LPE, 

lyso-phosphatidylethanolamine; aPC, plasmanyl-phosphatidylcholine; pPC, plasmenyl-

phosphatidylcholine; pPE, ethanolamine plasmalogens; AC, acylcarnitine; HNE, 

4−hydroxy nonenal. 
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Figure 1
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Figure 2

HBV/HCV
 HBV
 HCV
 Negative
N/A

Diabetes/Obesity/
Cirrhosis

  Yes
 No
N/A

A

C

FE

B

0.78

0.57

0.31

0.6

0.48
0.54

*** ** *

0.00

0.25

0.50

0.75

1.00

TERT promoter mutation

D

1

2

3

4

5

6

7

8

9

10

11

12

13
14
15
16

17
18

19
20

21 22

.

FDR=0.25

1q21.1 (7)

1q21.3 (11)

3q26.31 (139)

11q13.3 (7)

16q22.2 (1)

1p36.13 (2)
1q21.1 (5)

4p16.3 (6)

8p12 (43)

9p21.3 (27)

9q21.32 (15)

10q26.3 (24)

14q32.33 (6)

17p13.3 (9)
17p12 (10)
19p13.2 (9)

FDR=0.25

BCL9

EIF4A2
ETV5

IGF2BP2
MAP3K13

MECOM
PIK3CA

SOX2
TBL1XR1

CCND1

LEPROTL1
NRG1
WRN

CDKN2A

GNAQ

MGMT

CD209
MLLT1
VAV1

G

Pr
op

or
tio

n

ST
X-

H
IS

PA
N

IC
(n

=2
7)

TC
G

A−
AF

R
IC

AN
-

AM
ER

IC
AN

 (n
=1

4)

TC
G

A−
AS

IA
N

(n
=5

4)

TC
G

A−
H

IS
PA

N
IC

(n
=5

)

TC
G

A−
W

H
IT

E
(n

=1
13

)

To
to

ki
 Y

 e
t. 

al
.

(n
=4

69
)

C
op

y−
nu

m
be

r
Al

te
ra

tio
n

H
C

C
_3

8
H

C
C

_1
3

H
C

C
_3

4
H

C
C

_3
0

H
C

C
_1

9
H

C
C

_3
7

H
C

C
_3

5
H

C
C

_2
H

C
C

_1
22

H
C

C
_8

1
H

C
C

_2
0

H
C

C
_1

H
C

C
_4

H
C

C
_2

3
H

C
C

_2
1

H
C

C
_2

9
H

C
C

_3
6

H
C

C
_8

7
H

C
C

_7
7

H
C

C
_1

5
H

C
C

_1
8

H
C

C
_1

2
H

C
C

_2
4

H
C

C
_2

7
H

C
C

_3
2

H
C

C
_5

H
C

C
_6

0

50

100

TM
B

Age
Gender

Tumor grade
Pathological stage

HBV/HCV

Obesity
Cirrhosis

CTNNB1
TP53

WHSC1L1
TAF1
FAT4

AXIN2
RB1

POLD1
NFE2L2

MTOR
KMT2C
KMT2A
AXIN1

ACVR2A
ALB

BCL9
CCND1
EIF4A2

ORAOV1
RFC4

CDKN2A
PPP2CB

37%
22%
11%
11%
11%
11%
7%
7%
7%
7%
7%
7%
7%
7%
7%

7%
7%
7%
7%
7%
7%
7%

0 20 40

37%
18%
3%
18%
21%
8%
13%
5%
3%
5%
26%
24%
3%
5%
11%

0 20 40

26%
30%
1%
2%
4%
2%
5%
1%
3%
2%
5%
3%
7%
3%
13%

0 20 40

Alternations
Missense Mutation
Nonsense Mutation
Frame Shift Ins
Frame Shift Del
Splice Site
Multi Hit
Amp
Del

Pathological stage
 T1
 T2
 T3
 T4
N/A

Discovery
(n=27)

Validation
(n=38)

TCGA-LIHC
(n=363)

0.
07

0
0.

11
0.

11
0.

04
0.

11
0

0.
04

0 0.
01

0.
37 0.
38

0.
28

0.
22

0.
3

0.
07 0.

12
0.

02
0 0.

01
0.

22
0.

81
0.

36
0.

28
0.

24**

***

0.00

0.25

0.50

0.75

1.00

AXIN1 AXIN2 CTNNB1 MTOR TP53
Mutated Genes

Pr
op

or
tio

n

0.
07

0.
13

0.
11

0.
08

0.
07

0.
11

0.
07

0.
02

0 0.
01

0.
37

0.
13

0.
34 0.
35

0.
27

0.
07 0.

1
0.

03
0.

02
0.

02
0.

22
0.

38
0.

24
0.

35
0.

33
*
***

*

**

0.0

0.1

0.2

0.3

0.4

0.5

AXIN1 AXIN2 CTNNB1 MTOR TP53
Mutated Genes

Pr
op

or
tio

n

STX-HISPANIC (n=27)
TCGA−AFRICAN−AMERICAN (n=16)
TCGA−ASIAN (n=157)
TCGA−HISPANIC (n=18)
TCGA−WHITE (n=165)

48

22

22

7

4

4

Cell
cycle

p53

WNT

RTK-
RAS

PI3K

NRF2

0 20 40 60
Percent of patients affected

AXIN1
AXIN2
CTNNB1
TLE1
TLE4

TP53

CCND1
CDKN2A
CDKN2B
RB1

ERRFI1

PIK3CA

NFE2L2

Age Gender
FEMALE
MALE

Tumor grade
G1
G2
G3
G4

40
50
60
70
80
90

STX-HISPANIC (n=27)
LICA−CN (n=402)
LICA−FR (n=252)
LINC−JP (n=394)
LIRI−JP (n=258)

SBS85
SBS84
SBS44
SBS42
SBS41
SBS40
SBS39
SBS38
SBS37
SBS36
SBS35
SBS34
SBS33
SBS32
SBS31
SBS30
SBS29
SBS28
SBS26
SBS25
SBS24
SBS23
SBS22
SBS21
SBS20
SBS19
SBS18

SBS17b
SBS17a
SBS16
SBS15
SBS14
SBS13
SBS12
SBS11

SBS10b
SBS10a

SBS9
SBS8

SBS7d
SBS7c
SBS7b
SBS7a
SBS6
SBS5
SBS4
SBS3
SBS2
SBS1

H
C

C
_1

H
C

C
_2

H
C

C
_4

H
C

C
_5

H
C

C
_6

H
C

C
_1

2
H

C
C

_1
3

H
C

C
_1

5
H

C
C

_1
8

H
C

C
_1

9
H

C
C

_2
0

H
C

C
_2

1
H

C
C

_2
3

H
C

C
_2

4
H

C
C

_2
7

H
C

C
_2

9
H

C
C

_3
0

H
C

C
_3

2
H

C
C

_3
4

H
C

C
_3

5
H

C
C

_3
6

H
C

C
_3

7
H

C
C

_3
8

H
C

C
_7

7
H

C
C

_8
1

H
C

C
_8

7
H

C
C

_1
22

0
25
50
75
100

Percentage
contribution

Mean
contribution

0.5
0.4
0.3
0.2
0.1

NAFLD/NASH
Diabetes

NAFLD/
NASH

 NAFLD
 NASH
 Negative
N/A

Amplifications Deletions

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 30, 2024. ; https://doi.org/10.1101/2024.04.27.24306447doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.27.24306447


Figure 3
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Figure 4
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Figure 5
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