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Abstract 

Stress is a psychological condition due to the body’s response to a challenging situation. 

If a person is exposed to prolonged periods and various forms of stress, their physical 

and mental health can be negatively affected, leading to chronic health problems. It is 

important to detect stress in its initial stages to prevent psychological and physical 

stress-related issues. Thus, there must be alternative and effective solutions for 

spontaneous stress monitoring. Wearable sensors are one of the most prominent 

solutions, given their capacity to collect data continuously in real-time. Wearable 

sensors, among others, have been widely used to bridge existing gaps in stress 

monitoring thanks to their non-intrusive nature. Besides, they can continuously monitor 

vital signs, e.g., heart rate and activity. Yet, most existing works have focused on data 

acquired in controlled settings. To this end, our study aims to propose a machine 

learning-based approach for detecting the onsets of stress in a free-living environment 

using wearable sensors. The authors utilized the SWEET dataset collected from 240 

subjects via electrocardiography (ECG), skin temperature (ST), and skin conductance 

(SC). In this work, four machine learning models were tested on this data set consisting 

of 240 subjects, namely K-Nearest Neighbors (KNN), Support vector classification 

(SVC), Decision Tree (DT), and Random Forest (RF).  These models were trained and 

tested on four data scenarios. The K-Nearest Neighbor (KNN) model had the highest 

accuracy of 98%, while the other models also performed satisfactorily.   



Keywords 

Stress Detection, Early Detection, Wearables, SMOTE, Machine Learning, Free-Living  

1. Introduction 

Stress has become a widespread and influential factor in modern life, affecting 

individuals mentally and physically. Therefore, it is crucial to identify stress early and 

take appropriate action. Our research aims to identify stress using machine learning 

models effectively and before. The ability of machine learning to analyze patterns and 

complex relationships within data makes it a promising area for research. 

In engineering and medicine, early stress detection presents unique challenges and 

opportunities. Advancements in technology have led to the creation of innovative tools 

and methods for collecting, analyzing, and determining stress parameters objectively. 

As a result of continuous research and development, wearables, physiological sensors, 

and biometric data analytics have emerged as key components in the engineering 

arsenal of stress detection. This study analyzes measurements obtained from wearable 

sensors by machine learning algorithms to create robust models capable of 

discriminating stress-related subtle patterns. 

In medical terms, stress refers to the body’s reaction to a difficult situation, such as 

severe anxiety when receiving an important e-mail or a phone call at an inappropriate 

time. Clinically, it refers to a psychological state of fear, severe anxiety, or distress that 

leads to physical and mental health problems. The most common physical problems 

associated with stress include weight loss, vascular disease, headaches, sleep problems, 

impaired immune function, and heart disease. In addition, stress can affect mental 

health and cause severe anxiety and depression [1]. 

Stress is considered one of the ten most important social determinants of health 

differences. It detrimentally impacts both mental and physical well-being, exerting a 

negative influence on both societal dynamics and economic factors. Thus, organizations 

such as the Occupational Safety and Health Administration, the World Health 

Organization, and the American Psychological Association consistently raise 

awareness about stress's negative effects [2]. According to the statistics of the American 

Institute of Stress, 80% of employees suffer from stress during their shift, and statistics 

also highlight student suicides’ between the ages of 15 and 29 related to stress [3]. In 



recent decades, the rise in traffic accidents and fatalities has been linked to an uptick in 

driver fatigue, tiredness, and psychological strain [4]. 

Early detection of stress is crucial in preventing stress-related psychological and health 

problems. In addition, the approach to stress detection should be comprehensive and 

consider the physiological indicators and environmental conditions surrounding the 

person. The precision of stress detection has significantly increased through the 

seamless integration of machine learning into medical practices and the pervasive 

incorporation of wearable sensors into individuals’ daily lives. In addition, this 

approach enables the identification of stress based on an individual’s surroundings, 

facilitating meeting individual needs. 

Stress does not just affect a person’s mental and physical well-being; it affects the well-

being of a nation’s population, which has an economic and social impact, so it is 

essential to recognize stress early on.  In general, identifying the environment 

surrounding individuals exposed to stress besides their physiological signals allows 

researchers to treat stress in its early stages, reduce the risk of chronic health conditions, 

and the ability to improve the quality of life. Thus, developing reliable early 

intervention strategies for stress detection shall involve lifestyle adjustments, 

behavioral interventions, and traditional targeted therapy. 

Traditionally, stress detection relies on textual information gathered through interviews 

and questionnaires [5, 6]. Still, these methods could be improved given their time-

consuming nature and inherent biases, providing only isolated glimpses into patients’ 

well-being. Overcoming these limitations, the present research has adopted innovative 

approaches, e.g., wearable sensors [7] [8] [9] [10] [11] [12] [13] [14] [15] and the 

inclusion of audio and visual data [7] [8] for timely and comprehensive stress detection. 

Despite the widespread use of questionnaire methodologies in stress detection, as 

previously outlined and further elucidated later, they still need to be improved. A 

significant drawback is an inherent inaccuracy stemming from self-reporting, which is 

susceptible to biases. Responses may be influenced by social desirability or a tendency 

to present oneself positively, revealing a clear element of self-bias. Furthermore, 

relying on self-reported stress levels raises concerns about individuals’ capacity to 

recall and articulate the extent of their stress accurately and consistently. 

Additionally, the one-time nature of questionnaires may not capture the dynamic and 

evolving nature of stress since stressors and coping mechanisms can change over time. 

A questionnaire-based approach may not fully explore the nuanced aspects of stress 



individuals experience due to relying on predefined questions—the structured format 

of the questionnaire risks limiting individuals’ ability to express difficult aspects of 

stress. Further examination is needed to understand stress more deeply from the lived 

experience perspective rather than predefined indicators. Due to the previously 

mentioned gaps and shortcomings of questionnaire-based approaches, researchers 

should refer to physiological signals in addition to questionnaires as a complementary 

step.  

Machine learning has brought about a revolutionary shift in stress detection, allowing 

researchers to avoid the pitfalls of earlier methods. It introduces powerful tools for 

efficiently processing and analyzing extensive datasets characterized by complex 

patterns. A paramount achievement of machine learning is its ability to grapple with 

the intricacies of stress-related phenomena, steering clear of the surface-level 

perspectives that traditional methods often succumb to. The strength of machine 

learning algorithms lies in their ability to recognize subtle correlations and distinctions 

in collected data and their resilience against the influence of social preferences. It is 

worth mentioning that fine-tuning these methods can continuously improve their 

performance and adaptability to individual variations and progressively increase their 

stress detection accuracy. 

Various studies have been implemented to detect stress using physiological parameters. 

The reason is that many psychological factors can cause stress, such as persistent worry 

about losing a job, approaching a deadline, etc. These physiological changes result in 

the body’s “fight-or-flight” response [10]. The rates of specific vital signs can increase 

or decrease as a response to stress, such as an increase in the number of heartbeats or a 

decrease in body temperature. These changes in vital signs mirror a person’s 

physiological parameters, enabling researchers to detect stress using wearable sensors. 

This paper endeavors to identify physiological alterations induced by stress. The 

complex interaction between stress and the sympathetic nervous system releases 

cortisol and adrenaline, triggering a cascade of physiological responses. This hormonal 

release manifests in an elevated heartbeat, influencing respiratory patterns, inducing 

perspiration, altering body temperature, and causing muscle tension. Consequently, by 

vigilantly monitoring these nuanced physiological changes, the machine learning model 

gains the ability to effectively discern and detect the presence of stress [10] [13] [14]. 

Smartphones and smartwatches have been widely used in recent years. This 

technological revolution has given way to so-called wearable sensors that measure vital 



signs in a nailed way throughout the day. Wearable sensors enable continuous 

monitoring of vital signs and daily activities via electrocardiogram (ECG), respiration 

(RSP), blood volume pulse (BVP), Skin conductance (SC), and skin temperature (ST) 

sensors. Wearable sensor technology has surpassed its counterpart methods (e.g., 

questionnaires) in detecting stress thanks to its ability to monitor vitals continuously 

without disturbing daily life routines [16] [17].  

This research introduces a machine learning-based approach for the early detection of 

stress. One important foundation for this research is a holistic view of stress, i.e., not 

looking at stress from one angle. This rule has been established to contribute to the 

development of effective stress detection models. Based on this rule, it was imperative 

to find a dataset containing physiological signals of stress, provided that these signals 

were collected under normal life conditions and not collected under controlled settings. 

The following section reviews the previous literature in the stress detection field. This 

review encompasses the implementation of machine learning models, a thorough 

exploration of dataset characteristics, and a presentation of the resultant findings. This 

interdisciplinary exploration aims to deepen the collective understanding of stress and 

various stress detection models, thereby contributing to overall well-being. 

2. Related work 

Research on stress detection using machine learning is rich and diverse, as different 

methodologies and approaches are explored to meet the complex challenges associated 

with identifying stress indicators. This section reviews some of the previous literature 

in the field of stress detection, summarizing the methodologies of these studies, the data 

sets used, and the main results. Given the pivotal role of machine learning models in 

stress detection research, this role should have been strongly highlighted. Support 

vector machines (SVMs), decision trees (DT), random forests (RF), and neural 

networks (NN) are just a few of the algorithms that have been used to analyze various 

datasets of physiological signals [18]. Diverse patterns that signify stress can be 

captured differently by these models. 

Attempts to automate and improve stress detection have become increasingly common 

in recent years. At the same time, coordinated efforts have been made to create stress 

datasets to promote a deep understanding of stress and its management. While a limited 

number of stress datasets are publicly accessible, most remain proprietary and owned 

by dedicated research groups. It is necessary to carefully extract and curate relevant 



features to improve the accuracy of machine learning models in stress detection. A wide 

range of features are covered in this study, from behavioral characteristics closely 

associated with user interactions to time and frequency domain attributes obtained from 

physiological signals. 

An essential part of stress detection is extracting frequency domain features from 

physiological signals. Sliding-time windows are widely used for removing time domain 

features from time series data segments [19] [20]. In [19] [21], frequency domain 

features are derived by focusing on high and low-frequency zones. Following this, 

essential statistical metrics such as kurtosis, mean, and standard deviation are 

computed, constituting a robust methodology for stress detection. 

In the study by [22], emphasis was placed on datasets obtained from an array of 

physiological sensors encompassing electrooculogram, blood volume pulse, respiration 

rate, magnetoencephalography, acceleration, pulse oximetry, skin temperature, eye 

tracker, and ECG sensors. Forty-four physiological features were extracted to detect the 

stress via the eXtreme Gradient Boosting (XG Boost) technique. This study explored 

two datasets, including Snake and Cogload, each comprising 23 subjects. Notably, the 

authors achieved an accuracy rate of 80% for stress detection. 

The study in [23] included a comprehensive analysis of classification and regression 

methods for stress detection. The researchers based their theoretical investigation on 

the AffectiveROAD dataset, a publicly available dataset compiled via an Empatica E4 

sensor. The authors employed a Bagged tree-based ensemble for regression, while a 

random forest classifier was used for classification purposes. It is worth mentioning 

that the features derived from skin temperature and pulse blood volume sensors 

provided the highest accuracy, reaching 82.3% for regression and 74.1% for 

classification, respectively. 

The study presented in [24] examined the effects of stress on adolescents. To explore 

this, the authors conducted research involving high school students, generating a dataset 

using the Empatica E4 wearable sensor worn as a wristband. The study involved eight 

students whose vital signs were monitored for four weeks. From this continuous 

monitoring, 756 features were extracted across various biomarkers. The classification 

process employed a random forest classifier, resulting in a remarkable accuracy rate of 

89.4%. 

In [25], the authors examined the relative sensitivity and specificity of common vital 

indicators of stress gathered from healthy individuals subjected to various induced 



emotional states. The most common biomarkers of stress detection (e.g., heart rate, skin 

conductance, heart rate variability, respiratory rate, respiratory rate interval, and muscle 

activation) were evaluated using the WESAD dataset. Five features were extracted from 

the vital indicators, and then the classification was carried out using logistic regression, 

with the highest accuracy reaching 85.71%. 

In [26], the researchers utilized the WESAD dataset, accumulating 14 relevant features. 

A neural network was subsequently employed for classification, yielding an accuracy 

of 85%. In this context, a novel approach to acute stress detection focusing on 

electrodermal activity was presented in [27]. The authors carefully assembled their data 

set by collecting data from 75 volunteers using a single sensor. The stress detection 

accuracy was 94.62% and was achieved by extracting 14 distinctive features and 

employing classification through Random Forest (RF) and Support Vector Machine 

(SVM) classifiers. 

One of the most famous and well-known stress detection datasets is WESAD [28], 

introduced in [10]. Despite its considerable recognition, the dataset comes from a 

relatively limited number of 15 subjects. The dataset is collected by attaching sensors 

to participants’ chests and wrists. It includes three-axis acceleration, electrocardiogram, 

blood volume pulse, body temperature, respiration, electromyogram, and electrodermal 

activity recorded by RespiBAN Professional and Empatica E4 [10]. This dataset 

classified stress into two classes: a binary representation (stress or no stress) and three 

levels (stress, baseline, amusement). Consequently, the highest accuracies for these 

classifications were 93.12% and 80.34%, respectively. 

In a recent development, [29] introduced the SWELL-KW dataset, which is publicly 

accessible. This dataset originates from 25 volunteers engaged in office-related tasks 

such as reading and writing. The volunteers operated under two distinct working 

conditions: receiving emails and facing time constraints. Recorded data encompassed a 

spectrum of parameters, including facial expressions, skin conductance, body positions, 

computer usage, and heart rate. This dataset was evaluated through questionnaires 

rigorously scrutinized for their effectiveness and alignment with mental effort and task 

load measures. 

Furthermore, a large-scale cross-sectional study, a.k.a. SWEET, to detect stress 

included 1002 participants [30]. Throughout the study, vital signs were collected for 

each volunteer through smartphones and wearable devices over five consecutive days. 

Two wearable devices were used to monitor skin temperature, electrocardiogram, and 



skin conductance. The first of the two devices is the chest patch, and it was designed to 

measure the electrocardiogram and acceleration at a sampling rate of 256 and 32 Hz. 

The second device was the imec’s Chillband worn on the wrist to monitor skin 

temperature, skin conductance, and acceleration sampled at 256, 1, and 32 Hz, 

respectively. As for the device worn on the wrist, participants were advised to use it 

only during the day and at night and take it off during bath times and strong physical 

exertion. For the chest patch, participants were advised to wear it day and night during 

normal daily life tasks such as bathing. Participants were warned to take it off during 

strong physical exertion. 

While there has been a significant advancement in machine learning for stress detection, 

numerous obstacles remain. The lack of a single, comprehensive data set, the variations 

in health and ethnicity among individuals, and the gender of the model—which is 

thought to be complex—are the main causes of these limitations. These challenges have 

caught our attention and motivated us to make a concerted effort to understand this 

complexity better. As far as our pursuit of a better life is concerned, our main goal and 

concern is the ability to detect stress with high accuracy. Therefore, we strongly believe 

in the need to train machine learning models on physiological signals and everyday 

activities. We chose a dataset collected while the volunteers were performing their daily 

lives because we aim to improve individuals' lives to cope with stress. 

Based on the findings from previous studies of relevant stress detection research, our 

methodology seeks to fill existing gaps and overcome challenges by using a range of 

machine learning models. Diverging from the controlled settings often employed in 

initial studies, our approach adopts a more ecological and lifelike context. The dataset 

used for this study was collected while subjects participated in their daily routine 

activities without consciously induced stressful scenarios. This approach envisions 

capturing the complexity and variations of stress in the free-living environment and 

promoting a more precise understanding of stress recognition in individuals’ daily lives. 

3. Methodology 

3.1. SWEET Dataset 

This work used the dataset presented in [30] with prior permission. In [30], the study 

known as SWEET (stress in the work environment) was carried out on 1002 healthy 

adult volunteers (484 males and 451 females, in addition, of whom 76 volunteers did 



not fill out the questionnaires correctly) whose vital signs were monitored over five 

days a week (Thursday to Monday) for two years. The ages of the 1,002 volunteers 

ranged from 29.6 to 49.4. They work in 11 companies, some of which are in the public 

sector, some of which are banking and technology-oriented.  

The volunteers in this study conducted four psychological questionnaires to assess the 

level of general health, anxiety, basic stress, sleep, and depression. Vital signs collected 

were ST, SC, and ECG via two portable devices. Both were used to measure the 3D 

ACC signal, which is used to control motion artifacts and estimate the intensity of 

physical activity. The first of the two devices is a chest patch intended for measuring 

the ECG and ACC with a sampling rate of 256 and 32 Hz, respectively. The second 

wearable device is the imec’s Chillband; this device is worn on the wrist and designed 

to measure SC, ST, and ACC and sampled at 256, 1, and 32 Hz, respectively.  

The experiment participants were instructed to wear the bracelet during the day and 

remove it at night. The chest patch is worn during the day and night. Additionally, 

participants were asked to take off the bracelet when showering and both devices when 

doing intense physical activity. This dataset contained physiological data and periodic 

questions indicating the most important aspects of daily life activities and consumption. 

The authors [30] designed a smartphone app to alert participants to complete 

questionnaires. 

The smartphone application alerts the participants in the experiment twelve times a day 

to fill out questionnaires randomly so that the duration between the two consecutive 

questionnaires is approximately 30 minutes. The questionnaire consists of four brief 

questions. The first question is about emotional feelings related to stress, namely 

dominance, pleasure, and arousal (i.e., level of control). The second question was about 

the stress level on the 5-point Likert scale, and stress was not asked by choosing 

between three options: low, medium, and high stress.  

A person’s behavior in daily life when eating and drinking, as well as their regular daily 

activities, can affect the function of organs. The third and fourth questions were 

intended to cover this part of the life of the individual participating in this experiment. 

The planned consumption was mainly on food and drinks. Hence, the volunteers had to 

fill out a questionnaire with the type of drink or the name of the meal they ate by a 

particular number, as shown in Table 1. 

Table 1 Overview of subject consumption. 

Consumption 



Caffeine drinks 1 

Alcoholic drinks 2 

Soft drinks 3 

Breakfast 4 

Lunch 5 

Dinner 6 

Snack 7 

None 8 

Also, activities carried out by volunteers were included in the questionnaire, given that 

each activity has a particular number similar to the consumption (Table 2). 

Table 2 Overview of subject activity. 

Activity 

Lying down 1 

Sitting 2 

Standing 3 

Walking 4 

Running 5 

Biking 6 

Driving the car 7 

Something else 8 

The datasets we made available contained 240 volunteers, with 5 days for each 

volunteer. It is worth mentioning that readings of the different sensors needed time-

synchronization. As a result, a re-synchronization was performed to align readings 

across all sensors. 

3.2. Pre-processing 

Evaluating signal quality is critical because sensor readings can malfunction due to 

incorrect placement. As mentioned in [31], one of the ECG quality indicators is that the 

heart rate values should be limited between 40 and 180 BPM. In addition, the ECG 

readings are viewed from a different perspective, namely the accelerometer readings, 

so the ECG readings are acceptable when the standard deviation values are higher than 

0.04. However, the ECG readings are discarded if the standard deviation is less than 

0.04. After deleting ECG measurements with a standard deviation of less than 0.04, the 

remaining measurements should be continuous for ten minutes after deletion. If the 

measurements do not span a full ten-minute window, these measurements are deleted 

to ensure stability of the measurements.  



Furthermore, according to [32], the values of SC should be higher than 0.001 µS and 

lower than 0.9 S. To maintain the stability of the readings output by the SC sensor, the 

first 15 minutes of readings are deleted due to irregular sweating immediately after 

wearing the band; In addition, due to the instability of the readings, the last 10 seconds 

of readings will be deleted before removing the bracelet. Additionally, readings under 

3 seconds will be deleted, and the duration of correct readings should not be less than 

a 5-second window with 8 readings per second. The difference between the readings of 

one second should not exceed 20%, and the difference between them should not be less 

than 10%; otherwise, during one of the seconds, 8 readings will be omitted for that 

second. According to [33], one of the quality indicators for skin temperature is that the 

values are limited to 20 to 40 degrees Celsius.  

Based on the above limits, outliers were removed. After combining all user data, we 

created 9655 samples for 238 users, each representing 1 minute of recording. The 

questionnaires from 238 volunteers on stress were distributed as follows: 71.7% had 

level 1 stress (6921 total samples), indicating no stress; 21% level two stress (full 

sample 2024); 5.2% level three stress (total 504 samples), 2.1% level four stress (total 

204 samples), and almost 0% level five stress (total 2 samples), indicating the highest 

stress level, as shown in Figure 2. 

 

Figure 1 Distribution of samples in five stress levels. 

Since our research aims to identify stress and its severity, we only looked at the times 

when the volunteers chose one of the five stress levels. It has already been pointed out 

that the authors [30] did not make any selection in the questionnaire regarding the state 

of stress in this form (no stress at all, mild, moderate, very tense). The authors rated the 

stress level in five levels, from 1 to 5. If volunteers choose No. 1, there is no stress; if 

they choose No. 5, it means they are under maximum stress. 



The authors found Self-reported stress responses to be highly unbalanced [30]. For this 

reason, we suggest combining the three highest stress levels into one. Put another way, 

options 3 through 5 were merged into a single level, considering three stress levels as 

opposed to five (level 0 = no stress, level 1 = light stress, and level 2 = high stress). 

This results in the number of samples for Level 0 (6921 samples), Level 1 (2024 

samples), and Level 2 (710 samples), representing 71.7%, 21%, and 7.4% of the total 

number of samples, respectively, as indicated in Figure 2. 

 

                                      Figure 2 Distribution of samples in three stress levels. 

After merging, the data was still unbalanced; thus, SMOTE (Synthetic Minority 

Oversampling Technique) was utilized to solve this issue. SMOTE is a resampling 

technique commonly used in machine learning to correct class imbalances in datasets, 

particularly in classification.  

One of these problems is the bias of the classifier to the class containing a larger number 

of samples. After using SMOTE, the number of samples (6922) at each of the three 

stress levels is shown in Figure 3. 

 

Figure 3 Distribution of samples into three stress levels after using the SMOTE technique. 



Based on the approach presented in [30], we summarized the stress levels from level 2 

to level 5 on the five-level stress scale into one level, called level 1, indicating the 

presence of stress. Furthermore, Level 1 on the five-point scale was maintained without 

transitioning to Level 0, again showing the absence of stress.  

We then ended up with a binary classification problem where level 1 indicates the 

presence of stress, contains samples from levels 2 to 5 on the five-level stress scale, and 

level 0 indicates the absence of stress. It includes samples from level 1 of the five-level 

stress scale. The number of stage 0 samples (6921 samples) represents 71.7% of the 

total samples, in contrast to the number of stage 1 samples (2734 samples), representing 

28.3% of the total samples, as shown in Figure 4. 

 

Figure 4 Distribution of samples into two stress levels. 

It can be seen that even after converting the stress levels from 5 to only two levels, the 

problem of data imbalance still exists, which also required the use of SMOTE in this 

case. After using SMOTE, the number of samples in both layers was (6922 samples), 

as shown in Figure 5.  

 

Figure 5 Distribution of samples into two stress levels after using SMOTE. 



3.3. Feature extraction 

There are several methods to extract features from physiological signals, including 

time-domain features, frequency-domain features, and statistical-based features. As 

mentioned in [34], statistical features such as min, max, mean, and standard deviation 

(std) have achieved good results in stress classification. By contrast, flatness and skew 

showed modest performance in this task. The authors in [30] calculated 19 features of 

physiological signals of good quality were divided as follows (6 features for ECG, 4 

features for ST, 8 features for SC, and 1 feature for ACC); the description of these 

features is shown in Table 3. 

Table 3 Calculated features and their descriptions. 

Nr. Physiological signal Feature Abbreviation 

1 

ECG 

1. Mean heart rate (HR) 
ECG mean 

HR 

2 2. Standard deviation of RR intervals ECG SDNN 

3 
3. Root mean square of successive RR 

differences ECG RMSSD 

4 
4. Low-frequency signal (power in the 

0.04-0.015 Hz band) ECG LF 

5 
5. High-frequency signal (power in the 

0.15-0.4 Hz band) ECG HF 

6 6. Ratio of low and high frequency ECG LFHF 

7 

SC 

1. SC level – average SC SC mean 

8 
2. Phasic SC – signal power of the phasic 

SC signal SC phasic 

9 

3. SC response rate – the number of SC 

responses (i.e., peaks) in the window 

divided by the total length of the window 

(i.e., responses per second) 

SC RR 

10 
4. SC second difference - signal power in 

second difference from the SC signal SC diff2 



11 5. SC response - number of SC responses SC R 

12 
6. SC magnitude - the sum of the 

magnitudes of SC responses SC mag 

13 
7. SC duration - the sum of the duration of 

SC responses in seconds SC dur 

14 

8. SC area - the sum of the area of SC 

responses in seconds. The area is defined 

using the triangular method (1/2*SC 

mag*SC dur) 

SC area 

15 

ST 

1. Mean ST ST mean 

16 2. Median ST ST median 

17 3. Standard deviation ST ST SD 

18 
4. Slope of the ST – the slope of a straight 

line fitted through the data ST slope 

19 ACC 

The standard deviation of the magnitude 

of the accelerometer signal – a measure of 

movement intensity 

ACC SD 

 

The authors in [30] found that consumption of caffeinated drinks or breakfast corresponded to 

high levels of stress; on the contrary, during dinner or alcohol consumption, this corresponds 

to a low level of stress, and this has been demonstrated in our research through the correlation 

matrix shown in Figure (6). The matrix visually represents the interplay between stress and key 

factors, offering insights into the intricate connections among physiological responses, lifestyle 

activities, and stress patterns. 

 



 

Figure 6 Correlation Matrix depicting the relationship between Stress and Physiological Signals features, 

Consumption, and Activities. 

In [34][35][36], the high frequency (HF) component represents cardiac 

parasympathetic nerve activity during rest, and the LF component represents 

sympathetic nerve activity during stress. Thus, the low-frequency (LF) and the Low-

Frequency to High-Frequency ratio (LFHF) components are expected to be higher 

during stress conditions and the HF component to be lower. In general, RMSSD has 

been reported to be more reliable than LFHF, in particular, because of the mechanical 

effects of respiration on HF power and the impact of prevailing heart rate on LF power. 

After considering the recommendations mentioned in [30], the 19 features were reduced 

to only 10 features using the Benjamini-Hochberg procedure, namely 2 for the SC 

(SC_area and SC_phasic), 2 for the ST (ST_median and ST_std), and 6 for the ECG 

(ECG mean HR, ECG SDNN, ECG RMSSD, ECG LF, ECG HF, and ECG QI_mean). 

Numerous features have been identified in this section based on physiological signals 

and contextual data gathered from the data set referenced in [30]. This thorough 

approach allowed us to investigate the complex nature of stress. In the following 

section, these features will be employed to train and enable our machine-learning 

models to identify complex stress patterns in real-life scenarios. 



3.4. Classification 

Several machine learning algorithms have been used in stress detection. In this section, 

a brief overview of these algorithms is provided. In addition, the hyperparameters of 

each model will be discussed, as well as how they can be adjusted to achieve optimal 

results.   

3.4.1. K-Nearest Neighbors (KNN) 

As a non-parametric method for classification and regression, K-Nearest Neighbors 

(KNN) is introduced. The KNN approach makes predictions based on the output 

variable’s k-nearest neighbors’ average value or majority class. Researchers 

highlighted KN’s simplicity and flexibility, emphasizing its ability to adapt to complex 

patterns in the data without making strong assumptions about the underlying 

distribution [37]. KNN is a useful algorithm commonly used for classification tasks, 

making it an effective tool for predicting stress levels. The proximity-based approach 

enables the model to recognize patterns and relationships in the data. It was also 

mentioned in [38] the importance of distance metrics such as Manhattan distance or 

Euclidean in determining the sameness between data points. 

Regarding classification and regression tasks, KNN is a simple and intuitive algorithm. 

The central principle of KNN is to predict the class or value of a data point depending 

on the average value or majority class of its k nearest neighbors in the feature space. In 

classification mode, the KNN algorithm classifies a new instance by identifying the 

class that occurs most frequently among its k nearest neighbors. In regression mode, 

the expected value is the average of the purpose values of the k nearest neighbors. KNN 

assumes that similar samples in the feature space should have the same output values. 

This article used the KNN technique to classify stress levels once into two levels and 

then again into three. The hyperparameters of KNN are optimized using grid search to 

ensure the highest accuracy, i.e., H. for all cases (binary case with the use of SMOTE, 

binary case without use of SMOTE, three classes with the use of SMOTE, and three 

classes without use of SMOTE) and were as follows n_neighbors = 3, P = 1 and weights 

= distance. 

3.4.2. Support vector classification (SVC) 

Support Vector Machines (SVM) are powerful supervised learning algorithms for 

classification and regression. SVC is a particular type of SVM designed for 

classification tasks; the primary aim of SVC is to meet a hyperplane that best 



individualizes the data into various classes while maximizing the border between 

classes. A hyperplane's border is defined as the distance between it and the nearest data 

point of any class, and the optimal hyperplane maximizes this distance. They may be 

referring to Support Vector Regression SVR, another variant of SVM designed for 

regression tasks. 

This paper used the SVC technique to classify stress levels once into two levels and 

again into three levels. The hyperparameters of SVC are tuned using grid search to 

ensure the highest accuracy, that's for all cases (binary case with using SMOTE, binary 

case without using SMOTE, three classes with using SMOTE, and three classes without 

using SMOTE) and were as follows the regularization parameter (c) = 10, gamma = 1, 

and kernel = Radial Basis Function (RBF). 

3.4.3. Decision Tree (DT) 

Decision trees are one of the most widely used machine learning algorithms for 

classification and regression tasks. Based on the value of the input features, the input 

space is recursively divided into subsets, creating a tree-like structure where each 

internal node represents a decision based on a feature, each branch represents the 

possible outcomes of that decision, and the leaf node represents the final output. From 

the previous explanation of DT parts, the key components were root nodes, internal 

nodes, branches, and leaves. 

DT process begins with picking the feature that best branches the data into subsets, 

striving to maximize the similar class labels (homogeneity)within each subset. This 

process is called Node Splitting. Then, the previous procedure is repeated for each 

subset, establishing child nodes and further sectionalization of the data until a stopping 

criterion is matched; this process is called Recursive Partitioning. Typical stopping 

criteria include a peak in tree depth, a minimum number of samples per leaf, and a 

homogeneity threshold. 

In classification tasks, leaf nodes represent class labels. A decision at every internal 

node is based on a feature's value to assign the correct class label. This paper used the 

DT technique as a classifier to classify stress levels once into two levels and again into 

three levels. The hyperparameters of DT are tuned using grid search to ensure the 

highest accuracy for all cases (binary case with SMOTE, binary case without SMOTE, 

three classes with SMOTE, and three classes without SMOTE). 



In the case of two classes with SMOTE, the hyper-parameters were Criterion = 

'entropy,' the advantage of choosing the entropy criterion to measure the information 

earned achieved by splitting nodes. At each node, it is used to determine the best feature 

to split on. Entropy focuses on minimizing uncertainty in class labels. Maximum Depth 

= None: choose the maximum depth to 'None' and enable the tree to expand till each 

leaf node is pure (contains samples of only one class) or till the minimum sample leaf 

criterion is matched. When choosing the maximum depth to be 'None,' prevent 

overfitting by permitting the tree to adjust to the complexity of the data. Minimum 

Sample Leaf = 1: this lower value allows the tree to generate smaller leaf nodes, 

probably capturing finer patterns. Minimum Sample Split = 2:  In a binary classification 

situation, a node will not divide if the number of samples is less than this value, 

promoting the overall generalization of the model. These hyper-parameters were the 

same as they were in the case of three classes with SMOTE. 

In the case of two classes without using SMOTE, The hyper-parameters were largely 

the same as that in the case in which the SMOTE was used, except that the parameter 

of minimum Sample Split = 5:  choose a higher value such as 5 to ensure that the tree 

constructs more robust decision nodes, this ensures that the model is not biased towards 

classes that have a larger number of samples. As in the case of three classes without 

using SMOTE, the hyperparameters were the same as in the case of three classes with 

SMOTE, except Maximum Depth = 20. This is to help control the complexity of the 

model, which may prevent overfitting and improve generalization. 

3.4.4. Random Forest (RF) 

Random Forest is an ensemble learning technique that establishes multiple decision 

trees and amalgamates their outputs to improve predictive performance and minimize 

overfitting. Every decision tree within the forest undergoes training on a randomly 

selected subset of the dataset. The ultimate prediction typically relies on a majority vote 

or averaging, contingent on the nature of the task, whether it involves classification or 

regression [37]. 

Random Forest employs bagging, generating numerous bootstrap samples (random 

samples with replacement) derived from the initial dataset. Each tree is then trained 

using one of these bootstrap samples. Each decision tree node randomly evaluates a 

subset of features for division. This introduces extra randomness and diversity among 

the trees, enhancing the overall resilience of the ensemble. The ultimate prediction is 



established in classification scenarios through a majority vote from the trees. In 

regression tasks, the typical approach involves calculating the average of the 

predictions made by each tree. The hyperparameters of RF are tuned using grid search 

to ensure the highest accuracy, that is for all cases (binary case with using SMOTE, 

binary case without using SMOTE, three classes with using SMOTE, and three classes 

without using SMOTE) and were as follows n_estimators=100 and random_state=42. 

The proposed machine learning models are trained over a private SWEET dataset [30]. 

One of the main factors that guided us to use the SWEET database is that it includes 

1002 participants. However, only 240 were approved for the work, two of which were 

broken, so the task was done over 238 subjects. This number is significantly higher than 

the number of participants in other well-known stress detection datasets, like the SWAT 

database. Likewise, the other key factor in choosing this database is that the 

participants’ data were collected under normal life conditions, which allows us to have 

a more comprehensive understanding of stress. 

The classification task became more challenging as a result of these two elements. This 

is caused by several things, one of which is that there will be an imbalance in the data 

because no laboratory intervention was used during data collection. Additionally, 

obtaining useful data from sensors when going about one’s regular business is very 

difficult because of the most basic everyday details, such as body movement and 

friction between the sensors and clothing. These factors all impact the sensors’ readings 

and can cause them to become noisy. 

4. Results 

Every machine learning model was evaluated using four different classification 

scenarios. In the first instance, the stress data was split into two unbalanced classes: 

those with and without stress. In the second scenario, we have the same material as the 

first two classes but have resolved the imbalance issue. The division of stress into three 

unequal classes—no stress, stress, and high stress—represents the third scenario. The 

fourth example is the same as the cases from the first three classes but with the 

imbalance issue resolved. 

The problem of unbalanced data was solved using SMOTE. Employing the SMOTE, 

synthetic instances of the minority class are generated by interpolating existing 

samples. By doing this, the balance of the dataset is improved, and the model's 

performance in underrepresented categories is improved. Thus, in the case of the binary 



without using smote, we get 2734 samples for stress and 6921 samples for no stress, 

and when using SMOTE, we have 6922 samples for both no stress and for stress 

equally. As for the case that we have three stress levels, without using SMOTE, we got 

6921 samples for no stress, 2024 samples for medium stress, and 710 for high stress, 

and if we used SMOTE, we got 6922 samples for both no stress and for medium stress 

and high stress equally. 

To assess the efficiency of the proposed method, we divided the existing samples into 

three parts and they are (training, validation, and testing). The samples were divided 

into training, validation, and testing to avoid problems such as overfitting, ensure the 

model adapts well to new data, and assess its effectiveness in real-world situations. This 

procedure assessed the trained model's generalization ability to completely unknown 

individuals whose registrations were not included in the training data. To increase the 

efficiency of the models, the grid search function is used, which tunes better hyper-

parameters.   

The classification performance was assessed using accuracy, the F1-score, recall 

(sensitivity), precision (positive predictive values), and area under the curve (AUC). A 

method's accuracy and AUC determine how well it performs across all classes of 

samples, whereas the F1-score, recall, and precision indicate how well it distinguishes 

between classes. Accuracy, precision, recall, and F1-score can be calculated as follows:  

Accuracy =  
(TP + TN)

(TP+ TN+ FP+ FN)
 × 100%          (1) 

Precision =  
TP

TP+ FP
 × 100%                         (2) 

Recall =  
TP

TP+ FN
 × 100%                              (3) 

F1 − Score =  
(2 × Precision × Recall)

(Precision+ Recall)
               (4) 

Where TP is the number of correctly classified positive samples, FP is the number of 

incorrectly classified negative samples. In this case, TN is the number of incorrectly 

classified positive samples, and FN represents the number of positive samples 

incorrectly classified as negative.  

Accuracy (ACC) measures the classifier’s performance, quantifying the ratio between 

the correct classified classes and all predictions, as shown in equation (1). However, 

relying on the accuracy scale alone does not provide a complete picture of the model's 

performance for two reasons. The first reason is that the accuracy scale is sensitive to 

data imbalance, an existing problem in our work that should be avoided. The second 



reason is that the model's performance is very likely to differ from the performance of 

the other model. Still, their accuracy scale is the same because the accuracy scale in its 

calculation, as shown in equation (1), is based on the number of incorrect and correct 

predictions [39]. 

Consequently, recall and precision had to be used to fully capture the model's 

performance from all angles and prevent models from becoming biased due to data 

imbalances. Equation (2) illustrates how the precision measure ascertains whether the 

dataset contains false positives, compromising overall accuracy. Equation (3) [40] 

describes recall, which measures how well a classifier predicts positive labels based on 

the quality of a match.  

Confusion matrices help compare the classifier's performance between the actual and 

predicted classes. The fundamental elements of the confusion matrix are True Positives 

(TP), True Negatives (TN), False Positives (FP), and False Negatives (FN). False 

Positives (FP) and False Negatives (FN) happen when the prediction does not match 

the actual emotional classes. When expected and actual emotional classes are positive 

and negative, respectively, TPs and TNs are applied. Although a negative class is 

anticipated, a positive class is seen. Both a positive and a negative predicted class apply 

to FN. 

4.1. KNN Results 

This section will review KNN's performance and results through four data scenarios. In 

these four scenarios, the network search technique has adjusted the hyperparameters to 

ensure the best values are reached, which leads to the best results. The hyperparameters 

in the four cases were as follows: n_neighbors = 3, P = 1, and weights = distance. In 

Table 4, KNN’s performance during data handling for the four data cases will be 

detailed. 

Table 4 Classification performance of the KNN model in four scenarios. 

Data scenarios Accuracy Recall Precision F1-Score 

Two levels without SMOTE 98.447 97.994 98.203 98.097 

Two levels with SMOTE 98.086 98.086 98.085 98.085 

Three levels without SMOTE 98.343 97.840 97.752 97.793 

Three levels with SMOTE 98.314 98.309 98.315 98.310 



Looking at Table 4, two very important things become clear. The first is that the system 

becomes more stable when using SMOTE, as evidenced by the constant accuracy, 

recall, precision, and F1 score values. Second, the performance of KNN was similar in 

the four scenarios handled by KNN, and in [38], it was found that KNN can adapt to 

complex patterns in the data without making strong assumptions about the underlying 

distribution. For the picture to be complete and to evaluate the performance of the KNN 

machine learning classification model, the confusion matrix needed to be checked in 

four cases, as shown in Figure 7 (a, b, c, and d). 
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Figure 7 confusion matrix of four scenarios of the KNN model (a) the confusion matrix of two unbalanced classes, 

(b) the confusion matrix of two classes after using SMOTE, (c) the confusion matrix of unbalanced three classes, 

(d) the confusion matrix of three classes after using SMOTE. 

In figure 7 (a, b, c, and d), the confusion matrix of the KNN machine learning model is 

checked for four cases. These are two levels of stress without using SMOTE, two levels 



of stress with using SMOTE, three levels without using SMOTE, and three levels 

without using SMOTE. From Figures (a, b), we can see that at only two stress levels, 

KNN could correctly classify 540 samples as stress states out of 553 samples selected 

to test the model. Furthermore, 1400 samples out of 1417 samples could be correctly 

classified. Figure 7(c and d) shows the model’s performance at three stress levels. 

Despite the small number of samples at this level, the model classified 140 out of 143 

samples as highly stressed and only made no errors on three samples. After increasing 

the number of samples using SMOTE, KNN could distinguish 1400 samples as high-

stress samples out of 1418. 

4.2. SVC Results 

SVC was tested in four scenarios, and its performance was examined separately. The 

model’s hyperparameters were adjusted using grid search, and the hyperparameters of 

the SVC were constant in the four scenarios where they were as follows: c = 10, gamma 

= 1, and kernel = RBF. In Table 5, the Accuracy, Recall, Precision, and F1-Score of the 

SVC's performance in the four scenarios will be reviewed. 

Table 5 Classification performance of the SVC model in four scenarios. 

Data scenarios Accuracy Recall Precision F1-Score 

Two levels without SMOTE 96.273 94.311 96.528 95.336 

Two levels with SMOTE 96.424 96.441 96.446 96.424 

Three levels without SMOTE 95.807 92.803 96.501 94.539 

Three levels with SMOTE 96.437 96.430 96.454 96.432 

From Table 5, we can conclude that combining the five stress levels into just two levels 

helped significantly improve the performance of SVC in the absence of non-use of 

SMOTE. The second thing is that the smote did not stop its role in improving the 

performance of the SVC, but it made its performance more stable. To understand how 

SVC deals with the data in the four scenarios, it was necessary to display the confusion 

matrix, as shown in Figure 8. 
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Figure 8 confusion matrix of four scenarios of the SVC model (a) the confusion matrix of two unbalanced classes, 

(b) the confusion matrix of two classes after using SMOTE, (c) the confusion matrix of unbalanced three classes, 

(d) the confusion matrix of three classes after using SMOTE. 

Figure 8 clearly shows the effect of putting stress on only two classes in improving the 

efficiency of SVC. Using smote has also made SVC more stable and improved 

performance significantly. 

4.3. DT Results 

The model’s hyperparameters were adjusted using grid search, and the hyperparameters 

of the DT were not constant in the four scenarios and were summarized in Table 6 as 

follows. Table 7, Accuracy, Recall, Precision, and F1-Score, will review the DT’s 

performance in the four scenarios. 



Table 6 DT models’ hyperparameters in four scenarios. 

Data scenarios Criterion 
Max_de

pth 
Min_Samples_Leaf Min_Samples_Split 

Two levels without SMOTE Entropy None 1 5 

Two levels with SMOTE Entropy None 1 2 

Three levels without SMOTE Entropy 20 1 2 

Three levels with SMOTE Entropy None 1 2 

In Table 7, we review the DT’s performance in the four scenarios (i.e., Accuracy, 

Recall, Precision, and F1-Score). 

Table 7 Classification performance of the DT model in four scenarios. 

Data scenarios Accuracy Recall Precision F1-Score 

Two levels without SMOTE 93.581 92.100 92.192 92.146 

Two levels with SMOTE 95.630 95.632 95.628 95.629 

Three levels without SMOTE 94.617 92.270 90.867 91.530 

Three levels with SMOTE 96.027 96.016 96.018 96.013 

Table 8 shows that splitting the data into two classes improves the model’s efficiency. 

This is clearly shown in the F1 score for both “Two Levels without SMOTE” and 

“Three Levels without SMOTE,” as the data imbalance exists in these two cases. 

Therefore, using the F1 score to measure the model’s performance is preferable. After 

using SMOTE, the model’s performance became more stable; it has also helped 

significantly improve its performance, as evidenced by the accuracy of all scenarios. In 

Figure (9), we review the confusion matrix for the four cases the model handled to show 

a complete picture of the model’s performance. 
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Figure 9 confusion matrix of four scenarios of the DT model (a) the confusion matrix of two unbalanced classes, 

(b) the confusion matrix of two classes after using SMOTE, (c) the confusion matrix of three unbalanced classes, 

(d) the confusion matrix of three classes after using SMOTE. 

It is clear from Figure 9 that, as explained earlier, reducing the stress to only two classes 

instead of three enhances the model’s efficiency. In addition, it has also been made clear 

this time that using SMOTE improves the model’s efficiency and makes its decisions 

more stable. 

4.4. RF Results 

DT’s work is very close to how RF works, but RF’s experience was important and 

necessary because RF was used in [30]. Because we also used the Grid search technique 

to tune the hyperparameters, it was challenging to train the model as it was introduced 

in [30] using a leave-one-subject-out approach, and here, the only difference was in the 

RF training method. The hyperparameters in the four data scenarios were 



n_estimators=100 and random_state=42. Table 8 provides the performance of the RF 

model with the four data scenarios. 

Table 8 Classification performance of the RF model in four scenarios. 

Data scenarios Accuracy Recall Precision F1-Score 

Two levels without SMOTE 93.581 92.100 92.192 92.146 

Two levels with SMOTE 95.630 95.632 95.628 95.629 

Three levels without SMOTE 94.617 92.270 90.867 91.530 

Three levels with SMOTE 96.027 96.016 96.018 96.013 

Table 8 illustrates three key points. The first and second points are already known to 

us. Still, their recurrent appearance is interpreted as evidence of what is happening—

that is, the model performs better when handling two stress classes than three. Further, 

when SMOTE is applied, the model’s performance is more stable and stronger. The 

third point is that RF performance is the same as DT performance, and that’s because 

they were trained in the same way. The best hyperparameters were selected for them in 

the same way, i.e., the similarity of the performance of the two models up to the 

matching. Below, we will consider the performance of the RF model more 

comprehensively by presenting the confusion matrix in Figure [10]. 
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Figure 10 confusion matrix of four scenarios of the RF model (a) the confusion matrix of two unbalanced classes, 

(b) the confusion matrix of two classes after using SMOTE, (c) the confusion matrix of three unbalanced classes, 

(d) the confusion matrix of three classes after using SMOTE. 

The performance of the four machine learning models was monitored in four different 

data scenarios.  

Table 9 summarizes the overall classification results. 

Data scenarios ML Accuracy Recall Precision F1-Score 

Two levels without 

SMOTE 

KNN 98.447 97.994 98.203 98.097 

SVC 96.273 94.311 96.528 95.336 

DT 93.581 92.100 92.192 92.146 

RF 93.581 92.100 92.192 92.146 

KNN 98.086 98.086 98.085 98.085 



Two levels with 

SMOTE 

SVC 96.424 96.441 96.446 96.424 

DT 95.630 95.632 95.628 95.629 

RF 95.630 95.632 95.628 95.629 

Three levels 

without SMOTE 

KNN 98.343 97.840 97.752 97.793 

SVC 95.807 92.803 96.501 94.539 

DT 94.617 92.270 90.867 91.530 

RF 94.617 92.270 90.867 91.530 

Three levels with 

SMOTE 

KNN 98.314 98.309 98.315 98.310 

SVC 96.437 96.430 96.454 96.432 

DT 96.027 96.016 96.018 96.013 

RF 96.027 96.016 96.018 96.013 

 It is clear from Table 9 that KNN was a superior performer in all four scenarios. 

Coming in second place is SVC, it had excellent performance to DT and RF in three 

scenarios (Two levels without SMOTE, Two levels with SMOTE, and Three levels 

without SMOTE), and its performance was almost the same as RF, and DT in the case 

of Three levels with SMOTE. As for the RF and DT performance, it was their best 

performance in the case of (Three levels without SMOTE and Three levels with 

SMOTE) they could deal with three levels of stress better than their ability to deal with 

two. In addition, in the two scenarios in which SMOTE was used, the values of 

Accuracy, Recall, Precision, and F1-Score were considered semi-constant for each of 

the models used in these two scenarios, which proves that the use of SMOTE helps 

stabilize the performance of the model. Figure 11 visually illustrates what is stated in 

Table 10, where Figure 11 (a, b, c, and d) shows the efficiency of each of the four 

models in Two levels without SMOTE, Two levels with SMOTE, Three levels without 

SMOTE, and Three levels with SMOTE, respectively.  
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Figure 11 (a, b, c, and d) performance Comparison of KNN, SVC, DT, and RF in four scenarios: Two levels 

without SMOTE, Two levels with SMOTE, Three levels without SMOTE, and Three levels with SMOTE, 

respectively. 

5. Conclusion 

This study aims to go deeper into stress and look at stress from a broader perspective. 

Therefore, our quest was directed to using a realistic dataset, and the number of 

volunteers in it is large; for these reasons, the SWEET dataset was chosen. This 

database contains the data of 1002 subjects; 240 subjects were approved to use. This 

included two subjects whose data was missing, so work was done on only 238 subjects, 



a large number compared to the number of subjects in other databases that are 

widespread and widely used in stress detection. Since this database was collected under 

normal living conditions, it was natural that its data was unbalanced. The authors of the 

SWEET database divided stress into five levels. Then, the five levels were divided into 

only three levels, but these efforts did not help to solve the problem of data imbalance. 

In this work, an attempt was made to solve the problem of unbalanced data in two ways. 

The first way is to reduce stress levels to two levels instead of five; the other is to use 

SMOTE. Our exploration extended to the application of various machine learning 

models, namely K-Nearest Neighbors (KNN), Support Vector Classifier (SVC), 

Decision Trees (DT), and Random Forest (RF). Hyperparameter tuning, facilitated by 

the grid search technique, optimized the performance of each model. The four machine 

learning models were tested on four data scenarios. KNN has shown outstanding 

performance superior to SVC, DT, and RF. DT and RF performed similar performances 

to the point of unity since they are from the same family and work similarly. In 

conclusion, our study contributes novel insights into stress detection using real-life 

datasets and pioneers innovative strategies for handling imbalanced data. Integrating 

binary stress classification and SMOTE opens opportunities for further refinement of 

stress detection methods. A detailed analysis of machine learning models reveals their 

unique advantages, with KNN coming out on top. This research not only refines stress 

detection protocols but also sets the stage for future investigations into nuanced 

approaches for handling real-life stress datasets. 
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