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Abstract 

Background: Variability in treatment response may be attributable to organ-level heterogeneity in tumor 

lesions. Radiomic analysis of medical images can elucidate non-invasive biomarkers of clinical outcome. 

Organ-specific radiomic comparison across immunotherapies and targeted therapies has not been 

previously reported.   

Methods: We queried UPMC Hillman Cancer Center registry for patients with metastatic melanoma 

(MEL) treated with immune checkpoint inhibitors (ICI) (anti-PD1/CTLA4 [ipilimumab+nivolumab; I+N] or 

anti-PD1 monotherapy) or BRAF targeted therapy. Best overall response was measured using RECIST 

v1.1. Lesions were segmented into discrete volume-of-interest with 400 radiomics features extracted. 

Overall and organ-specific machine-learning models were constructed to predict disease control (DC) 

versus progressive disease (PD) using XGBoost.  

Results: 291 MEL patients were identified, including 242 ICI (91 I+N, 151 PD1) and 49 BRAF. 667 

metastases were analyzed, including 541 ICI (236 I+N, 305 PD1) and 126 BRAF. Across cohorts, 

baseline demographics included 39-47% female, 24-29% M1C, 24-46% M1D, and 61-80% with elevated 

LDH. Among patients experiencing DC, the organs with the greatest reduction were liver (-88%±12%, 

I+N; mean±S.E.M.) and lung (-72%±8%, I+N). For patients with multiple same-organ target lesions, the 

highest inter-lesion heterogeneity was observed in brain among patients who received ICI while no intra-

organ heterogeneity was observed in BRAF. 267 patients were kept for radiomic modeling, including 221 

ICI (86 I+N, 135 PD1) and 46 BRAF. Models consisting of optimized radiomic signatures classified 

DC/PD across I+N (AUC=0.85) and PD1 (0.71) and within individual organ sites (AUC=0.72~0.94). 

Integration of clinical variables improved the models’ performance. Comparison of models between 

treatments and across organ sites suggested mostly non-overlapping DC or PD features. Skewness, 

kurtosis, and informational measure of correlation (IMC) were among the radiomic features shared 

between overall response models. Kurtosis and IMC were also utilized by multiple organ-site models.   

Conclusions: Differential organ-specific response was observed across BRAF and ICI with within organ 

heterogeneity observed for ICI but not for BRAF. Radiomic features of organ-specific response 



 

demonstrated little overlap. Integrating clinical factors with radiomics improves the prediction of disease 

course outcome and prediction of tumor heterogeneity.  

  



 

Background 

Despite improvements with BRAF and immune-checkpoint inhibitors (ICI), at least half of patients 

with melanoma succumb to disease1 2. Tissue-based biomarker testing requires invasive procedures and 

inadequately describes response. Meanwhile, inter-lesion metastatic heterogeneity impacts survival of 

ICI and is influenced by site of metastasis3-6.  

Factors intrinsic to tumor cells, such as tumor mutational burden and immunogenicity, among 

others, vary by anatomic location of metastasis and impact therapy7-9. In melanoma and non-small cell 

lung cancer (NSCLC), metastasis-specific patterns impact the treatment outcome of anti-PD13-5. Inter-

lesion heterogeneity of immune cell content has also been described in ovarian and colorectal cancers 

where non-responding lesions have been associated with immune exclusion10 11. Particularly myeloid 

cells are known to have a complex phenotypic distribution across organs12 and impact on antitumor 

immunity13 14. Local therapies for oligometastatic progression to extend BRAF or immunotherapy benefit 

is a clinical strategy in melanoma oncology15 16. An unmet need remains for non-invasive biomarkers of 

lesion and organ-specific response to inform treatment selection and the study of tumor resistance. 

Multiple previous studies have utilized radiomics to predict ICI responses in melanoma, however, 

these have focused on anti-PD1 or analyzed only single lesions or a predefined set of features to predict 

patient outcomes17-21. Few studies have focused on identifying features specific to metastatic sites. We 

report patient and organ-level response patterns as well as radiomic models across treatment modalities 

of ipilimumab plus nivolumab, anti-PD1 monotherapy, and BRAF±MEK inhibitor combinations in 

advanced melanoma.  

 

Methods 

A full description is supplied in the Supplementary Methods. Patients with unresectable stage 

III/IV melanoma who received ICI (anti-PD1/CTLA4 [nivolumab plus ipilimumab], referred to as I+N 

cohort, n=91; anti-PD1, referred to as PD1 cohort, n=151; 242 total), or BRAF±MEKi targeted therapy 

(BRAF cohort, n=49) from 2015-2020 were identified from UPMC Hillman Cancer Center registry (Fig. 

S1; Table S1), according to an Institutional Review Board approved protocol (STUDY20020107). Best 



 

overall response and organ-specific tumor responses (adrenal, brain, liver, lymph node [LN], lung, and 

soft tissue) were evaluated by Response Evaluation Criteria in Solid Tumors (RECIST) v1.1. Across all 

cohorts, 1,166 CT and 168 MRI scans at baseline and best response were analyzed. After quality 

control, scans were segmented by 3D Slicer, with 400 radiomics features extracted22, including 10 first-

order (FOF001-010), 195 second-order (SOF001-195), and 195 volume-adjusted second-order features 

(SOVF001-195). Machine-learning (ML) models by XGBoost were constructed to predict two classes: 

disease control (DC, including complete response [CR], partial response [PR], stable disease [SD]) or 

progressive disease (PD). Models were developed to predict overall response or organ-specific 

response. Two types of ML models (radiomics features only; radiomic plus clinical features) were 

developed when appropriate. Statistical analysis was performed using R (v4.1.2) and Bioconductor 

(release 3.14), with false discovery rate (FDR) controlled at 0.10, and Benjamini-Hochberg (BH)-FDR 

adjustment for multiple comparisons. An analysis overview is provided in Fig. S2, with the 400 radiomics 

features described in Tables S2 and S3. 

 

Results 

Population Characteristics and Overall Response  

Among 242 patients receiving ICI (I+N and PD1), 199 (82%) received first-line immunotherapy 

(Table S1). The I+N and BRAF cohorts had higher combined incidences of M1C (extra-pulmonary 

metastasis) and M1D (central nervous system metastasis) by American Joint Cancer Classification 

(AJCC) staging criteria (69% and 70%, respectively), while PD1 showed similar distribution across M1A-

D. In all cohorts, the majority of patients exhibited high levels of circulating lactate dehydrogenase 

(LDH>upper limit normal[ULN], the institutional ULN of LDH is 170) and elevated neutrophil-to-

lymphocyte ratio (NLR>3.0) at baseline. DC of 53% (8% CR, 25% PR, 20% SD) was observed in all ICI 

(Fig. 1A). Cohort review included I+N, PD1, and BRAF, respectively, with 41%, 60%, and 86% DC (Fig. 

1A). DC varied by line of therapy with I+N (45% first line versus 31% in ≥2 lines) and PD1 (62% first line 

versus 41% in ≥2 lines; Fig. 1B), consistent with the literature23.  

 



 

Mixed organ responses are associated with a higher risk of progression at the patient level 

Patients with mixed responses between metastatic sites had a significantly higher likelihood of 

PD, suggesting heterogeneity in organ-specific response determines overall response (P<0.0001 in all 

cohorts, two-sided Fisher’s exact test; Fig. 1C). Organ-specific response was defined by weighted 

RECIST (referred to as, RECISTweighted), taking into account the baseline size as well as lesion size 

change at best response versus baseline, if more than one lesion was identified per organ (see 

Methods). Patients were categorized into uniform PD, mixed response if some organs were DC and 

some were PD, and uniform DC. Patients with uniform PD showed significantly higher variation of 

RECISTweighted than uniform DC (FDR-adjusted P=0.0062; two-sided Wilcoxon test; Fig. 1D). However, 

patients with mixed response showed a similar variation on RECISTweighted versus uniform PD (P=0.27), 

and were significantly higher than uniform DC (P=0.021; Fig. 1D). Those results suggested that for 

patients with some levels of organ response, patients with a higher level of organ response heterogeneity 

are more likely to progress.  

 

Disease control and resistance to ICI or BRAF differ between and within metastatic sites  

Tumor growth or reduction across cohorts was stratified by best response at the patient level 

comparing DC/PD. Among all ICI experiencing DC, liver (n=46) and lung (n=92) metastases experienced 

greatest reduction in tumor (-66%±8% and -63%±5%, respectively; mean±S.E.M.; Fig. S3A; I+N and 

PD1 each are shown in Fig. S3B and S3C). For BRAF, liver metastases experienced the greatest 

reduction (-58%±8%) (Fig. S3D). Additional tumor volume metrics are provided in Table S4. 

To assess intra-organ heterogeneity of response to ICI, tumor volume changes are reported in 

patients with multiple lesions in the same organ. For patients who received ICI with multiple same-organ 

target lesions, brain metastases demonstrated the highest variability in intra-organ response comparing 

RECISTweighted of lesions 01 versus 02 (FDR-adjusted P=0.084, two-sided Wilcoxon test for paired 

samples) (Fig. 1E). For all organ sites, the largest lesion at baseline was defined as 01 and second as 

02. No substantial inter-lesion heterogeneity was observed across metastatic sites for BRAF. In addition, 

the absolute differences in the two lesions were computed and compared between overall response 



 

groups. Lung metastases had higher intra-organ absolute differences in DC/PD (FDR-adjusted P=0.074; 

two-sided Wilcoxon test; Fig. S4). Adding clinical variables, we observed that non-cutaneous melanoma 

showed significantly higher RECISTweighted than cutaneous melanoma in liver metastases (Fig. S5). 

 

Radiomic signature differentiates disease control rate at the patient and organ levels after BRAF 

targeted and immunotherapy 

To identify radiomic features associated with DC or PD, we performed comparisons between 

DC/PD at the patient level, or within each organ. Starting with I+N, we detected 39 differential radiomic 

features at FDR 0.10 (Fig. 2A). Of these, we found that the DC/PD differences were mostly driven by 

lung compared with other organ sites (Fig. S6) however this was not shared by PD1 or BRAF. 

Across the three cohorts, the I+N features were partially detected comparing DC with PD in the 

PD1 cohort, but absent in BRAF (Fig. 2B). Upon comparing DC/PD within each organ, we found that I+N 

and PD1 showed non-overlapping features associated with organ level response (Fig. 2C; nominal 

P<0.01). In lung metastases, seven radiomic features of “correlation average”, “correlation range”, 

“informational measure of correlation [IMC]_1 range”, and “IMC_1 variance” are associated with outcome 

in I+N, which were not detected in PD1 (Fig. 2C, left). At LN and liver metastases, I+N cohort did not 

return significant features, while PD1 cohort showed differences in “IMC_2 average” (Fig. 2C, middle). 

In soft tissue metastases, two features “minimum” and “percentile_1” which are first-order radiomics 

features distinguish DC from PD organs in I+N cohort, and no differences were detected in PD1 (Fig. 2C, 

right). Collectively, our results suggested that binary group comparisons distinguish radiomics features 

in I+N cohort with organ heterogeneity, and organ-specific features were specific to I+N or PD1 cohort 

each. 

 

Radiomics features predict response at the patient level and integrating clinical features 

improves the performance of DC versus PD classification  

To predict overall response across all metastatic sites per individual, we evaluated 267 patients 

with high-quality images and performed radiomics modeling (221 ICI; 86 I+N & 135 PD1). We 



 

constructed ML models classifying DC/PD within I+N and PD1 each using XGBoost by 80/20 training/test 

with 10-fold cross-validation (CV) for feature selection and model optimization. Training/test set samples 

were randomly split prior to any processing steps, ensuring that samples in the test set were blind from 

the training set. In the training set, after proper scaling and normalization, features that are highly 

correlated (Spearman’s correlation ρ > 0.80), show high collinearity, or low variance were removed 

before model construction. This step reduced the number of radiomic features from 400 to approximately 

10-30 total, which were then used for feature selection and hyperparameter tuning via 10-fold CV in the 

training set. The performance of the final optimized model on unseen data is reported in the test set. 

The training CV AUC and test AUC are shown in Fig. 3. XGBoost models consisting of optimized 

radiomic signatures classified DC from PD across I+N (AUC = 0.71, CV; 0.85, test set; Fig. 3A, 

Fig.S7A), PD1 (AUC = 0.65, CV; 0.71, test set; Fig. 3B, Fig.S7B). Integration of clinical variables (age, 

body mass index (BMI), sex, AJCC stage, melanoma subtype, baseline eosinophil count, LDH, and NLR) 

to the radiomic signature achieved an improved predictive model for I+N (AUC = 0.71, CV; 0.89, test set; 

Fig. 3C), PD1 (AUC = 0.70, CV; 0.90, test set; Fig. 3D). We found that BMI, albumin, age, and 

eosinophil count were important predictors for I+N (VarImp ≥20; Fig. 3E). These four, plus NLR and 

AJCC M1c stage, also ranked as the top variables for PD1 model (Fig. 3F).  

 

Radiomics features predictive of organ-specific response vary by site of metastasis in ICI cohorts 

  We constructed radiomics models to predict response at metastasis level for I+N or PD1. To 

maximize the number of samples for model construction, we included all samples for training with 

LOOCV. Features were selected based on a bootstrapping strategy using 80% of the samples, repeated 

100 times. In each bootstrapped set, we compared features between DC/PD within each organ and 

selected the top 10 features that consistently passed a lenient p-value threshold (nominal P<0.20) across 

bootstrapped sets (see Methods). The performance of the final model was reported based on LOOCV 

from the training set, recognizing that the generalization of the models will require independent 

validation. From I+N, the best performance of organ-specific models was observed in LN (AUC = 0.85; 



 

Fig. 4A, Fig. S8A). For PD1, the best performance of organ-specific models was observed in liver (0.94; 

Fig. 4B, Fig. S8B).  

The radiomic features of each model were compared across cohorts or metastatic sites to assess 

features common or unique to each organ site. Same features at different grey levels were collapsed as 

one. Across all models, “kurtosis” and “IMC_2 average” are the most shared DC-related features, 

whereas the most shared PD-related feature is “skewness” (Fig. 4C, asterisks). For the patient-level 

models, I+N radiomics only and radiomics+clinical models shared ~60% of features, while PD1 radiomics 

only and radiomics+clinical models shared ~30% of features (Fig. 4C, upper panels). Looking into 

models constructed at each organ site, the majority of the features are unique to each organ, with 

overlapping ones including “kurtosis” associated with DC, among others (Fig. 4C, middle panels). When 

comparing models for I+N, “correlation average” was a shared feature across the lung and lymph node 

models (Fig. 4C, blue arrow). Taking into account different organ sites, we sought to build a pan-organ 

model that includes all metastases in predicting organ response DC/PD, with organ site as a covariate 

(lung, LN, etc.). We confirmed that individual patients’ organ metastases were either all in training or test 

set to prevent data leaking. The pan-organ models reached an AUC of 0.63 (CV) and 0.75 (test set) in 

I+N, 0.68 (CV) and 0.79 (test set) in PD1 (Fig. S10). Table S5 describes the full list of feature 

comparisons between models.  

 

Discussion 

Utilizing CT and MRI images from patients with melanoma treated with anti-PD1, I+N, and BRAF 

therapy, we have described organ-specific patterns of DC/PD and have built clinically informed radiomic 

models that may identify sites of likely progression. We observed that hepatic metastases experienced a 

significant reduction in size following ICI in DC but also the greatest increase in tumor volume in PD. 

Consistent with the literature that response and survival are attenuated in patients with liver metastases24 

25, these data emphasize the liver as a primary driver of patient outcome in the context of ICI. In contrast, 

no variability in BRAF was observed. Few groups have produced models capable of predicting response 

at the metastatic lesion level, opting instead to average features from all lesions, or select a single 



 

representative lesion to analyze26. The ability to anticipate organ-specific resistance could potentially 

have clinical utility.  Augmentation of systemic treatment regimens with localized therapy based on 

organ-specific resistance modeling could reserve treatments for subsequent therapy.  

Using radiomic features derived from tumors at each metastatic site, we generated predictive 

models at both the patient and individual organ levels. With caution based on our sample size, we 

observed that our models performed well compared to published models, especially when including 

clinical variables19. We generally observed non-overlapping radiomic features driving model 

performance, potentially suggesting unique biology driving the anti-tumor immunity effect from each 

treatment, within each organ. Several radiomic features we identified have been associated with 

outcomes in cancer previously. Kurtosis, a measure describing the “peaked-ness” of the voxel intensity 

distribution of mass, is higher in homogenous lung nodules relative to heterogenous ones27 and 

associated with good prognosis in metastatic melanoma28. Consistent with this, a higher baseline 

kurtosis distinguishes DC from PD in our study at both the patient and organ levels (LN). The same 

pattern was observed in IMC_2, a gray-level co-occurrence matrix (GLCM) statistic that quantifies the 

complexity of texture and has been reported to be associated with clinical benefit in NSCLC29 and 

gastroenteropancreatic neuroendocrine tumours30. Other features identified (e.g., entropy) describe 

tumor spatial heterogeneity associated with inferior clinical outcome31-33. It may be worth noting that 

radiomic heterogeneity has been described to predict outcome to a similar degree to that of tumor size 

across cancer types26 34. 

We emphasize the need for further validation in larger sample sets. Based on post-treatment 

“real-world” identification, we cannot control for lines of treatment, number and distribution of metastases, 

or other clinical factors. Our data were aggregated from patients treated within a large health system and 

we therefore cannot account for differences that might be due to variation between radiology machines in 

generating scan images. We also acknowledge that the statistical power of our models is less robust 

given our sample sizes, though only a few studies have described impressively larger melanoma sample 

sizes.  



 

In summary, we describe patterns of treatment response and resistance as well as clinically 

informed radiomic predictive models that can identify individual sites of treatment refractory lesions. With 

validation of this work, future translational investigation of resistance and potentially clinical trials could 

be enhanced through the integration of these approaches.  

 

Declarations 

Ethics approval and consent to participate: The study protocol was approved by The 

University of Pittsburgh Institutional Review Board (IRB)-approved protocol (Protocol No. 

STUDY20020107). Participants gave informed consent to participate in the study before taking part. All 

samples have written informed patient consent. Consent for publication: All authors consent. 

Availability of data and materials: Data relevant to this study is provided in supplementary tables. 

Other data will be provided upon request from the corresponding authors. Competing interests: RB 

declares PCT/US15/612657 (Cancer Immunotherapy), PCT/US18/36052 (Microbiome Biomarkers for 

Anti-PD-1/PD-L1 Responsiveness: Diagnostic, Prognostic and Therapeutic Uses Thereof), 

PCT/US63/055227 (Methods and Compositions for Treating Autoimmune and Allergic Disorders); JJL 

declares DSMB: Abbvie, Immutep; Scientific Advisory Board: (no stock) 7 Hills, Fstar, Inzen, RefleXion, 

Xilio (stock) Actym, Alphamab Oncology, Arch Oncology, Kanaph, Mavu, Onc.AI, Pyxis, Tempest; 

Consultancy with compensation: Abbvie, Alnylam, Avillion, Bayer, Bristol-Myers Squibb, Checkmate, 

Codiak, Crown, Day One, Eisai, EMD Serono, Flame, Genentech, Gilead, HotSpot, Kadmon, KSQ, 

Janssen, Ikena, Immunocore, Incyte, Macrogenics, Merck, Mersana, Nektar, Novartis, Pfizer, 

Regeneron, Ribon, Rubius, Silicon, Synlogic, Synthekine, TRex, Werewolf, Xencor; Research Support: 

(all to institution for clinical trials unless noted) AbbVie, Agios (IIT), Astellas, Astrazeneca, Bristol-Myers 

Squibb (IIT & industry), Corvus, Day One, EMD Serono, Fstar, Genmab, Ikena, Immatics, Incyte, 

Kadmon, KAHR, Macrogenics, Merck, Moderna, Nektar, Next Cure, Numab, Pfizer (IIT & industry) 

Replimmune, Rubius, Scholar Rock, Synlogic, Takeda, Trishula, Tizona, Xencor; Patents: (both 

provisional) Serial #15/612,657 (Cancer Immunotherapy), PCT/US18/36052 (Microbiome Biomarkers for 

Anti-PD-1/PD-L1 Responsiveness:  Diagnostic, Prognostic and Therapeutic Uses Thereof). P.C.L. 



 

declares equity interest in Amgen. D.D. declares grants/research support (NIH/NCI and Checkmate 

Pharmaceuticals) and consulting (Checkmate Pharmaceuticals) during the conduct of the study. D.D. 

also reports grants/research support (Arcus, CellSight Technologies, Immunocore, Merck Sharp & 

Dohme, Tesaro/GSK), consulting [Clinical Care Options (CCO), Finch Therapeutics, Gerson Lehrman 

Group (GLG), Medical Learning Group (MLG), Xilio Therapeutics], speakers' bureau (Castle 

Biosciences) and pending provisional patents related to gut microbial signatures of response and toxicity 

to immune checkpoint blockade (US Patent 63/124,231 and US Patent 63/208,719) outside the 

submitted work.  J.M.K. declares grants/research support (Bristol-Myers Squibb, Amgen Inc.) and 

consulting (Bristol-Myers Squibb, Checkmate Pharmaceuticals, Novartis, Amgen Inc., Checkmate, Castle 

Biosciences, Inc., Immunocore LLC, Iovance, Novartis.) outside the submitted work. H.M.Z. declares 

grants/research support (NIH/NCI and Checkmate Pharmaceuticals) and consulting (Checkmate 

Pharmaceuticals) during the conduct of the study, grants/research support (NIH/NCI, Bristol-Myers 

Squibb and GlaxoSmithKline), personal fees (GlaxoSmithKline and Vedanta) and pending provisional 

patents related to gut microbial signatures of response and toxicity to immune checkpoint blockade (US 

Patent 63/124,231 and US Patent 63/208,719) outside the submitted work. Y.G.N. declares 

consulting/advisory board (Immunocore, replimune, BMS, Pfizer, Novartis, Merck, Mallinkrodt, Intervenn 

bio), research to institution (BMS, Pfizer, Merck, replimune), and speaker (Immunocore, Pfizer).  

Correspondence and requests for materials should be addressed to R.B. (baor@upmc.edu) and J.J.L. 

(lukejj@upmc.edu). The remaining authors declare no competing interests. Funding: This work was 

supported by National Institutes of Health (NIH) Grant R01DE031729 (R.B., J.J.L.), P50CA097190 

(R.B.), UM1CA186690 (J.J.L.), P50CA254865 (R.B., J.J.L., J.M.K, D.D., H.M.Z.), in part by National 

Cancer Institute through the UPMC Hillman Cancer Center CCSG award (P30CA047904), and in part by 

The University of Pittsburgh Center for Research Computing through the resources provided, specifically 

the HTC high-performance computing cluster supported by NIH award number S10OD028483. Authors' 

contributions: R.B. and J.J.L. conceived and designed the overall study. R.B. oversaw computational 

data analysis and machine-learning work. J.J.L. oversaw clinical review, data collection, and curation. 

R.B. and J.J.L. conducted editorial oversight. Z.N.G. wrote IRB. Z.N.G. and A.T. designed methods for 



 

clinical data, identified patients from the registry, and performed clinical data annotation and analysis. 

R.E.D. performed lesion heterogeneity analysis and comparisons. S.Z. coordinated radiologic evaluation 

and performed RECIST measurements and lesion segmentation. N.B. assisted with RECIST 

measurements and lesion segmentation. S.N. coordinated data collection and processing. A.A. assisted 

with clinical data acquirement. M.A. and N.A. exported radiologic images. T.Y.P. assisted with exporting 

radiologic images and lesion segmentation. V.P. performed radiomic feature extraction. P.M. assisted 

with preliminary bioinformatic and statistical analysis. S.B. assisted with clinical data annotation. A.G. 

and D.L.P saw patients in the clinic. J.M.K., H.M.Z., Y.G.N., D.D. contributed tumor and patient data. 

R.C. performed image processing and textual feature extraction from scans. R.B. designed and 

implemented the computational work for the development of machine-learning models. Z.N.G., A.T., 

R.E.D., J.J.L., and R.B. wrote the manuscript. All authors contributed to the final manuscript. 

Acknowledgments: The authors thank F. Mu (U. Pittsburgh) for their technical assistance in software 

installation and job execution on the HPCs. 

 

List of abbreviations 

 AJCC = American Joint Committee on Cancer. ASM = AngularSecondMoment. AUC = area 

under the ROC. BMI = body mass index. CR = complete response. CV = cross-validation. DBV = divided 

by volume. DC = disease control. FDR = false discovery rate. FOF = frist-order feature. GLCM = gray 

level co-occurrence matrix. I+N = nivolumab plus ipilimumab. ICI = and immune-checkpoint inhibitors. 

IMC = informational measure of correlation. LDH = lactate dehydrogenase. LOOCV = leave-one-out 

cross-validation. MEL = melanoma. NLR = neutrophil-to-lymphocyte ratio. NSCLC = non-small cell lung 

cancer. PD = progressive disease. PR = partial response. RECIST = Response Evaluation Criteria in 

Solid Tumors. ROC = Receiver Operating Characteristic. SD = stable disease. SEM = standard error of 

the mean. SOF = second-order feature. SOVF = second-order feature divided by volume. ULN = upper 

limit normal. VarImp = variable importance. 
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Figure Legends 

Figure 1. Overall and organ-specific response in ICI (I+N, PD1) and BRAF cohorts. (A) Overall 

response to therapy by treatment. For each cohort, the outer circle shows percentage of patients who 

experienced CR, PR, SD, or PD. The inner circle shows DC% (including CR, PR, and SD) and PD%. (B) 

Patients stratified by previous exposure to immunotherapy. Color represents CR, PR, SD, and PD same 

as in A. Number above each bar shows the percentage of patients who experienced DC in each subset. 

Imtx = immunotherapy. (C) Heatmap showing the organ-specific response (adrenal, brain, liver, LN, lung, 

soft tissue, on the row) and in the context of overall response per patient (on the column). n=291 patients 

are shown in A, B, and C, with 91 from I+N, 151 from PD1, and 49 from BRAF. (D) Comparison of inter-

organ heterogeneity in patients with mixed response versus those with uniform progression versus those 

with uniform disease control. The y-axis represents the standard deviation of weighted RECIST scores 

across all metastases in a patient. Each data point represents one patient. n=111 ICI patients who had at 

least two metastasis sites are shown. (E) Intra-organ heterogeneity by organ site comparing lesions 01 

and 02. The y-axis represents individual lesion’s tumor size change in percentage. Each data point 

represents one lesion. Lines connect lesion 01/02 from the same metastasis site in the same patient. 

n=168 sites from ICI patients who had two lesions per site are shown. LN = lymph node. Wilcoxon rank-

sum test was used in D, Wilcoxon signed-rank test was used in E. FDR-adjusted p-values are shown in 

D and E. FDR was controlled at 0.10. All tests are two-sided. Denotations: ** P<0.01, * P<0.05, + 

P<0.10. 

Figure 2. Radiomic features differentiate overall response or organ-specific response DC versus 

PD. (A) 39 features that distinguish overall response in patients who received I+N at FDR-adjusted 

P<0.10. Patients are clustered on the column and features are clustered on the row with dendrograms 

shown. The horizontal annotation bar on top of the heatmap indicates overall response PD and DC. 

Feature names (e.g., IMC_1_Variance) are shown on the right side of the heatmap, which correspond to 

the feature IDs (e.g., SOF194, SOF038, etc.). n=82 patients from I+N cohort are shown. (B) Overlapping 

or unique features across patient cohorts. The DC versus PD differences of the 39 features from A (I+N) 

are shown in patients who received PD1 monotherapy or BRAF targeted therapy. Features are shown in 



 

the same order as on the heatmap from A. (C) 14 features that distinguish organ-specific response in 

one or more cohorts. (left to right) each organ site is shown in I+N or PD1: lung, LN, liver, and soft tissue. 

LN = lymph node. IMC = Informational Measure of Correlation. For A and C, full feature IDs and names 

are described in Tables S2 and S3. Wilcoxon rank-sum test was used in A, B, and C. All tests are two-

sided. 

Figure 3. Radiomics models predict overall response DC/PD in ICI cohorts. For each cohort, 

models were optimized in the training set with 10-fold CV, and the final performance was reported on 

unseen data in the test set. We show both the training set 10-fold CV ROC curve as well as the test set 

ROC curve. AUC, Sensitivity (Sens), and Specificity (Spec) were reported. (A) Model of radiomic 

features only in I+N cohort. (B) Model of radiomic features only in PD1 cohort. (C) Model of radiomic 

features and clinical variables in I+N cohort. (D) Model of radiomic features and clinical variables in PD1 

cohort. For I+N models in A and C: n=67 and 15 patients in training/test set (80% / 20% split), 

respectively (total is 82). 400 radiomic features were reduced to 17 prior to model training. For PD1 

models in B and D: n=104 and 25 patients in training/test set (80% / 20% split), respectively (total is 

129). 400 radiomic features were reduced to 23 prior to model training. (E) Variable importance (VarImp) 

of the features from I+N model in C. (F) Variable importance (VarImp) of the features from PD1 model in 

D. Features with VarImp >1 are shown in E and F; red vertical dashed line indicates VarImp=20; features 

with VarImp ≥20 are generally considered important in predicting outcome. Color indicates whether a 

feature is greater in overall response PD (blue) or DC (gold). Clinical variables are bolded. ROC = 

Receiver Operating Characteristic. AUC = Area Under Curve. CV = cross-validation. FPR = false positive 

rate. TPR = true positive rate. IMC = Informational Measure of Correlation. ASM = Angular Second 

Moment. The AUC p-value shown at the top left corner of each ROC panel in A-D was computed using 

function roc.area from R package verification (v1.42), which implements a two-sided Wilcoxon rank-sum 

test.  

Figure 4. Radiomics models predict organ-specific response DC/PD in ICI cohorts. For each 

cohort, LOOCV was applied to all samples to generate the ROC curve. AUC, Sensitivity (Sens), and 

Specificity (Spec) were reported. 400 radiomic features were reduced to 10 prior to model construction. 



 

(A) Model of radiomic features in I+N cohort. (left to right): lung (34), LN (37), liver (21), soft tissue (32), 

and brain (20). Numbers in paratheses indicate the number of metastases for model construction per 

organ. (B) Model of radiomic features in PD1 cohort. (left to right): lung (54), LN (52), liver (22), soft 

tissue (50). Brain models of PD1 cohort were not constructed considering the small sample size. (C) 

Heatmap summarizing radiomic features utilized by overall response or organ-specific response models 

to predict DC/PD. Models are shown on the row, and features are shown on the column. Same radiomic 

features at different grey levels were collapsed as one entry for visualization purposes. Features of 

variable importance (VarImp) ≥ 20 from each model were included in these comparisons. Asterisks 

highlight top shared features high in DC (IMC_2_Avg, Kurtosis) or high in PD (Skewness). Blue arrow 

indicates features shared by I+N organ models (Correlation_Avg). LN = lymph node. ROC = Receiver 

Operating Characteristic. AUC = Area Under Curve. CV = cross-validation. FPR = false positive rate. 

TPR = true positive rate. IMC = Informational Measure of Correlation. ASM = Angular Second Moment. 

DBV = divided by volume (indicating this is a volume-independent second-order feature). The AUC p-

value shown at the top left corner of each ROC panel in A and B was computed using function roc.area 

from R package verification (v1.42), which implements a two-sided Wilcoxon rank-sum test.  
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