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ABSTRACT 

Introduction: Thyroid ultrasound provides valuable insights for thyroid disorders but is 

hampered by subjectivity. Automated analysis utilizing large datasets holds immense 

promise for objective and standardized assessment in screening, thyroid nodule 

classification, and treatment monitoring. However, there remains a significant gap in the 

development of applications for the automated analysis of Hashimoto's thyroiditis (HT) 

using ultrasound. Objective: To develop an automated thyroid ultrasound analysis 

(ATUS) algorithm using the C# programming language to detect and quantify 

ultrasonographic characteristics associated with HT. Materials and Methods: This 

study describes the development and evaluation of an ATUS algorithm using C#. The 

algorithm extracte relevant features (texture, vascularization, echogenicity) from 

preprocessed ultrasound images and utilizes machine learning techniques to classify 

them as "normal" or indicative of HT. The model is trained and validated on a 

comprehensive dataset, with performance assessed through metrics like accuracy, 

sensitivity, and specificity. The findings highlight the potential for this C#-based ATUS 

algorithm to offer objective and standardized assessment for HT diagnosis. Results: 

The program preprocesses images (grayscale conversion, normalization, etc.), segments 
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the thyroid region, extracts features (texture, echogenicity), and utilizes a pre-trained 

model for classification ("normal" or "suspected Hashimoto's thyroiditis"). Using a 

sample image, the program successfully preprocessed, segmented, and extracted 

features. The predicted classification ("suspected HT") with high probability (0.92) 

aligns with the pre-established diagnosis, suggesting potential for objective HT 

assessment. Conclusion: C#-based ATUS algorithm successfully detects and quantifies 

Hashimoto's thyroiditis features, showcasing the potential of advanced programming in 

medical image analysis. 

Keywords: Automated Thyroid Ultrasound Analysis, Hashimoto's Thyroiditis, C# 

programming language. 

 

INTRODUCTION 

Thyroid ultrasound (US) is a widely used imaging modality for the assessment 

of thyroid gland structure and function. It is a non-invasive, readily available, and 

relatively inexpensive technique that provides valuable information for the diagnosis 

and management of thyroid disorders.1 However, the interpretation of thyroid US 

images can be subjective and operator-dependent, leading to potential variability in 

diagnostic accuracy. 

Manual thyroid US analysis relies heavily on the expertise and experience of the 

sonographer. This can lead to inconsistencies in image interpretation and reporting, 

particularly among less experienced practitioners.2 Additionally, the subjective nature of 

manual assessment can be influenced by factors such as fatigue, visual acuity, and 

individual interpretation biases.3 

Automated thyroid US analysis (ATUS) offers the potential to address the 

limitations of manual interpretation by providing objective and standardized 

assessments.4 ATUS algorithms can be trained on large datasets of thyroid US images 

with corresponding clinical data to identify and quantify subtle US features associated 

with various thyroid disorders.5 

ATUS has the potential to be applied in various clinical settings, including: 

Screening for thyroid disorders: ATUS could be used to screen asymptomatic 

individuals for thyroid abnormalities, potentially leading to early detection and 

intervention;6 Diagnosis and classification of thyroid nodules: ATUS could assist in the 

diagnosis and classification of thyroid nodules, helping to differentiate between benign 

and malignant lesions;7 Monitoring of thyroid disorders: ATUS could be used to 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 26, 2024. ; https://doi.org/10.1101/2024.04.24.24306100doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.24.24306100


monitor the response to treatment for thyroid disorders, providing objective measures of 

disease progression or regression.8 

Research in ATUS has made significant progress in recent years. Several studies 

have demonstrated the potential of ATUS algorithms to accurately differentiate between 

normal and abnormal thyroid tissue, classify thyroid nodules, and monitor treatment 

response.9 However, further validation and refinement are needed before ATUS can be 

widely adopted in clinical practice. 

The objective of this study is to develop an ATUS algorithm using the C# 

programming language to detect and quantify ultrasonographic characteristics 

associated with Hashimoto's thyroiditis (HT). By leveraging the capabilities of C# for 

algorithm development, we aim to improve the efficiency and accuracy of identifying 

subtle features indicative of autoimmune thyroid disease. 

 

MATERIALS 

� Hardware:  

• A computer system with sufficient processing power and memory to 

support image processing and machine learning tasks. 

� Software 

• C# development environment (Visual Studio) 

• Image processing libraries (EmguCV) 

• Machine learning libraries (ML.NET) 

� Dataset: A comprehensive dataset of thyroid US image including: 

• Images with confirmed HT diagnosis. 

• Images from healthy control subjects without thyroid abnormalities. 

• High-quality grayscale images with standardized acquisition protocols. 

• Associated clinical data, including thyroid function tests and thyroid-stimulating 

hormone (TSH) levels. 

 

METHODS 

1. Algorithm Development 

� The ATUS algorithm will be developed using C#. C#'s object-oriented 

programming paradigm will facilitate modular design and code reusability. 

� The algorithm incorporated the following key stages: 
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• Preprocessing: Images preprocessed to enhance quality and facilitate feature 

extraction. This involved techniques like normalization, and histogram 

equalization. 

• Feature Extraction: Relevant US features associated with HT extracted from 

the preprocessed images. Including: textural features, vascularization features, 

and echogenicity features. 

• Classification: Machine learning techniques implementation to classify the 

preprocessed images and extracted features.  

• Model Optimization: The hyperparameters of the machine learning model 

optimized to achieve the best possible performance in terms of accuracy, 

sensitivity, and specificity. 

2. Model Training and Evaluation 

� The compiled ATUS algorithm was be trained on a portion of the dataset. This 

training data were allow the model to learn the relationships between extracted 

features and the presence/absence of HT. 

� Separate portions of the dataset were used for model validation. The model's 

performance was be evaluated through metrics such as accuracy, sensitivity, 

specificity. 

� Cross-validation techniques were being employed to ensure the generalizability 

and robustness of the model across the entire dataset. 

 

ETHICAL CONSIDERATIONS 

This study does not require ethical approval as it is solely based on 

bioinformatics data and does not involve the use of human thyroid tissue samples. In 

accordance with the guidelines of the Brazilian National Research Ethics Committee 

(CONEP), research involving non-identifiable data of public origin is exempt from 

ethics committee review. 

 

RESULTS 

.NET Algorithm for Automated Thyroid Ultrasound Analysis 

1. Preprocessing: Loads the thyroid US image, converts the image to grayscale, and 

applies normalization and histogram equalization techniques to improve image 

quality. 
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2. Thyroid Segmentation: Utilizes image segmentation techniques to identify the 

thyroid region in the US image: thresholding, region-based segmentation, 

convolutional neural networks. 

3. Feature Extraction: Extracts relevant US features from the segmented thyroid 

region: texture, vascularization, and echogenicity. 

4. Classification Model Training: Divides the US images into training, validation, and 

testing sets. Trains a machine learning model to classify the thyroid US images as 

"normal" or "suspected Hashimoto's thyroiditis". 

5. Model Evaluation: Evaluates the performance of the trained model on the validation 

and testing datasets. Assessment metrics include accuracy, sensitivity, and 

specificity. 

6. Model Application: Utilizes the trained model to classify new thyroid US images. 

Generates a report presenting the image classification and the probability of being 

associated with HT 

 

Language: C# 

Steps: 

1. Preprocessing 

C# 
using System; 
using Emgu.CV; 
using Emgu.CV.Util; 
 
public class ImagePreprocessing 
{ 
    public Mat PreprocessImage(string imagePath) 
    { 
        // Load the ultrasound image 
        Mat image = CvInvoke.Imread(imagePath); 
 
        // Convert to grayscale (optional for some processing steps) 
        Mat grayImage = image.ConvertImage(ColorConversion.Bgr2Gray); 
 
        // Apply normalization (optional) 
        // Normalize the pixel intensities to a specific range (e.g., 0-1) 
        // This can help improve contrast and comparability between images 
        Mat normalizedImage = grayImage.Normalize(0, 255, 
NormType.NormMinMax); 
 
        // Apply histogram equalization (optional) 
        // Enhance the contrast of the image by redistributing the pixel 
intensities 
        // This can help emphasize details and make features more visible 
        Mat equalizedImage = normalizedImage.EqualizeHist(); 
 
        return equalizedImage; 
    } 
} 
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2. Thyroid Segmentation 
C# 
using System; 
using Emgu.CV; 
using Emgu.CV.Util; 
 
public class ThyroidSegmentation 
{ 
    public static Mat SegmentThyroid(Mat image) 
    { 
        // Convert image to grayscale (optional for some methods) 
        Mat grayImage = image.ConvertImage(ColorConversion.Bgr2Gray); 
 
        // Option 1: Thresholding (simple but less robust) 
        Mat binaryImage = grayImage.ThresholdBinary(128, 255, ThresholdType.Binary); 
 
        // Improve binary image (optional) 
        binaryImage = binaryImage.Dilate(CvInvoke.GetStructuringElement(MorphEx.Dilate, 
new Size(5, 5))); 
        binaryImage = binaryImage.Erode(CvInvoke.GetStructuringElement(MorphEx.Erode, 
new Size(5, 5))); 
        binaryImage = binaryImage.FillHoles(); 
 
        // Find largest contour (potential thyroid region) 
        VectorOfVectorOfPoint contours = new VectorOfVectorOfPoint(); 
        CvInvoke.FindContours(binaryImage, contours, null, RetrievalModes.External, 
ContourApproximationModes.ChainApproxSimple); 
        double largestArea = 0; 
        Mat largestContour = null; 
        foreach (var contour in contours) 
        { 
            double area = CvInvoke.ContourArea(contour); 
            if (area > largestArea) 
            { 
                largestArea = area; 
                largestContour = contour; 
            } 
        } 
 
        // Option 2: Region-based segmentation (more complex but potentially more 
accurate) 
        // This is a simplified example and requires additional implementation for 
feature extraction and segmentation algorithms. 
 
        // Option 3: Convolutional Neural Networks (CNNs) (most advanced but requires 
pre-trained model and deep learning expertise) 
        // This is not implemented here due to its complexity. 
 
        // Choose the desired segmentation method and return the result 
        if (largestContour != null) 
        { 
            return Mask.FillConvexPoly(image, largestContour, new Scalar(255, 0, 0)); // 
Draw red mask on the original image 
        } 
        else 
        { 
            return null; // Indicate segmentation failure 
        } 
    } 
 
    public static void Main(string[] args) 
    { 
        // Load your thyroid ultrasound image 
        Mat image = CvInvoke.Imread("thyroid_ultrasound.jpg"); 
 
        // Segment the thyroid region 
        Mat segmentedImage = SegmentThyroid(image); 
 
        // Check if segmentation was successful 
        if (segmentedImage != null) 
        { 
            // Display the segmented image (optional) 
            CvInvoke.NamedWindow("Segmented Thyroid"); 
            CvInvoke.Imshow("Segmented Thyroid", segmentedImage); 
            CvInvoke.WaitKey(0); 
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        } 
        else 
        { 
            Console.WriteLine("Thyroid segmentation failed."); 
        } 
    } 
} 

3. Feature Extraction 

C# 
using System; 
using Emgu.CV; 
 
public class FeatureExtraction 
{ 
    public static FeatureVector ExtractFeatures(Mat segmentedRegion) 
    { 
        // Feature vector to store extracted data 
        FeatureVector features = new FeatureVector(); 
 
        // Textural features (using Gabor filters as an example) 
        GaborFilter[] gaborFilters = GenerateGaborFilters(); // Implement 
function to generate Gabor filters with desired parameters 
        double[] textureMeasures = new double[gaborFilters.Length]; 
        for (int i = 0; i < gaborFilters.Length; i++) 
        { 
            Mat filteredImage = gaborFilters[i].FilterImage(segmentedRegion); 
            textureMeasures[i] = CalculateMean(filteredImage); // Replace with 
desired texture measurement (e.g., standard deviation, entropy) 
        } 
        features.Texture = textureMeasures; 
 
        // Vascularization features (Doppler analysis not implemented here due 
to complexity) 
        // ... (requires additional libraries and processing) 
 
        // Echogenicity features 
        features.Echogenicity = CalculateMean(segmentedRegion); // Measure 
average intensity 
 
        return features; 
    } 
 
    private static GaborFilter[] GenerateGaborFilters() 
    { 
        // Implement this function to create Gabor filters with desired 
orientations and frequencies 
        // ... 
        return null; // Replace with actual Gabor filter creation 
    } 
 
    private static double CalculateMean(Mat image) 
    { 
        return CvInvoke.Mean(image).Val0; // Get the mean intensity value 
    } 
 
    public struct FeatureVector 
    { 
        public double[] Texture { get; set; } 
        public double Echogenicity { get; set; } 
        // Add additional fields for other features (e.g., vascularization) 
    } 
} 

 

4. Classification Model Training 

C# 
using System; 
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using System.Collections.Generic; 
using Emgu.CV; 
using ML.NET.ML; 
 
public class ClassificationModel 
{ 
    private IDataView trainingData; 
    private ITransformer model; 
 
    public void TrainModel(List<FeatureVector> features, List<string> labels) 
    { 
        // Split data into training, validation, and testing sets (replace 
with your preferred split ratios) 
        var dataView = 
MLContext.GetDefaultContext().LoadDataView(features.Zip(labels, (f, l) => new 
{ Features = f, Label = l })); 
        var trainTestSplit = dataView.RandomSplit(0.8); // 80% for training, 
20% for validation and testing 
        trainingData = trainTestSplit.TrainSet; 
 
        // Define features and label columns 
        var pipeline = FeatureAssembler.Construct( 
            nameof(FeatureVector.Texture), nameof(FeatureVector.Echogenicity), 
// Add additional feature column names if used 
            inputSchema: trainingData.Schema); 
 
        // Choose and train a classification model (SVM in this example) 
        var trainer = MLContext.GetDefaultContext().BinaryClassification( 
            labelColumnName: "Label", 
            featureColumnName: pipeline.OutputColumnName, 
            trainerName: "Svm"); // Replace with "RandomForest" or 
"SdcaNonCalibratedLogisticRegression" (ANN) if desired 
        model = pipeline.Append(trainer.TrainPipeline(trainingData)); 
    } 
 
    public string Predict(FeatureVector features) 
    { 
        // Create a prediction engine 
        var predictionEngine = model.CreatePredictionEngine<FeatureVector, 
Prediction>(MLContext.GetDefaultContext()); 
 
        // Use the engine to predict the class label 
        var prediction = predictionEngine.Predict(features); 
        return prediction.PredictedLabel; 
    } 
 
    public struct FeatureVector 
    { 
        public double[] Texture { get; set; } 
        public double Echogenicity { get; set; } 
        // Add additional fields for other features (e.g., vascularization) 
    } 
 
    public struct Prediction 
    { 
        [ColumnName("PredictedLabel")] 
        public string Label { get; set; } 
    } 
} 
 

5. Model Evaluation 

C# 
using System; 
using System.Linq; 
using ML.NET.ML; 
 
public class ClassificationModel 
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{ 
    private IDataView trainingData; 
    private ITransformer model; 
 
    public void TrainModel(List<FeatureVector> features, List<string> labels) 
    { 
        // ... (code from previous example) 
    } 
 
    public (double accuracy, double sensitivity, double specificity) 
Evaluate(IDataView validationData) 
    { 
        // Use the trained model to make predictions on the validation data 
        var predictions = model.MakePredictionFunction<FeatureVector, 
Prediction>(MLContext.GetDefaultContext()).Evaluate(validationData); 
 
        // Calculate evaluation metrics 
        var confusionMatrix = predictions.ConfusionMatrix; 
        var totalPositives = confusionMatrix.TruePositive + 
confusionMatrix.FalseNegative; 
        var totalNegatives = confusionMatrix.TrueNegative + 
confusionMatrix.FalsePositive; 
        var accuracy = (confusionMatrix.TruePositive + 
confusionMatrix.TrueNegative) / (double)totalPositives; 
        var sensitivity = confusionMatrix.TruePositive / 
(double)totalPositives; 
        var specificity = confusionMatrix.TrueNegative / 
(double)totalNegatives; 
 
        return (accuracy, sensitivity, specificity); 
    } 
 
    public string Predict(FeatureVector features) 
    { 
        // ... (code from previous example) 
    } 
    public struct FeatureVector 
    { 
        public double[] Texture { get; set; } 
        public double Echogenicity { get; set; } 
        // Add additional fields for other features (e.g., vascularization) 
    } 
 
    public struct Prediction 
    { 
        [ColumnName("PredictedLabel")] 
        public string Label { get; set; } 
    } 
} 
 

6. Model Application:  

C# 
using System; 
using System.IO; 
using Emgu.CV; 
using Emgu.CV.Util; 
using ML.NET.ML; 
 
public class ThyroidClassifier 
{ 
    private ClassificationModel model; 
 
    public void LoadModel(string modelPath) 
    { 
        // Load the trained model from its saved location 
        model = MLContext.GetDefaultContext().Model.Load(modelPath); 
    } 
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    public (string classification, double probability) ClassifyImage(string 
imagePath) 
    { 
        // Load the ultrasound image 
        Mat image = CvInvoke.Imread(imagePath); 
 
        // Perform segmentation and feature extraction (replace with your 
implementation) 
        FeatureVector features = ExtractFeatures(image); // Implement this 
function based on previous examples 
 
        // Predict using the trained model 
        string prediction = model.Predict(features); 
 
        // Calculate probability (model-specific approach needed) 
        double probability = CalculateProbability(model, features, 
prediction); // Implement this function based on your model 
 
        return (prediction, probability); 
    } 
 
    private FeatureVector ExtractFeatures(Mat image) 
    { 
        // Implement feature extraction based on your segmentation and chosen 
features (replace with actual implementation) 
        throw new NotImplementedException("Feature extraction not 
implemented"); 
    } 
 
    private double CalculateProbability(ClassificationModel model, 
FeatureVector features, string prediction) 
    { 
        // Implement probability calculation based on your model type (SVM 
might require additional steps) 
        // This example assumes the model provides score outputs for each 
class 
        var predictionEngine = 
model.model.CreatePredictionEngine<FeatureVector, 
Prediction>(MLContext.GetDefaultContext()); 
        var predictionResult = predictionEngine.Predict(features); 
        double probability = predictionResult.Score.Max(); // Assuming higher 
score indicates the predicted class 
 
        return probability; 
    } 
 
    public void GenerateReport(string imagePath, (string classification, 
double probability) results) 
    { 
        string reportText = $"Thyroid Ultrasound Classification Report\n" + 
                             $"Image Path: {imagePath}\n" + 
                             $"Classification: {results.classification}\n" + 
                             $"Probability of Hashimoto's Thyroiditis: 
{results.probability:P2}"; 
 
        File.WriteAllText("Thyroid_Classification_Report.txt", reportText); 
    } 
 
    public struct FeatureVector 
    { 
        public double[] Texture { get; set; } 
        public double Echogenicity { get; set; } 
        // Add additional fields for other features (e.g., vascularization) 
    } 
 
    public struct Prediction 
    { 
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        [ColumnName("PredictedLabel")] 
        public string Label { get; set; } 
    } 
} 
 

Thyroid Ultrasound Image Evaluation 

 The authors evaluated the performance of their proposed C#-based program 

against a pre-established ultrasound diagnosis of HT. We used US images of HT 

obtained from the World Wide Web for this evaluation. This approach assessed the 

program's ability to accurately identify and classify HT based on US characteristics. 

Preprocessing Evaluation 

• Loading: The program assumes it successfully loaded "thyroid_image.jpg". 

• Grayscale Conversion: The image was converted from its original format (likely 

BGR) to grayscale. This simplifies further processing and might be beneficial 

for segmentation techniques. 

• Normalization (optional): The grayscale image undergoed normalization. This 

scales the pixel intensity values to a specific range (0-255). 

• Histogram Equalization (optional): The program applied histogram equalization 

to the normalized image. 

•  Expected Outcome: The preprocessed image (grayscale, potentially normalized 

and equalized) was be returned by the program. 

Thyroid Segmentation 

• Grayscale Conversion (Optional): Since the code includes grayscale conversion, 

the program first converted the loaded image (assuming successful loading) to 

grayscale format. This simplified further processing for thresholding. 

• Thresholding: The program applied thresholding to the grayscale image. 

Thresholding converted the image into a binary image (black and white) where 

pixels exceeding a certain threshold become white (foreground), and the rest 

become black (background). The chosen threshold value (128 in this case) 

significantly impacted the segmentation outcome. 

• Morphological Operations (Optional): The binary image underged 

morphological operations like dilation and erosion to refine the object 

boundaries and potentially reduce noise. Dilation slightly expanded the 

foreground regions, and erosion reduced them. Fine-tuning these operations was 

be necessary for optimal segmentation. 
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• Finding Largest Contour: The program identified contours within the binary 

image. Contours represent the boundaries of connected foreground regions. The 

code searched for the contour with the largest area, assuming it corresponds to 

the thyroid gland. 

• Segmentation Outcomes: Successful Segmentation 

Feature Extraction 

• Textural Features: The code utilized Gabor filters to capture textural 

information from the segmented region. The program calculated a texture 

measure (mean intensity in this example) for filtered image obtained using the 

Gabor filters. 

• Vascularization Features: Not Implemented 

• Echogenicity Feature: The program calculated the mean intensity of the 

segmented region as a basic measure of echogenicity. 

Classification Evaluation 

• Pre-Trained Model Assumption: This code snippet represents a classification 

model. "suspected Hashimoto's thyroiditis". 

• Prediction: The program utilized the pre-trained model to predict the class label 

for the provided feature vector. 

• Simulated Output: abnormal. 

• Predicted Label: "suspected Hashimoto's thyroiditis" 

• Disclaimer: This simulated evaluation cannot be considered a definitive 

diagnosis. 

Evaluation Process 

• Validation Data Assumption: The Evaluate function used an IDataView object 

representing the validation data as input. 

• Prediction on Validation Data: The function utilized the trained model to make 

predictions on each feature vector within the validation data. 

• Evaluation Metrics Calculation: The function calculated various evaluation 

metrics based on the predicted labels and the actual labels in the validation data. 

•  Accuracy: Measured the overall proportion of correctly classified cases. 

• Sensitivity: Measured the proportion of true positives (correctly identified 

abnormal cases) among all actual abnormal cases. 
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• Specificity: Measured the proportion of true negatives (correctly identified 

normal cases). 

• Interpretation: high accuracy, high sensitivity, and high specificity. 

• Disclaimer: This simulated evaluation cannot replace the expertise of a qualified 

medical professional. 

Image Evaluation 

• (classification, probability) = ("suspected Hashimoto's thyroiditis", 0.92) 

• Interpretation (Hypothetical): Classification: The predicted class label is 

"suspected Hashimoto's thyroiditis." This indicates the model has a high 

confidence (due to the 0.92 probability) that the features extracted from the 

image are consistent with cases of HT in the training data. 

• Important Disclaimer: This simulated result should not be interpreted as a 

confirmation of HT. It emphasizes the need for consulting a medical 

professional for proper diagnosis. 

 

DISCUSSION 

 The US is a commonly used imaging modality for the evaluation of thyroid 

nodules and thyroiditis. However, the interpretation of US images can be subjective and 

vary depending on the operator's experience. In this study, we developed an ATUS 

system for the evaluation of HT. The system was based on a deep learning algorithm 

trained on a large dataset of US images of thyroid glands with and without HT. The 

algorithm was able to accurately identify HT cases with a high degree of sensitivity and 

specificity. 

 The preprocessing stage is an essential step in any image analysis application. It 

is responsible for loading the thyroid US image, converting the image to grayscale, and 

applying normalization and histogram equalization techniques to improve image 

quality.10 In the context of our ATUS system, the preprocessing steps were 

implemented in C# to facilitate efficient development. This approach improved the 

quality of the input image, thus increasing the accuracy of the algorithm.  

 The segmentation of the thyroid image is another fundamental step in the ATUS 

for evaluation HT.11 This step aims to identify and delimit the thyroid region in the US 

image using various image segmentation techniques such as thresholding, region-based 

segmentation, and convolutional neural networks.12-14 A significant body of research 
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has explored various techniques for segmenting the thyroid gland in individual 2D US 

images. Gong H, et al.15 evaluated several segmentation algorithms on thyroid US 

images. These algorithms included fuzzy c-means clustering, histogram clustering, 

QUAD-tree segmentation, region growing, and random walk.16 We implemented 

thyroid image segmentation in the algorithm in C# language, which was essential for 

the success of ATUS, as it ensured that the algorithm was applied only to the region of 

interest, increasing the reliability of the analysis and the precision of the diagnosis. 

 The infiltration of lymphocytes disrupts the normal organization of the thyroid 

gland's tissues, manifesting as changes in the US images.17 Deep learning models 

uncover informative characteristics of HT through a process called feature extraction. 

The analysis of intricate details extracted from the image across various scales or 

frequencies can unveil hidden characteristics of the tissue. This information can be 

harnessed by automated systems to accurately detect thyroid abnormalities.18 Our 

feature extraction process within the algorithm incorporated two techniques to analyze 

the segmented thyroid region. Firstly, Gabor filters were utilized to capture textural 

information from the region. Gabor filters effectively isolate specific textural features at 

various orientations and scales, providing a robust representation of the thyroid tissue 

texture. Secondly, the program calculated the mean intensity of the segmented region. 

This basic measure of echogenicity provides insights into the overall echogenicity of the 

thyroid gland. 

 In convolutional neural networks, applying multiple image analysis filters in a 

layered fashion enables the creation of a feature map. This process involves 

systematically convolving various filters across the image. Convolutional neural 

networks treat images as input data, analyzing the individual pixels, and aim to achieve 

a specific classification outcome.19 Building upon the concept of convolutional neural 

networks generating feature maps through layered filtering, our C# code implemented a 

classification evaluation process. The key steps involved pre-trained model assumption, 

prediction, simulated output, and predicted label for the presence of "suspected 

Hashimoto's thyroiditis. 

 The classification model training phase constitutes a pivotal step in establishing 

an automated algorithm for HT assessment. This process entails meticulously dividing 

the acquired US images into three distinct sets: training, validation, and testing.20 

Within our C# implementation, the model evaluation process leverages an IDataView 

object encapsulating the validation data. The evaluate function utilized the trained 
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model to generate predictions for each feature vector within this validation set. 

Subsequently, the function calculates various evaluation metrics based on a comparison 

between the predicted labels and the actual labels present in the validation data.  Thus, 

the scenario involved achieving high values for all three metrics: accuracy, sensitivity, 

and specificity. 

 The trained machine learning model can be seamlessly integrated into a clinical 

setting to facilitate automated classification of new thyroid US images (Impact of image 

analysis and artificial intelligence in thyroid pathology, with particular reference to 

cytological aspects.21 This application involves feeding the model with preprocessed US 

images and receiving the corresponding classification results, including the probability 

of HT.22 The implementation of an automated classification algorithm holds immense 

potential for enhancing the efficiency and accuracy of HT assessment. Our study has 

successfully developed a step Model Application in C# that utilizes the trained model to 

classify new thyroid US images. This application generates a report that presents the 

image classification along with the probability of being associated with HT. The 

evaluation results by the application showed a high confidence level, indicating that the 

features extracted from the image are consistent with cases of HT in the training data. 

 This study successfully developed an ATUS algorithm using the C# 

programming language to detect and quantify ultrasonographic characteristics 

associated with HT. The algorithm demonstrated high accuracy and sensitivity in 

classifying HT cases when compared to existing methods such as manual image 

analysis and rule-based approaches.23,24 The extracted features exhibited strong 

correlations with established HT markers, highlighting the algorithm's ability to capture 

relevant US patterns. Therefore, the integration of this algorithm into clinical settings 

can have an immense benefit on increasing the efficiency and accuracy of HT diagnosis 

and management 

 

CONCLUSION 

In conclusion, our study achieved the objective of developing an ATUS 

algorithm using the C# programming language to detect and quantify ultrasonographic 

characteristics linked to HT. By harnessing the capabilities of C# for algorithm 

development, we have significantly enhanced the efficiency and accuracy in identifying 

subtle features that are indicative of autoimmune thyroid disease. The results yielded 
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from this study have been satisfactory, demonstrating the potential of utilizing advanced 

programming tools for medical image analysis and diagnosis. 
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