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Abstract

Background and Aim: Alterations in the gut microbiota strongly correlate with the onset of
pancreatic cancer (PC). However, any causal relationship between gut microbiota alterations
and PC risk remains unknown.

Methods: We comprehensively investigated PC-related microorganisms in European and East
Asian populations through the application of Mendelian randomization (MR). The PC
genome-wide association study (GWAS) databases for European and East Asian individuals
were acquired from the UK and Japanese Biobanks, respectively. Primary analytical
methods, including the inverse variance weighted (IVW) method, weighted median,
Maximum likelihood method and MR PRESSO, were employed to estimate the potential
causal association between gut microbiota and PC. Additionally, we performed sensitivity
analysis and reverse MR analysis.

Results: By IVW method, overall 17 bacterial taxa were identified with potential causal
correlations to PC. The PC-associated gut microbiota signatures varied across different
populations. Among these, 4 specific taxa exhibited potential causality with PC, with
statistical significance in all four MR methods. Specifically, the Alcaligenaceae family was
identified as protective, while genus Sutterella, order Bacilliales and genus Enterohabdus
were associated with increased risk of PC. Among the European population within the UK
biobank, the Alcaligenaceae family, genus Sutterella, and order Bacillales were connected to
PC, while genus Enterohabdus was linked to PC in the Japanese cohort.

Conclusion: Our study implicates certain members of the gut microbiota in PC onset based
on genetics. Further investigations of the gut-pancreas axis may lead to the development of

novel microbiome targeted prevention strategies for PC.
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Introduction

Pancreatic cancer (PC), especially pancreatic ductal adenocarcinoma, is one of the most
lethal malignancies worldwide [1]. With an estimated 49,830 deaths attributed to PCin
2022, it remains the fourth most common cause of cancer-related deaths in the US [2].
Moreover, it is predicted to become the second leading cause of cancer-related deaths by
2030 in the US [3]. The incidence and mortality rates of PC are continuously increasing year
by year, unfortunately with minimal progress in the overall survival rate [4]. Thus, it is urgent
to gain a deeper understanding of the biological mechanisms underlying PC carcinogenesis,
potentially leading to novel treatment and management strategies for PC to reduce such
public health burden.

The role of the gut microbiome in PC development, known as the microbiome-pancreas axis,
has gained significant attention [5]. Microbiota from the gut can enter the pancreas via the
circulatory system or pancreatic duct [6, 7]. Numerous research studies have revealed that
gut microbiota alterations are involved in the advent of PC [8-11], even though the
underlying molecular mechanisms remain unclear. Moreover, some epidemiological studies
have demonstrated that the risk of PC is positively correlated to the abundance of some gut
microbiota, such as Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and
Helicobacter Pylori [10, 12, 13]. These studies indicated that the gut microbiota could serve
as biomarkers for PC in clinical practice and be utilized for early detection of PC and
prognosis of outcomes. However, a causal role for the gut microbiota in PC has not been
established, due to confounding factors and the potential for reverse causality [14-16].
Mendelian randomization (MR) is an epidemiological method whereby genetic variants are
employed as instrumental variables (1Vs) to determine the causal relationship between risk
factors and disease outcomes [17, 18]. The use of genetic variants is advantageous as they
are randomly distributed during conception, reducing the impacts of confounding factors
and eliminating reverse causation bias. Consequently, MR analysis is less susceptible to the
influence of environmental and self-adopted confounding factors [19]. In this study, MR
offers a valuable approach to estimate the causal link between the gut microbiota and the
risk of PC.

Using MR analysis, previous studies have identified the causal relationships between the gut
microbiome and several cancers, including liver cancer [20], colorectal cancer [21], and lung

cancer [22]. However, any causal association between the gut microbiota and PC is still
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unclear. Furthermore, most MR studies are largely derived from European populations,
while there is a limited number of studies employing MR analysis in non-European cohorts.
Here, we performed a two-sample MR analysis to evaluate the association between the gut
microbiome and PC risk among both European and East Asian populations. Our study can
enhance the theoretical basis for the gut-pancreas axis leading to novel insights into the

predictors of PC as well as potential treatment targets.

Methods

Exposure data

Genetic variants related to the gut microbiota composition were acquired from the large-
scale genome-wide association study (GWAS) [23]. The gut microbiota was profiled by
targeting three variable regions V1-V2, V3-V4 and V4 of the 16S rRNA gene. The meta-
analysis encompassed a total of 18,340 participants derived from 24 cohorts originating
from several countries including the United States, Canada, Israel, South Korea, Germany,
the United Kingdom. Following adjustment for age, gender, technical covariates, and genetic
principal components, the quantitative microbiome trait loci analysis yielded a total of 211
GWAS summary statistics associated with microbial taxa. These were 9 phyla, 16 classes, 20
orders, 35 families (including 3 families with unknown classification), and 131 genera (with
12 genera of unknown classification). The summary data is available for download from

https://mibiogen.gcc.rug.nl/.

Outcome data

The UK Biobank and the Japan Biobank were used to investigate the causal relationship
between the microbiome and pancreatic cancer. The cohort data from the UK Biobank of PC
involved 589 PC cases and 393372 healthy control. Summary analysis statistics are available

from the Lee Lab (https://www.leelabsg.org/resources). The summary GWAS data of the

Japan Biobank included 442 PC cases and 195745 healthy controls. Data was acquired from

the IEU Open GWAS project (https://gwas.mrcieu.ac.uk/datasets/).

Assumptions

The schematic representation of the investigation is depicted in Figure 1. In this study, the
gut microbiota was considered as the exposure, while PC was regarded as the outcome.
Three fundamental assumptions were necessary for a proper MR study. First, the genetic

variants designated as IVs were strongly related to the exposure. Second, the relationships
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between genetic variations and outcomes were not influenced by any other confounding
variables. Third, it should be noted that the impact of genetic variations on the outcome was
only mediated by their influence on the specific exposure under investigation. It meant that
no occurrence of horizontal pleiotropy was shown between the genetic variants and the
outcome.

Instrumental variable selection

Excluding 15 unknown classifications, a total of 196 taxa at five different levels (phylum,
class, order, family, and genera) were conducted as the exposure datasets. Potential IVs were
selected by single nucleotide polymorphisms (SNPs) with a less stringent significant
association at a threshold of P < 1.0 x 107°. The approach was employed to augment the
pool of SNPs accessible for conducting sensitivity tests, as demonstrated in prior studies [23,
24]. Independent SNPs were clumped as IVs based on linkage disequilibrium (LD) R? < 0.01
and clumping distance equal to 10,000 kb. The strengths of the IVs were estimated by F
statistics. Specifically, the extent to which the 1Vs accounted for variance was computed for
each exposure. F statistics were calculated with the following equation, r2 * (N—=1-k)/ [(1 -
r2)* k], where r? was the variance explained, N was the sample size and k was the number of
IVs [25]. To calculate F statistics for independent IVs, k was equal to 1. Finally, independent
IVs with F-statistics below 10 were deemed to be weak IVs and therefore were eliminated
from the analysis. To identify whether selective Vs were associated with confounders,
PhenoScanner was applied to exclude IVs significantly associated (P < 5x108) with potential
confounders (i.e., obesity, smoking, diet, or other diseases).

Mendelian randomization analysis

MR analysis was conducted in R using TwoSampleMR package version 0.5.7 [26]. Selected
IVs from different gut microbiota taxa were combined with the PC outcome SNPs dataset. To
ensure the effects of SNPs on the exposure corresponding to the same allele as the effects
on the outcome, shared SNPs were harmonised across exposure and outcome databases. At
least 3 shared SNPs available between exposure and outcome were then selected for further
MR analysis. To evaluate causal estimates between the gut microbiota and the risk of PC, MR
causality tests were performed using four different approaches: inverse-variance-weighted
(IVW) method, weighted median, maximume-likelihood method and MR-PRESSO [27]. In
particular, the IV method of estimation was fundamentally a meta-analysis technique which

was operated under the assumption that IVs had a causal impact on the outcome solely



145  through the exposure, rather than through any other pathways [28]. The weighted median
146  estimator provided valid estimations of causal effect when no more than 50% of the

147  information was from invalid instruments. MR PRESSO was employed to estimate the

148  pleiotropy, which corrected the estimation by eliminating outliers from the IVW model.
149  Therefore, the presence of a causal relationship was determined when a statistically

150 significant P value (P < 0.05) was obtained from any of the four methods used in the MR
151  analysis.

152  Sensitivity analysis

153  After MR analysis, sensitivity analysis was performed to evaluate potential heterogeneity
154  and pleiotropy. The Cochran’s Q statistics were employed for heterogeneity analysis. When
155 the p-value of Q statistics was less than 0.05, it might be interpreted as evidence of

156  heterogeneity. MR-Egger intercept, as well as MR-PRESSO test, were conducted to monitor
157 the potential horizontal pleiotropy. An insignificant P value (P > 0.05) in the MR-Egger

158 intercept test was defined as the absence of pleiotropy. The MR-PRESSO test was also

159  conducted to examine pleiotropic biases and address the pleiotropic effects by eliminating
160 outliers. MR analysis report was not supported by the MR PRESSO outliers-adjusted test
161 (P> 0.05) representing substantial pleiotropy. In addition, leave-one-out analysis was

162  performed to determine if the causal estimates were biased by any one single SNP. Leave-
163  one-out analysis was able to identify one SNP driving the signal when all, but one leave-one-
164  out configuration had P < 0.05.

165 Reverse MR analysis

166 To determine whether PC had any causal impact on the identified significant microbiota, a
167  reverse MR analysis was conducted (PC as the exposure and the identified significant gut
168  microbiota as the outcome), by using SNPs that were strongly associated with PC as Vs (p <
169  5x10°°). Causal tests based on the MR framework were then conducted, following the same
170  methodology as described in the section “Mendelian randomization analysis”. To eliminate
171  intricate causality possibility, we also excluded any results in which the P-value of reverse

172 MR was less than 0.05.
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Results

Selection of instrumental variables

IVs were sorted by p < 1x10°®. After excluding unknown bacterial genera or ones containing
less than three Vs, a total of 119 bacterial genera were used as exposure datasets. The F-
statistics of IVs were more than 10, suggesting that there was no evidence of weak
instrument bias. Details about the selected IVs for 119 genera were shown in
Supplementary Table S1.

Association of specific members of the gut microbiota with PC

In the MR analysis, 17 bacterial genera were genetically predicted associated with the risk of
PCin the IVW method of MR analysis. Specifically, there were 11 genera (class Bacyeroidia,
family Alcaligenaceae, family Veillonellacease, genus Bilophila, genus Eggerthella, genus
LachnospiraceaeUCG004, genus LachnospiraceaeUCGO010, genus Parasutterella, genus
Sutterella, order Bacillales, and order Bacteroidales) in European ancestry from the UK
Biobank (Table 1), while 6 genera (class Atinobacteria, family Christensenellaceae, genus
Ruminococcusgnavus group, genus Enterohabdus, genus Ruminococcus1, order
Burkholderiales) were identified in East Asian ancestry from the Japan Biobank (Table 2). The
scatter plots of IV potential effects on PC versus gut microbiota in the European and East
Asian populations were demonstrated in Supplementary Figure S1 and S2, respectively. In
order to identify the strongest evidence of significant risk factors between any microbial taxa
and PC, 17 significant bacterial genera were valued in 4 different MR analysis methods (IVW,
weighted median, Maximum likelihood, and MR PRESSO). The most significant risk factors
were required to achieve a p-value below 0.05 in all four distinct techniques of MR analysis.
Hence, four microbial taxa were identified that fulfilled these requirements, including three
taxa (family Alcaligenaceae, genus Sutterella, and order Bacillales) being associated with PC
in the UK Biobank cohort, and one taxon (genus Enterohabdus) being associated with PC in
Japan Biobank cohort (as shown in Table 1 and 2). Meanwhile, the IVW, weighted median,
Maximum likelihood, and MR PRESSO, all 4 analysis methods produced similar casual
estimates for magnitude and direction. In detail, the family Alcaligenaceae (OR = 0.5, 95% ClI
=0.29-0.86, p = 0.011, IVW) had a protective effect on PC in European populations, while
genus Sutterella (OR = 2.25, 95% Cl = 1.27-3.99, p = 0.005, IVW) and order Bacillales (OR =
1.60, 95% Cl = 1.18-2.16, p = 0.002, IVW) were associated with a higher risk of PC. The

findings from the Japanese cohort indicated a heightened likelihood of developing PC



205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

225
226
227
228
229
230
231
232
233
234
235

correlated with the presence of the genus Enterohabdus (OR = 2.38, 95% Cl = 1.40-4.04, p =
0.001, IVW).

Sensitivity Analyses

The Cochran’s Q statistics for all 17 significant risk factors of gut microbiota in PC showed no
significant heterogeneity (p > 0.05) (Supplementary Table S2). Meanwhile, no evidence of
horizontal pleiotropy for gut microbiota in PC with p > 0.05 was demonstrated by the MR-
Egger regression intercept approach (Supplementary Table $3). The heterogeneity of 17
significant risk factors of PC was also revealed by the MR-PRESSO global test, and the
analysis revealed no outliers in the results (Supplementary Table S4). Moreover, leave-one-
out analysis exhibited no significant difference in causal estimations of all 17 bacterial
genera on PC (Supplementary Figure S3 and S4). No association between Pancreatic cancer
and the following taxonomic groups was observed in the reverse MR analysis of the UK
Biobank data: class Bacyeroidia, family Alcaligenaceae, family Veillonellacease, genus
Bilophila, genus Eggerthella, genus LachnospiraceaeUCG004, genus
LachnospiraceaeUCGO010, genus Parasutterella, guens Sutterella, order Bacillales, and order
Bacteroidales (Table 3). As there were few Vs identified from the Japanese Biobank, only 7
IVs were selected even when the cut-off p-value was set as 1x10°. Therefore, we could not
perform reserve MR analysis between PC and the gut microbiome in the population from
Eastern Asia. Detailed information on the IVs (P value < 5x10°) used in the reverse MR

analyses was shown in Supplementary Table S5.

Discussion

Our study used MR analysis to offer valuable insights into the potential causal relationship
between gut microbiota and PC. IVW estimates suggested that within the European
population, class Bacteroidia, family Alcaligenaceae, genus Eggerthella, genus
LachnospiraceaeUCG004, genus Parasutterella, order Bacteroidales were related to the
reduced risk of PC, while family Veillonellaceae, genus Bilophila, genus Lanchnospiraceae
UCGO010, genus Sutterella, and order Bacillales were positively related to the risk of PC. In
the East Asian population, several gut microbiota members were identified to be related to
the reduced risk of PC, including family Christensenellaceae, genus Ruminococcusgnavus
group, genus Ruminococcus 1, and order Burkholderiales, while the level of class

Actinobacteria and genus Enterorhabdus were positively related to the PC. These findings
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not only contribute to the advancement of our knowledge of microbiota in the development
of cancer, but also highlight the importance of ethnicity in the risk of PC.

Based on the PC GWAS database from the UK biobank and the Japan biobank, our study
indicated that the PC-associated gut microbiome displayed widespread regional differences.
Furthermore, a recent meta-analysis conducted on the Finnish biobank data identified a
distinct group of bacteria associated with PC. However, these findings varied from the results
obtained from biobanks in the UK and Japan. [29, 30]. All this evidence suggested that the
PC-related gut microbiota signatures varied across different populations. Previous studies
demonstrated strong associations between race (European, African, Asian) and different
genera abundances in most cancer types [31]. The incidence of PC is greater in Europe than
in East Asia [32]. The disparity may be associated with gut microbiome differences. However,
the microbiome profiles among various racial groups in PC, are not well understood. The
different abundant bacteria might be attributed to various dietary patterns among
individuals from distinct regions. It is noteworthy that the diversity in human gut
microbiome composition between ethnic groups manifests as early as three months after
birth [33]. Hence, diverse geographic populations should be considered in the microbiota-
based disease models [34]. The identification of unique gut microbiota linked to PC in the UK
and Japan provide an opportunity to further conduct country-specific studies on the
development of PC.

The findings generated from our MR analysis were consistent with the previously published
results obtained from 16s rRNA sequencing of microbiota in PC patients. The clinical PC
faecal microbial profile by 16s rRNA sequencing reported that Eggerthella and Parasutterella
were significantly decreased in PC patients compared with healthy control [35]. Another
faecal microbiome signature in PC patients was characterised by a decreased presence of
bacterial families commonly in the healthy gut, namely Ruminococcaceae and
Lachnospiraceae; and an increased presence of Veillonellaceae [36]. Additionally, a
comparison of the relative abundances of each microbial species revealed that Sutterella
Wadsworthensis and Bilophila were significantly enriched, while Bacteroildes Rodentium was
significantly decreased in PC as compared with healthy controls [37, 38]. Thus, the two-
sample Mendelian randomization study is thought to provide a convincing approach for
evaluating the relationships between gut microbiota and PC, as it is compatible with faecal

16s sequencing results.
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According to our findings, a decrease in the abundance of Lachnospiraceae and
Ruminococcaceae, as well as an increase in Veillonellaceae, were associated with the PC risk.
Strikingly, a similar profile of altered gut microbiota was also exhibited in the patients
diagnosed with cirrhosis [39, 40]. In a linkage study in southern England, elevated risks of PC
were identified to be related to earlier liver diseases, such as alcoholic cirrhosis, primary
biliary cirrhosis and unspecified cirrhosis [41]. Combined with our results, new research will
be proposed that a potential role of altered gut flora in cirrhosis patients could contribute to
the increased susceptibility to PC. Besides, it is well acknowledged that obesity substantially
elevates the risk of PC; however, the underlying mechanisms connecting the two remain
poorly understood [42]. The genus Eggerthella, as a protective factor for PC, exhibited a
significantly lower abundance in obese individuals compared to non-obese ones [43].
Conversely, the genus Sutterella as a risk factor for PC, exhibited an increase in obese people
[44, 45]. Given the similarity of the microbiota profiles between the obese population and
PC patients, it is reasonable to assume that the microbiota alteration, such as the metabolic
changes linked to the Eggerthella and Sutterella [46], could mediate the mechanism by
which the obesity initiates the development of PC. Taken together, our study can provide
novel insights into the relationships between PC, the microbiome and other risk factors,
which could enhance our knowledge of PC development.

The therapeutic techniques aiming at the cancer-associated microbiome have been
conducted in clinical trials. In this context, our study found that Ruminococcus and
Lachnospiraceae were severed as the protective role of PC, suggesting novel and potential
treatment targets for gut microbiome-based therapy. Hester et al. [47] demonstrated that
the consumption of a substantial quantity of dietary fibre led to the production of a
significant level of butyrate production by several bacterial family, such as Lachnospiraceae
and Ruminococcaceae, which had preventive properties against the development of colon
cancer. The utilization of probiotics in healthy individuals has been found to inhibit the
development of colon carcinoma by increasing the number of Ruminococcus species and
Clostridiales bacteria [48, 49]. Therefore, the use of probiotics containing Ruminococcus
could have promise as a novel therapeutic approach for mitigating the onset of PC. On the
other hand, based on our findings, other PC-associated microbiota are worthy of further
investigation, making this a promising direction for targeted gut microbiome-based therapy

for PC.



300 Our study has several limitations. First, our research included a total of 119 microbial taxa;
301 however, we did not investigate potential causal associations at the species level. Second,
302 MR analysis is a computer-based correlation analysis between gut microbiota and PC,

303  without explaining the underlying process. It would be advantageous to validate the

304  outcomes via functional experiments. Third, the present study included people of European
305 and East Asian descent, perhaps restricting the generalizability of the findings to other

306 populations.

307 In conclusion, this study identified several candidate bacteria that have potential association
308  with PC. Variations in the PC-associated gut microbiota signatures are evidenced with

309 geographical location, which may explain the disparity of PC incidence across nations. The
310 identification of PC-associated gut microbiota provides the foundation for the exploration of
311  novel microbiota-targeted therapy for PC. Further studies are needed to better characterise

312  the potential role of these gut microbiota in the pathogenic mechanisms of PC.
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Figure 1

The study design and the overall workflow.

Assumption 1: the genetic variant is directly associated with the exposure;

Assumption 2: the genetic variant is not related to factors known to obscure the connection between the exposure and the effect;
Assumption 3: the genetic variant has no effect other than through the exposure.
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Table 1

Causal associations of the gut microbiota with pancreatic cancer risk in the European

population.

Exposure Method p value OR(95%Cl)
class.Bacteroidia.id.912 Inverse variance weighted —— 0.040 0.52 (0.28, 0.97)
class.Bacteroidia.id.912 Weighted median .- 0.213 0.61 (0.28, 1.33)
class.Bacteroidia.id.912 Maximum likelihood —— 0.031 0.53 (0.30, 0.95)
class.Bacteroidia.id.913 MR-PRESSO - 0.059 0.52 (0.28,0.97)

family.Alcaligenaceae.id.2875  Inverse variance weighted - 0.011 0.50 (0.29, 0.86)
family.Alcaligenaceae.id.2875 Weighted median ~ —=—, 0.026 0.43 (0.20, 0.90)
family.Alcaligenaceae.id.2875 Maximum likelihood - 0.016 0.51(0.29, 0.88)
family.Alcaligenaceae.id.2876 MR-PRESSO - 0.020 0.50 (0.30, 0.85)
family.Veillonellaceae.id.2172  Inverse variance weighted E 0.016 1.69 (1.10, 2.59)
family.Veillonellaceae.id.2172 Weighted median e — 0.059 1.80 (0.98, 3.30)
family.Veillonellaceae.id.2172 Maximum likelihood e 0.016 1.72 (1.11, 2.66)
family.Veillonellaceae.id.2173 MR-PRESSO — 0.026 1.69 (1.10, 2.59)

genus.Bilophila.id.3170  Inverse variance weighted —_— 0.049 1.68 (1.00, 2.82)
genus.Bilophila.id.3170 Weighted median —— 0.502 1.27 (0.63, 2.59)
genus.Bilophila.id.3170 Maximum likelihood —_— 0.044 1.72(1.01,2.91)
genus.Bilophila.id.3171 MR-PRESSO :r—'— 0.069 1.68 (1.00, 2.82)

I
genus.Eggerthella.id.819  Inverse variance weighted - 0.046 0.66 (0.44, 0.99)
genus.Eggerthella.id.819 Weighted median - 0.026 0.55(0.32,0.93)
genus.Eggerthella.id.819 Maximum likelihood — 0.043 0.67 (0.45, 0.99)
genus.Eggerthella.id.820 MR-PRESSO - 0.074 0.66 (0.44, 0.99)

I
genus.LachnospiraceaeUCG004.id.11324  Inverse variance weighted . 0.035 0.54 (0.31, 0.96)
genus.LachnospiraceaeUCG004.id. 11324 Weighted median .- 0.152 0.57 (0.26, 1.23)
genus.LachnospiraceaeUCG004.id. 11324 Maximum likelihood ——— 0.037 0.54 (0.30, 0.96)
genus.LachnospiraceaeUCG004.id. 11325 MR-PRESSO - 0.016 0.54 (0.35, 0.83)

I
genus.LachnospiraceaeUCG010.id.11330  Inverse variance weighted —_— 0.037 1.77 (1.03, 3.02)
genus.LachnospiraceaeUCG010.id.11330 Weighted median -f—-— 0.118 1.77 (0.86, 3.63)
genus.LachnospiraceaeUCG010.id.11330 Maximum likelihood :—-— 0.036 1.79 (1.04, 3.10)
genus.LachnospiraceaeUCG010.id.11331 MR-PRESSO — 0.045 1.77 (1.08, 2.90)

I
genus.Parasutterella.id.2892  Inverse variance weighted ——‘: 0.035 0.64 (0.42,0.97)
genus.Parasutterella.id.2892 Weighted median - 0.079 0.59 (0.32, 1.06)
genus.Parasutterella.id.2892 Maximum likelihood - 0.040 0.64 (0.42,0.98)
genus.Parasutterella.id.2893 MR-PRESSO - 0.030 0.64 (0.44,0.92)
genus.Sutterella.id.2896  Inverse variance weighted — 0.005 2.25(1.27, 3.99)
genus.Sutterella.id.2896 Weighted median ; 0.020 2.51(1.16, 5.43)
genus.Sutterella.id.2896 Maximum likelihood — 0.005 2.33 (1.29, 4.21)
genus.Sutterella.id.2897 MR-PRESSO e 0.010 2.25(1.34,3.78)

I

order.Bacillales.id. 1674 Inverse variance weighted | — 0.002 1.60 (1.18, 2.16)
order.Bacillales.id. 1674 Weighted median — 0.041 1.53(1.02, 2.30)
order.Bacillales.id. 1674 Maximum likelihood | — 0.003 1.61(1.17, 2.20)
order.Bacillales.id. 1675 MR-PRESSO , — 0.006 1.60 (1.23, 2.08)

order.Bacteroidales.id.913  Inverse variance weighted —-— 0.040 0.52 (0.28,0.97)
order.Bacteroidales.id.913 Weighted median —— 0.234 0.61(0.27, 1.38)
order.Bacteroidales.id.913 Maximum likelihood — 0.031 0.53 (0.30, 0.95)
order.Bacteroidales.id.914 MR-PRESSO —— 0.059 0.52 (0.28,0.97)

Negative association Positive association
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Table 2

Causal associations of the gut microbiota with pancreatic cancer risk in the East Asian

population.

Exposure Method p value OR(95%Cl)
class.Actinobacteria.id.419 Inverse variance weighted ! 0.035 2.41(1.06, 5.44)
class.Actinobacteria.id.419 Weighted median e 0.517 1.42(0.49, 4.09)
class.Actinobacteria.id.419 Maximum likelihood ' 0.015 2.51(1.20, 5.28)
class.Actinobacteria.id.419 MR_PRESSO ' 0.058 2.41(1.06, 5.44)

1
family.Christensenellaceae.id. 1866 Inverse variance weighted -— 0.041 0.33(0.11,0.95)

I
family.Christensenellaceae.id.1866 Weighted median #— 0.061 0.27 (0.07, 1.07)
family.Christensenellaceae.id. 1866 Maximum likelihood = -#— 0.043 0.32(0.11, 0.96)
family.Christensenellaceae.id. 1866 MR_PRESSO  -=— : 0.024 0.33(0.16, 0.68)
genus..Ruminococcusgnavusgroup.id. 14376 Inverse variance weighted .- 0.020 0.50 (0.28, 0.90)
genus..Ruminococcusgnavusgroup.id. 14376 Weighted median —.—— 0.206 0.62 (0.30, 1.30)
genus..Ruminococcusgnavusgroup.id. 14376 Maximum likelihood - 0.007 0.49(0.29, 0.82)
genus..Ruminococcusgnavusgroup.id. 14376 MR_PRESSO - 0.042 0.50 (0.28, 0.90)
genus.Enterorhabdus.id.820 Inverse variance weighted —_— 0.001 2.38 (1.40,4.04
genus.Enterorhabdus.id.820 Weighted median _— 0.036 2.10(1.05,4.20

genus.Enterorhabdus.id.820
genus.Enterorhabdus.id.820

genus.Ruminococcus1.id. 11373
genus.Ruminococcus1.id. 11373
genus.Ruminococcus1.id. 11373
genus.Ruminococcus1.id. 11373

order.Burkholderiales.id.2874
order.Burkholderiales.id.2874
order.Burkholderiales.id.2874
order.Burkholderiales.id.2874

Maximum likelihood
MR_PRESSO

Inverse variance weighted
Weighted median
Maximum likelihood
MR_PRESSO

Inverse variance weighted
Weighted median
Maximum likelihood
MR_PRESSO

-—
-
-—
-—
|
-—
-
—
-—
T T T
051 2 3 4

Negative association Positive association

0.002
0.005

0.023
0.062
0.023
0.025

0.024
0.369
0.026
0.041

)
)
2.43 (1.37, 4.30)
2.38 (1.62, 3.51)
0.35 (0.14, 0.87)
0.31(0.09, 1.06)
0.34 (0.13, 0.86)
0.35 (0.16, 0.75)

0.37 (0.16, 0.88)
0.58 (0.18, 1.91)
0.37 (0.15, 0.89)
0.37 (0.17, 0.84)



577  Supplementary Figure 1

578  Scatter plot of the association between gut microbiota and pancreatic cancer based on UK
579  biobank database.
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581  Bilophila; (E) genus Eggerthella; (F) genus LachnospiraceaeUCG004; (G) genus

582  LachnospiraceaeUCGO010; (H) genus Parasutterella; (1) genus Sutterella; (J) order Bacillales;
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Supplementary Figure 2

Scatter plot of the association between gut microbiota and pancreatic cancer based on
Japan biobank database.
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617  Supplementary Figure 3

618 Leave-one-out sensitivity analysis for the association between genetically predicted gut
619 microbiota and pancreatic cancer based on UK biobank database.

620 (A) class Bacteroidia; (B) family Alcaligenaceae; (C) family Veillonellaceae; (D) genus

621  Bilophila; (E) genus Eggerthella; (F) genus LachnospiraceaeUCG004; (G) genus

622  LachnospiraceaeUCG010; (H) genus Parasutterella; (1) genus Sutterella; (J) order Bacillales;
623  (K) order Bacteroidales
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627  Supplementary Figure 4

628 Leave-one-out sensitivity analysis for the association between genetically predicted gut
629  microbiota and pancreatic cancer based on Japan biobank database.

630 (A) class Actinobacteria; (B) family Christensenellaceae; (C) genus

631  Rumminococcusgnavusgroup; (D) genus Enterorhabdus; (E) genus Ruminococcus1; (F) ordr
632  Burkhoderiales
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