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Abstract 

Existing metabolomic clocks exhibit deficiencies in capturing the heterogeneous aging rates 

among individuals with the same chronological age. Yet, the modifiable and non-modifiable 

factors in metabolomic aging have not been systematically studied. Here, we leveraged 

metabolomic profiles of 239,291 UK Biobank participants for 10-year all-cause mortality 

prediction to generate and validate a new aging measure--MetaboAgeMort. The MetaboAgeMort 

showed significant associations with all-cause mortality, cause-specific mortality, and diverse 

incident diseases. Adding MetaboAgeMort to conventional risk factors model improved the 

predictive ability of 10-year mortality. We identified 99 modifiable factors for MetaboAgeMort, 

where 16 factors representing pulmonary function, body composition, socioeconomic status, 

dietary quality, smoking status, alcohol intake, and disease status showed quantitatively stronger 

associations. The genetic analyses revealed 99 genomic risk loci and 271 genes associated with 

MetaboAgeMort. Our study illuminates heterogeneous metabolomic aging across the same age, 

which provides avenues for developing anti-aging therapies and personalized interventions. 

Keywords: aging, biological age, metabolomic, mortality, modifiable factor, genetic 

determinants. 

  



Introduction 

Aging is the greatest common risk factor for most chronic diseases1. The rate at which individuals 

age is heterogeneous, engendering variations in the susceptibility and progression of diseases and 

mortality2. As the global demographic shifts towards an aging population, the ability to measure 

aging, identify individuals who age faster, and understand the factors that contribute to 

differential rates of aging are of utmost importance. These findings have significant implications 

for the development of targeted preventive programs and interventions. These efforts may 

alleviate the socioeconomic and healthcare burden of age-related diseases, thus promoting 

healthy aging and longevity. 

Metabolomics offers a novel avenue for assessing the biological processes that underlie 

aging3. To date, multiple studies have attempted to elucidate how metabolomic profiles in various 

tissues (e.g., blood, urine, and cerebrospinal fluid) interact with aging, and a few metabolomic 

clocks have been proposed to measure biological aging4–7. The majority of these clocks are 

generated based on correlations between metabolomic profiles and chronological age; while 

chronological age is considered an imperfect surrogate for building aging measures as it does not 

fully capture the heterogeneity of individual aging rates8. In contrast, metabolomic aging 

measures based on health-related surrogate indicators (e.g., time to death) may better reflect an 

individual’s health status and reveal intrinsic biological aging mechanisms9. Previous studies 

have utilized targeted or untargeted mass spectrometry and nuclear magnetic resonance (NMR) 

techniques to construct multivariable metabolite scores of all-cause mortality10–12. While these 

metabolite scores exhibit exceptional predictive accuracy even over conventional risk factor 

models, their applicability in risk stratification, especially across individuals of the same 

chronological age, remains constrained by their reliance on scaled biomarker values created 

independently for each cohort12. Metabolomic profiles manifest pronounced responsiveness to the 

confluence of endogenous genetic regulation and exogenous environmental exposures in each 



individual cohort13. Thus, developing aging measures that can be calculated based on 

concentration units derived from individual-level data, may have more applicability in both 

clinical setting and research on the biology of aging. 

Although certain behaviors (e.g., dietary quality) have displayed anti-aging properties in 

human and animal models14,15, their impact on metabolomic aging remains uncertain. 

Furthermore, the complex relationship between aging and a constellation of diverse factors (e.g., 

local environmental factors and socioeconomic status [SES]) has emerged as a burgeoning focus 

in the field of aging research. A thorough investigation of these modifiable factors in 

metabolomic aging could reveal new strategies for preventive interventions targeting the aging 

process. Moreover, prior investigations have indicated that aging measures may capture distinct 

aging domains influenced by varying genetic determinants16. However, the underlying 

mechanisms and pathways of metabolomic aging have not been elucidated, thereby restricting the 

identification of potential therapeutic targets17. 

In this study, we leveraged large-scale metabolomic data from the UK Biobank (UKB), a 

prospective cohort study of over 500,000 participants. We first developed a novel aging measure, 

MetaboAgeMort, using all-cause mortality as a surrogate18. Next, we evaluated its applicability 

by examining its association with aging-related outcomes (i.e., morbidity and mortality), and 

comparing its performance to conventional risk factors and several previously trained 

metabolomic clocks. Finally, we systematically identified the modifiable factors and genetic 

determinants for MetaboAgeMort (Fig. 1).  

 

Results 

Population characteristics 

As shown in Supplementary Fig. 1, 239,291 participants with complete data on plasma 

metabolomics and covariates at baseline were included. These participants had a median age of 



58.3 years (interquartile range [IQR]: 50.6, 63.7), and the majority were female (53.0%), and 

white ethnicity (95.6%). To develop the MetaboAgeMort model, the 239,291 participants were 

randomly split into a training (n = 167,506) and a testing set (n = 71,785), with a 7 to 3 ratio. No 

significant differences were observed in the sociodemographic characteristics of participants 

between the training set and the testing set. Detailed characteristics of the total participants and 

by datasets are presented in Supplementary Table 1. 

Development of MetaboAgeMort and MetaboAgeMort Acceleration (MetaboAgeMortAccel)  

During a median follow-up of 13.9 years, we documented 20,447 deaths among 239,291 

participants. After adjustment for potential confounders and accounting for multiple testing, a 

total of 185 metabolic biomarkers, encompassing amino acids, glycolysis-related metabolites, 

ketone bodies, fatty acids, lipids, and lipoprotein subclasses, demonstrated significant correlations 

with all-cause mortality (P < 0.05/249) (Supplementary Table 2).  

To further select variables for inclusion in the MetaboAgeMort model, we applied a Cox 

regression model with least absolute shrinkage and selection operator (LASSO) penalization--

where the hazard of all-cause mortality was regressed on the 185 metabolic biomarkers and 

chronological age--in the training set. Finally, chronological age and 35 metabolic biomarkers, 

including average diameter for very low-density lipoprotein (VLDL) particles, linoleic acid, ratio 

of omega-3 fatty acids to total fatty acids, ratio of monounsaturated fatty acids to total fatty acids, 

ratio of linoleic acid to total fatty acids, alanine, histidine, leucine, valine, phenylalanine, tyrosine, 

glucose, pyruvate, citrate, 3-hydroxybutyrate, acetate, acetoacetate, acetone, creatinine, albumin, 

glycoprotein acetyls , triglycerides in very large VLDL, free cholesterol in very large high-

density lipoprotein (HDL), total lipids in small HDL, cholesteryl esters in small HDL, 

triglycerides to total lipids ratio in large VLDL, phospholipids to total lipids ratio in very small 

VLDL, phospholipids to total lipids ratio in intermediate density lipoprotein (IDL), cholesteryl 

esters to total lipids ratio in IDL, triglycerides to total lipids ratio in large low-density lipoprotein 



(LDL), triglycerides to total lipids ratio in medium LDL, phospholipids to total lipids ratio in 

small LDL, free cholesterol to total lipids ratio in small LDL, cholesteryl esters to total lipids 

ratio in very large HDL, free Cholesterol to total lipids ratio in small HDL, were selected 

(Supplementary Table 3).  

Next, MetaboAgeMort was developed using the methods previously proposed by Levine et 

al. in the training set18. For more information about the MetaboAgeMort estimator, refer to 

Supplementary Table 4. A profiling of the MetaboAgeMort performance was carried out in the 

testing set (n = 71,785). MetaboAgeMort ranged from 27.82 to 104.06 years, with a mean and 

median value of 55.81 (standard deviation [SD] = 9.18) and 56.10 (IQR: 48.99, 62.50) years. As 

shown in Fig. 2a, MetaboAgeMort was highly correlated with chronological age across all 

participants (r = 0.85) and within each sex subgroup (female: r = 0.85; male: r = 0.86). 

We also calculated a metric, MetaboAgeMortAccel, following the methods by Liu et al.19 

MetaboAgeMortAccel represents the divergence of MetaboAgeMort from chronological age (i.e., 

whether a person appears younger [values < 0] or older [values > 0] than expected, based on 

his/her chronological age). The MetaboAgeMortAccel displayed a range of -16.43 to 41.29 years, 

with a mean and median value of 0 (SD = 4.78) and -0.41 (IQR: -3.29, 2.79) years in the testing 

set. 

Association of MetaboAgeMort with mortality 

The associations of MetaboAgeMort with all-cause and cause-specific mortality in the testing set 

are demonstrated in Fig 2b. After adjustment for potential confounders, each additional year in 

MetaboAgeMort corresponded to an 7% rise in the risk of all-cause mortality (Hazard Ratio [HR]: 

1.07, 95% confidence interval [CI]: 1.06, 1.08) (Supplementary Table 5). Our finding remains 

consistent when: (1) stratified by chronological age, sex, ethnicity, education level, smoking 

status, alcohol intake frequency, regular exercise, healthy diet, and body mass index (BMI) 

category (Supplementary Table 6), (2) excluding participants who died within five years of 



follow-up (Fig. 2b and Supplementary Table 5), and (3) restricting the sample to diseases-free 

participants (Supplementary Table 7). In addition, MetaboAgeMort was significantly positively 

associated with cause-specific mortality, including cancer (HR: 1.06, 95% CI: 1.05, 1.07), 

cardiovascular disease (CVD, HR: 1.08, 95% CI: 1.07, 1.10), respiratory disease (HR: 1.08, 95% 

CI: 1.06, 1.10), digestive disease (HR: 1.12, 95% CI: 1.09, 1.14), neurodegenerative disease (HR: 

1.03, 95% CI: 1.01, 1.04), and other causes (HR: 1.09, 95% CI: 1.07, 1.10) (Fig. 2b and 

Supplementary Table 5).  

The Kaplan-Meier survival curves indicated that individuals in the highest quartile group 

(Q4) of MetaboAgeMortAccel had significantly increased risks of all-cause and cause-specific 

mortality when compared to those in the lowest quartile (Q1) (Fig. 3a and Supplementary Table 

8). The all-cause mortality rates of the highest quartile group (Q4) were found to be comparable, 

or in certain instances higher, than those of the lowest quartile group (Q1), despite the latter being 

10 years older chronologically (Supplementary Fig. 4). 

Associations of MetaboAgeMort with diseases incidence 

The associations of MetaboAgeMort with the risk of multiple diseases in the testing set are 

depicted in Fig. 2c. After adjustment for potential confounders, each 1-year increment in 

MetaboAgeMort was significantly associated with higher risks of cancer (HR: 1.02, 95% CI: 1.02, 

1.03), CVD (HR: 1.03, 95% CI: 1.03, 1.04), dementia (HR: 1.04, 95% CI: 1.03, 1.05), liver 

disease (HR: 1.06, 95% CI: 1.05, 1.07), respiratory disease (HR: 1.07, 95% CI: 1.06, 1.07), 

chronic kidney disease (HR: 1.09, 95% CI: 1.09, 1.10), hypertension (HR: 1.05, 95% CI: 1.04, 

1.06), type 2 diabetes mellitus (HR: 1.07, 95% CI: 1.06, 1.08), eyes disease (HR: 1.02, 95% CI: 

1.01, 1.02), depression (HR: 1.03, 95% CI: 1.02, 1.03), and anxiety (HR: 1.02, 95% CI: 1.01, 

1.02), with an exception of osteoarthritis (HR: 1.00, 95% CI: 1.00, 1.01) (Supplementary Table 9). 

The Kaplan-Meier survival curves exhibited discernible trajectories among the quartile 

groups of MetaboAgeMortAccel (Fig. 3b and Supplementary Fig. 3b). The group in the highest 



quartile (Q4) showed a significant association with increased risks of multiple disease incidences 

compared to the lowest quartile (Q1) (Supplementary Table 10 and 11). 

Discriminative improvements beyond clinical predictors 

Based on the findings depicted in Fig. 2d, it is evident that the area under the curve (AUC) of 

MetaboAgeMort displayed a considerable improvement relative to chronological age, aligning it 

more closely with the AUC of the conventional risk factors model. MetaboAgeMort added 

predictive utility of 10-year mortality beyond conventional risk factors (i.e., chronological age, 

sex, alcohol intake frequency, smoking status, BMI, systolic blood pressure, triglycerides, 

creatinine, total cholesterol, HDL cholesterol, and prevalent diabetes, CVD and cancer)11. 

Compared with the conventional risk factors model, the combined model including 

MetaboAgeMort had better discrimination ability, as demonstrated by significantly increased C-

statistics (0.017, P < 0.001) (Supplementary Table 12). The superior performance of 

MetaboAgeMort was further confirmed through substantial enhancements in reclassification, as 

evaluated by integrated discrimination improvement (IDI: 0.018, 95% CI: 0.004, 0.021) 

(Supplementary Table 12), suggesting that MetaboAgeMort captures something above and 

beyond what can be explained for mortality risk by conventional risk factors. 

The comparison of MetaboAgeMort with MetaboAge and MetaboHealth score 

In addition, we calculated two pre-existing well-known multi-metabolite scores (i.e., MetaboAge5 

and MetaboHealth score12), and assessed their correlations with the mortality risk and multiple 

diseases incidence. The MetaboAge score predicts chronological age (in years) directly. Two 

versions of MetaboAge were calculated: MetaboAge_LM (generated through linear regression), 

and MetaboAge_EN (generated through ElasticNET regression)20. The MetaboHealth score is a 

multivariate model predicting all-cause mortality. It was calculated as the weighted sum of 14 

log-transformed and cohort-scaled metabolites. The distributions of these multi-metabolite scores 

in the testing set are shown in Supplementary Fig. 5a. As shown in Supplementary Table 13, after 



adjustment for potential confounders, the highest quartile group (Q4) of the MetaboHealth score 

has significantly increased risks of all-cause mortality, cause-specific mortality, and multiple 

incident diseases, compared to the lowest quartile group (Q1). The MetaboAge_EN showed 

significant association with all-cause mortality, CVD mortality, and several cardiometabolic 

diseases (i.e., CVD and T2DM). Conversely, MetaboAge_LM did not demonstrate any 

appreciable relationship with these same clinical endpoints. As shown in Supplementary Table 14, 

even after mutual adjustment, both MetaboAgeMort and MetaboHealth score maintained 

significant correlations with all-cause mortality. Notably, the Akaike Information Criterion (AIC) 

for the model integrating MetaboAgeMort indicated a relatively superior fit, implying that 

MetaboAgeMort may have a higher predictive capacity or enhanced explanatory power in 

forecasting all-cause mortality when compared to the model integrating the MetaboHealth score.  

Moreover, we compared MetaboAgeMort with these multi-metabolite scores, in terms of 

their predictive utility for 10-year mortality risk and multiple diseases incidence. As shown in 

Supplementary Fig.5b, MetaboAgeMort displayed a significantly higher AUC than that of the 

MetaboAge and MetaboHealth score for 10-year all-cause mortality prediction (P < 0.001). 

Combining MetaboAgeMort with conventional risk factors resulted in an AUC that outperformed 

models integrating MetaboAge (MetaboAge_EN and MetaboAge_LM, both P < 0.001) or 

MetaboHealth score (P = 0.021) with the same conventional risk factors. When combining 

MetaboAgeMort with MetaboHealth score and conventional risk factors, the resulting AUC was 

higher than that of the model integrating only MetaboHealth score with conventional risk factors, 

but this difference was not significant when compared to the model integrating only 

MetaboAgeMort with conventional risk factors. This finding suggests that MetaboAgeMort may 

capture something beyond what can be explained for mortality risk by MetaboHealth score, when 

taking into account conventional risk factors. MetaboAgeMort also exhibited a higher predictive 

utility for multiple diseases (except for cancer incidence) compared to the MetaboHealth score 



(Supplementary Fig. 5c). After accounting for chronological age and sex, the AUC of the model 

integrating both MetaboAgeMort and MetaboHealth score was higher than that of the model with 

MetaboHealth score alone, but did not show a significant improvement over the model with 

MetaboAgeMort alone. This finding suggests that MetaboAgeMort may also capture something 

beyond what can be explained for diseases incidence by MetaboHealth score. 

Modifiable factors for MetaboAgeMort 

Then we investigated the modifiable factors of MetaboAgeMort. We considered a total of 107 

potentially modifiable factors from the UKB baseline survey. After Bonferroni correction, 99 

factors showed a significant association with MetaboAgeMort (P < 4.67×10-4, Fig. 4a and 

Supplementary Table 13). For 16 factors across four categories, the associations were relatively 

more substantial (≥ 2 years of change in MetaboAgeMort) per 1-SD change in the factor 

(Supplementary Fig. 6), such as forced vital capacity (FVC) (tertile 3 vs. tertile 1, β =�-2.22, 95% 

CI:� -2.28, -2.15), body fat percentage (tertile 3 vs. tertile 1, β =�3.55, 95% CI: 3.49, 3.61), 

dietary index (tertile 3 vs. tertile 1, β =� -2.04, 95% CI: -2.09, -1.98), and average total 

household income before tax (greater than 100,000 vs. less than 18,000, β =� -3.34, 95% CI: -

3.44, -3.24). Comparable correlations were noted when stratifying by chronological age and sex 

(Supplementary Table 13). 

Genetic determinants for MetaboAgeMort 

To better understand the genetic mechanisms underlying metabolomic aging, we performed a 

genome-wide association study (GWAS) analysis of MetaboAgeMort. In the GWAS analysis, 

11,688 SNPs significantly associated with MetaboAgeMort were identified (P < 5 × 10-8) 

(Supplementary Fig. 7). The SNP-derived heritability of MetaboAgeMort was 38.26% (P = 2.23 

× 10-86). Using the Functional Mapping and Annotation (FUMA) online platform (v1.5.2), we 

pinpointed 1,068 independent significant SNPs, 319 lead SNPs, and 99 genomic risk loci 

(Supplementary Table 14-17). Furthermore, 585 prioritized genes that may be involved in the 



genetic etiology of MetaboAgeMort were identified by positional mapping (Supplementary Table 

18). The leading SNP of the most significant locus (rs174575, locus 57) was positioned near or 

within FADS1 and FADS2 on chromosome 11. The leading SNP of the second most significant 

locus (rs217184, locus 78) was in TXNL4B, HPR, and HP on chromosome 16 (Supplementary 

Table 19). Summary results per genomic risk locus are shown in Fig. 4b. 

We also performed analyses pertaining to genes and tissue enrichment using Multi-Marker 

Analysis of GenoMic Annotation (MAGMA) v1.08 within FUMA. In genome-wide gene-based 

association analysis (GWGAS), 310 genes were determined to be genome-wide significant after 

applying Bonferroni correction (Supplementary Table 20), where 271 genes were also 

positionally mapped to significant loci from the SNP-based analysis above. The gene-set analysis 

identified 13 significant gene sets after Bonferroni correction, including lipid-related biological 

process (e.g., reverse cholesterol transport, cholesterol metabolism, and phospholipid 

homeostasis), CYP2E1 reactions, and liver specific genes (Supplementary Table 21). The tissue-

enrichment analysis indicated that liver displayed significant specificity in gene expression for 

the MetaboAgeMort-associated genes (Fig. 4c and Supplementary Table 22-23). 

 

Discussion 

Leveraging the large-scale metabolomics data, we have formulated a groundbreaking aging 

measure, MetaboAgeMort, based on 10-year all-cause mortality risk prediction. The 

MetaboAgeMort demonstrated remarkable predictive utility of mortality risk across a wide range 

of demographic and socioeconomic stratifications, as well as health behavior factors and causes 

of death. Significantly, the conventional risk factors were augmented by MetaboAgeMort in 

terms of predictive accuracy for 10-year mortality. Meanwhile, our study has revealed compelling 

associations between accelerated metabolomic aging within the same age group and an increased 

likelihood of various health-related outcomes. This implies that it could serve as a comprehensive 



indicator for health and mortality risk stratification in a clinical setting. Next, we identified 99 

modifiable factors across seven categories for MetaboAgeMort, highlighting the crucial role 

played by body composition, healthy diet, SES, and pulmonary function in the process of 

metabolomic aging. The genetic analyses ultimately revealed 99 significant genomic risk loci and 

271 genes linked to MetaboAgeMort, thus offering new insights into the genetic architecture of 

metabolomic aging. 

Previous studies have generated metabolomic clocks while using chronological age as a 

surrogate21. In comparison, our MetaboAgeMort further incorporates information on all-cause 

mortality risk, which is considered a more reliable surrogate for biological aging than 

chronological age, through a sophisticated modeling method. As one would expect from a 

measure of aging, MetaboAgeMort not only assesses the risks of all-cause and cause-specific 

mortality, but also the risks of various incident diseases, highlighting its considerable potential in 

the early detection of individuals at risk and facilitating timely and effective interventions. It is 

worth mentioning that we have substantiated the contribution of MetaboAgeMort in enhancing 

the predictive capacity for 10-year all-cause mortality risk in addition to conventional risk factors. 

These findings translate into potential clinical application of MetaboAgeMort as an additional 

source of discriminatory information to refine comprehensive risk assessments for death and 

diseases. To date, numerous studies have endeavored to identify metabolite predictors of 

mortality risk and have successfully developed multivariate metabolite scores (e.g., 

MetaboHealth score) that exhibited significant association with all-cause mortality22. Nonetheless, 

the utilization of these metabolite scores is constrained due to the reliance on cohort-specific 

scaled biomarker values, thereby impeding its clinical application in identifying individuals with 

a propensity for accelerated aging and comparison across different populations. MetaboAgeMort, 

directly calculated from individual-level data, more intuitively shows the heterogeneity in 

mortality risk among individuals of the same chronological age, exhibiting enhanced 



generalization. 

The 35 metabolic biomarkers employed in our study to develop MetaboAgeMort are 

implicated in diverse processes, including lipoprotein and fatty acid metabolism, fluid balance, 

and inflammation, indicating that aging is an intricate multidimensional phenomenon. Previous 

studies have sought to elucidate the interaction between metabolites and aging. In line with the 

discoveries made by Deelen et al.12, our study revealed that average diameter for VLDL particles, 

histidine, leucine, phenylalanine, valine, glucose, acetoacetate, albumin, glycoprotein acetyls, the 

ratio of polyunsaturated fatty acids to total fatty acids (i.e., omega-3 fatty acids to total fatty acids 

percentage, and linoleic acid to total fatty acids percentage), and total lipids in small HDL were 

essential independent indicators for mortality. In addition, we observed associations for several 

other metabolic biomarkers, such as ketone bodies and relative lipoprotein lipid concentrations. 

KBs are endogenous fuels generated by the liver in response to metabolic stress23. In a healthy 

community-based population, higher elevated endogenous KBs have shown to be positively 

associated with all-cause mortality24. Relative lipoprotein lipid concentrations play a role in lipid 

homeostasis and their associations with mortality may be partially attributed to their regulatory 

effect on plasma triglyceride levels, a critical mortality risk factor25. Collectively, our study 

contributes to the comprehension of metabolic alterations that underlie the process of aging. 

The primary focus of aging research has been on the development of strategies to combat 

aging. Measures like MetaboAgeMort, which capture future morbidity and mortality risk, could 

facilitate evaluation of intervention efficacy while eliminating the requirement for extended 

follow-up periods. A recent study in the UK Airwave cohort has discovered a correlation between 

metabolomic aging and several factors such as overweight, obesity, heavy drinking, diabetes, 

depressive symptoms, depression, anxiety, and post-traumatic stress disorder7. Using a larger-

scale population-based cohort, our study meticulously investigated the modifiable factors 

associated with metabolomic aging. Consequently, we identified a total of 99 potential factors 



across seven distinct categories: SES, early life and sexual health, medical history, physical 

measures, psychosocial factors, local environment, and lifestyle. Stronger associations (β > 2) 

were quantitatively observed for 16 factors related to pulmonary function, body composition, 

SES, dietary quality, smoking status, alcohol intake, and disease status, all of which have 

previously been reported to be associated with aging26–29. Our study provides a metabolomic 

insight into the mechanisms linking these factors to aging process. Certain local environmental 

factors, such as fine particulate matter (PM2.5) and nitrogen dioxide (NO2), have been evidenced 

to potentiate oxidative stress responses within biological systems, impair mitochondrial function, 

and subsequently lead to metabolic irregularities30,31. The correlation between these factors and 

MetaboAgeMort underscores the significance of enacting urban planning and environmental 

preservation policies to slow down the aging process. Furthermore, MetaboAgeMort 

demonstrated responsiveness to specific early-life exposure factors, suggesting that targeted 

interventions during the critical developmental period, such as optimizing maternal nutrition and 

improving the developmental environment for children, could potentially contribute to the 

promotion of healthy aging and reduction of risks associated with late-life mortality and 

morbidity32.  

Genetics play a substantial role in determining individual biological aging rates33. Based on 

our current understanding, this study offers the initial evidence regarding the genetic 

determinants of metabolomic aging. By utilizing genotyping data, we pinpointed 99 genomic risk 

loci and 271 genes associated with MetaboAgeMort. The most significant SNPs were identified 

within the FADS cluster (FADS1, FADS2) on chromosome 11. These genes have emerged as 

significant genes in prior studies on serum omega-3 fatty acid34, a crucial type of polyunsaturated 

fatty acids that have demonstrated favorable impacts on age-related diseases (e.g., CVD and 

metabolic diseases)35. We also identified several genome-wide significant genes on chromosome 

16, such as TXNL4B, HPR, and HP. These genes play integral roles in modulating the core 



biological mechanisms, including cell cycle progression, oxidative balance maintenance, protein 

conformational dynamics and stability, which all exhibit profound interdependencies with the 

aging process36,37.Moreover, the MAGMA gene-set analysis unveiled the critical involvement of 

lipid metabolism, CYP2E1-mediated reactions, and liver-specific genes in metabolomic aging, 

providing valuable insights into the underlying molecular mechanisms and potential therapeutic 

targets pertinent to this process. The tissue-enrichment analysis further emphasizes the 

importance of liver in metabolomic aging. This finding implies that strategies focused on 

preserving or restoring liver health, such as modulating key metabolic pathways, enhancing 

antioxidant defenses, and stem cell therapy, may have far-reaching systemic benefits in 

countering metabolomic aging process. Further research is needed to refine these potential 

strategies and evaluate their efficacy in promoting healthy aging and preventing age-related 

diseases. Notably, the pathways identified for MetaboAgeMort were distinct from those enriched 

by genes associated with PhenoAgeAccel or BioAgeAccel16, thus reaffirming that the 

heterogeneous aging patterns observed among individuals might be partly attributed to varying 

genetic susceptibilities. 

Some limitations in this study should also be noted. First, the number of biomarkers 

captured by the targeted NMR platform is only a fraction of the metabolites in the human plasma. 

Nevertheless, NMR has the ability to offer highly accurate quantification at a minimal expense, 

thus facilitating the straightforward implementation of metabolomic clocks in population health. 

Second, the association between modifiable risk factors and MetaboAgeMort is cross-sectional, 

and further causal inferences are needed. Third, even though we have taken into account 

numerous modifiable risk factors, it is conceivable that certain factors may have been 

unintentionally neglected. Fouth, the majority of participants in the UKB were White British and 

tended to be healthier and wealthier38, and thus, our sample was less representative of the overall 

UK adult population. It is worth mentioning that the generalizability of our findings to 



populations in developing countries or other contexts may be limited. 

In conclusion, we have successfully developed a novel metabolomic-based measure of aging 

known as MetaboAgeMort. This measure has proven to be highly predictive of mortality and 

various diseases. Of particular significance is the fact that MetaboAgeMort can enhance the 

predictive accuracy of 10-year mortality beyond conventional risk factors. These findings imply 

that it has remarkable potential as a comprehensive measure of overall health and risk of 

mortality in a clinical setting. The potential of body composition, healthy diet, SES, pulmonary 

function, smoking status, and alcohol intake were highlighted as possible factors for delaying 

metabolomic aging. Our research has led us to the identification of 99 significant genomic risk 

loci and 271 genes linked to MetaboAgeMort. This breakthrough sheds new light on the complex 

genetic underpinnings governing metabolomic aging processes. 

 

Methods 

Study participants 

The UKB is a large prospective cohort study that comprised over 500,000 participants aged 37-73 

years at the time of baseline assessment (2006-2010). Information was collected via touch-screen 

questionnaires, biological samples, physical measurements, and linked medical or death register 

records. Detailed study design and methodology were described elsewhere39. Ethics for the UKB 

was approved by the North West Multicenter Research Ethics Committee, and all participants 

have provided signed informed consent. 

Plasma metabolomics  

A total of 251 metabolic biomarkers for EDTA plasma samples from a randomly selected subset 

of approximately 280,000 UKB participants were measured between June 2019 and April 2020 

(Phase 1) and April 2020 and June 2022 (Phase 2) using a high-throughput NMR metabolomics 

platform developed by Nightingale Health Ltd. The metabolic biomarkers span multiple 



metabolic pathways, including fatty acids, fatty acid compositions, and lipoprotein lipids in 14 

subclasses, as well as various low-molecular weight metabolites, such as ketone bodies, amino 

acids, and glycolysis metabolites. Detailed protocols for sample collection and methodology for 

the Nightingale NMR pipeline were described elsewhere40,41. The present study considered 249 

available metabolic biomarkers (except for  glucose-lactate and spectrometer-corrected alanine) 

and the values of each metabolic biomarker were transformed using natural logarithmic 

transformation (ln[x+1]) followed by Z-normalisation prior to analysis. 

Development of MetaboAgeMort and MetaboAgeMortAccel 

Two sequential steps were undertaken in order to create the MetaboAgeMort model. In the first 

step, we identified aging-related metabolic biomarkers. Initially, We evaluated the associations of 

each metabolic biomarker (per 1-SD increment) with all-cause mortality using multivariable Cox 

regression models, with adjustment for chronological age, sex, ethnicity, education level, 

Townsend deprivation index (TDI), alcohol intake frequency, smoking status, regular exercise, 

healthy diet, BMI, cholesterol-lowering medication, anti-hypertensive medication, anti-diabetes 

medication, and prevalent diseases at baseline (i.e., cancer, CVD, hypertension, diabetes mellitus, 

and chronic obstructive pulmonary disease [COPD]) among all participants (n = 239,291), and 

185 metabolic biomarkers were selected with Bonferroni correction. Then, we employed a Cox 

regression model with LASSO penalization--where the hazard of all-cause mortality was 

regressed on 185 metabolic biomarkers and chronological age--in the training set. Finally, an 

optimal λ of 0.00097 were selected via ten-fold cross-validation, and 36 variables, including 

chronological age were assigned nonzero coefficients. 

In the second step, we constructed the MetaboAgeMort in the training set by adopting the 

methodology previously proposed by Levine et al.18. We fitted two proportional hazards 

regression models based on the parametric Gompertz distribution: one used 36 variables selected 

above as predictors, and the other used only chronological age as a predictor. Based on the two 



models, we predicted the 10-year all-cause mortality risk using the cumulative distribution 

function, respectively. We then converted the mortality risk into units of years by equating the 

risk from the two models and solving for age, thus obtaining MetaboAgeMort. In general, an 

individual’s MetaboAgeMort represents the chronological age within the general population 

corresponding to that individual’s mortality risk. For example, two individuals are 

chronologically 40 years old, but one may have a MetaboAgeMort of 45 years and the other a 

MetaboAgeMort of 35 years, indicating that they have the average mortality risk of someone who 

is chronologically 45 or 35 years old, respectively. In addition, we calculated a metric, 

MetaboAgeMortAccel, following the methods by Liu et al42. MetaboAgeMortAccel represents 

the divergence of MetaboAgeMort from chronological age, defined as the residual resulting from 

a least-squares linear model when regressing MetaboAgeMort on chronological age. 

Health-related outcomes  

Information on date and cause of death were obtained through the linkage to national death 

registries. The all-cause and cause-specific mortality (i.e., cancer, CVD, respiratory disease, 

neurodegenerative disease, digestive disease, and other causes) were determined using the 

International Classification of Disease (ICD)-10 codes (Supplementary Table 24)43. Follow-up 

time was calculated from the date of baseline assessment to the date of death, loss to follow-up, 

or end of follow-up (Dec 31, 2022), whichever came first. 

Information on diagnoses and medical conditions of the participants were obtained through 

the linked hospital inpatient record data, self-reported data, and primary care data from the UK 

National Health Services. The incident diseases were ascertained by the ICD-9 and ICD-10 codes 

(Supplementary Table 25). Follow-up time was calculated from the date of baseline assessment to 

the date of first diagnosis of the disease, death, loss to follow-up, or end of follow-up (Oct 31, 

2022), whichever came first. 



MetaboAge and MetaboHealth score 

The MetaboAge score predicts CA (in years) directly5. Two different models were utilized: a 

linear regression model (MetaboAge_LM) and an ElasticNET regression model 

(MetaboAge_EN). The model weights/coefficients were obtained from the most recent 

publication by Akker et al.20 In quality control, we excluded three samples with one or more zero 

values per sample, as well as one or more concentrations that were more than 5 times the SD 

away from the overall mean of the feature. The MetaboHealth score is a multivariate model 

predicting all-cause mortality12. It was calculated as the weighted sum of 14 log-transformed and 

cohort-scaled metabolites, using the R-package MiMIR44. To avoid infinite values after log-

transformation, a value of 1was added to the metabolites containing any zero. 

Modifiable factors 

We have taken into account a total of 107 potentially modifiable factors from the UKB baseline 

survey. Details of processing the factors are presented in Supplementary Table 26. These factors 

were classified into seven categories: local environment (e.g., greenspace percentage, buffer 

1000m), psychosocial (e.g., nervous feelings), SES (e.g., TDI), medical history (e.g., prevalent 

CVD at baseline), early life and sexual health (e.g., breastfed as a baby), physical measures (e.g., 

handgrip strength), and lifestyle (e.g., healthy diet).  

Genome-wide association analysis  

To better understand the genetic mechanisms underlying MetaboAgeMort, we performed a 

GWAS analysis using the data from UKB v3 genotyping release. The SNPs were excluded if 

meeting any of the following criteria: (1) minor allele frequency < 0.01, (2) Hardy-Weinberg 

equilibrium test P < 1.0×10-6, (3) missing minor allele frequency, or results of Hardy-Weinberg 

equilibrium test. This particular aspect of the analysis was constrained to individuals of White 

British descent (n= 226,937). The fastGWA-MLM analysis in the Genome-wide complex trait 

analysis (GCTA) software (version 1.94.1) was used to perform GWAS analysis45. Models 



included chronological age, sex, genotype array, and the top 10 principal components as the 

covariates. The genome-based restricted maximum likelihood (GREML) method in GCTA was 

used to estimate the SNP-based heritability (variance explained by all the SNPs)46. 

Functional mapping and annotation 

The FUMA online platform (v1.5.2) was applied for functional mapping and annotation of 

GWAS results (default parameters were used unless explicitly stated otherwise), with annotations 

derived from the human genome assembly GRCh37 (hg19)47. To identify independent genomic 

risk loci (defined by r2 > 0.6) and variants in linkage disequilibrium (LD) with lead SNPs, the 

SNP2Gene module was applied using the genetic data of European populations in 1000G phase3 

as the reference48. Positional mapping with a 10 kilobase (kb) window size was employed to map 

risk loci to neighboring protein-coding genes. 

Gene-based association, gene-set, and gene-property analyses with MAGMA 

We performed analyses pertaining to genes and tissue enrichment (i.e., GWGAS, gene-set, and 

tissue expression analyses) using MAGMA v1.08 within FUMA49. For each of the 18,955 

protein-coding genes, GWGAS accessed the joint effect of all variants within the gene. 

Bonferroni correction was used to establish the genome-wide significance threshold (P < 0.05/ 

18,955 = 2.64×10-6). Gene-set analysis was further performed using hypergeometric tests for 

curated gene sets and Gene Ontology (GO) terms from MsigDB v7.0 to discern whether specific 

biological pathways or cellular functions were implicated in the genetic etiology of 

MetaboAgeMort, with Bonferroni correction also being utilized. Simultaneously, tissue 

enrichment analysis was carried out with 30 general and 53 specific tissue types from GTEx v850. 

Covariates 

Information on chronological age, sex (female or male), ethnicity (White or Non-white), 

education level (high, intermediate, or low), alcohol intake frequency (never or special occasions 

only, one to three times per month, one to four times per week, or daily or almost daily), smoking 



status (never, previous, or current smoker), regular exercise (yes or no), healthy diet (yes or no), 

and medication information were collected through questionnaire interview. The TDI was 

assigned by participants’ postcodes, representing SES levels51. BMI (kg/m2) was calculated as 

measured weight/height2. 

Statistical analysis 

Baseline characteristics were described using median (interquartile range, IQR) or count 

(percentage). Two-sample Wilcoxon test for continuous variables and chi-squared test for 

categorical variables were used to test the differences between the training and the testing set. 

The study’s roadmap is illustrated in Fig. 1. The Cox proportional hazard model was used to 

evaluate the association between MetaboAgeMort and all-cause mortality, with adjustment for 

chronological age, sex, ethnicity, education level, TDI, alcohol intake frequency, smoking status, 

regular exercise, healthy diet, BMI, medication use, and prevalent diseases at baseline. To further 

assess robustness, we repeated the analyses by (1) stratified by several demographic, 

socioeconomic, as well as health behavior factors, (2) excluding participants who died within 5 

years of follow-up to reduce the influence of end-of-life metabolomic status, and (3) only 

including participants who were free of prevalent diseases at baseline to minimize the influence 

of reverse causality. Proportional hazards of the associations were tested using Schoenfeld’s 

residuals. We then grouped the participants into quartiles of MetaboAgeMortAccel. The Kaplan-

Meier plots were drawn to visualise survival curves.  

The evaluation of MetaboAgeMort associations with cause-specific mortality and incident 

diseases was conducted using Fine and Gray's competing risk models52. When constructing 

models evaluating the associations of MetaboAgeMort with incident diseases, we excluded the 

participants with a specific diagnosis before or at the time of recruitment from the models. 

Chronological age, sex, ethnicity, education level, TDI, alcohol intake frequency, smoking status, 

regular exercise, healthy diet, and BMI were used as covariates. The associations of 



MetaboAgeMortAccel with mortality and incident diseases were evaluated using same method as 

that for MetaboAgeMort. The second and the third MetaboAgeMortAccel quartiles (Q2 and Q3) 

were set as the reference. 

Next, receiver operating characteristic (ROC) curves were used to evaluate the utility of 

MetaboAgeMort for 10-year all-cause mortality risk prediction beyond conventional risk factors. 

C-statistic and IDI were calculated, in comparison to that of the conventional risk factors model. 

In addition, we used ROC to compare its predictive utility for 10-year all-cause mortality risk and 

multiple diseases incidence with several previously trained multi-metabolite scores (i.e., 

MetaboAge and MetaboHealth score). Moverover, we tested the associations of these multi-

metabolite scores with cause-specific mortality and diverse age-related diseases using the same 

methods employed for MetaboAgeMort. 

Multivariable linear regression models were applied to test the response of MetaboAgeMort 

(response variable) for each modifiable factor (independent variable), with a Bonferroni-

corrected significance threshold for identifying top hits (P < 0.05/107 = 4.67×10-4). In these 

analyses, continuous variables were Z-normalised, and results were shown as β coefficients per 1-

SD increment in the corresponding factor (based on the availability of each individual factor). 

Moreover, we divided modifiable factors into tertiles and showed the results using the lowest 

tertile as a reference. The models were adjusted for chronological age, sex, and ethnicity. 

Stratified analyses according to chronological age (< 60 and ≥ 60�years) and sex (male and 

female) were conducted, utilising Bonferroni-correction method to determine top hits. 

Data analyses and visualisation were all performed in R version 4.2.2. A two-sided P of ≤ 

0.05 was considered statistically significant. 
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