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Key Points 
● Question: Can computer vision track infant movement and use movement 

patterns to predict neurologic changes in critically ill infants? 

● Findings: In this retrospective study of 115 infants less than 1 year old, we 

trained a computer vision algorithm to track movement from video data and 

predict sedation and cerebral dysfunction. 

● Meaning: Computer vision can monitor alertness and relevant neurologic 

changes in critically ill infants. 
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ABSTRACT 
Importance: Infant alertness and neurologic changes are assessed by exam, which 

can be intermittent and subjective. Reliable, continuous methods are needed.  

Objective: We hypothesized that our computer vision method to track movement, pose 

AI, could predict neurologic changes.  

Design: Retrospective observational study from 2021–2022.   

Setting: A level four urban neonatal intensive care unit (NICU).  

Participants: Infants with corrected age ≤1 year, comprising 115 patients with 4,705 

hours of video data linked to electroencephalograms (EEG), including 46% female and 

25.2% white non-Hispanic. 

Exposures: Pose AI prediction of anatomic landmark position and an XGBoost 

classifier trained on one-minute variance in pose.  

Main outcomes and measures: Outcomes were cerebral dysfunction, diagnosed from 

EEG readings by an epileptologist, and sedation, defined by the administration of 

sedative medications. Measures of algorithm performance were receiver operating 

characteristic-area under the curves (ROC-AUCs) on cross-validation and on two test 

datasets comprised of held-out infants and held-out video frames from infants used in 

training.  
Results: Infant pose was accurately predicted in cross-validation, held-out frames, and 

held-out infants (respective ROC-AUCs 0.94, 0.83, 0.89). Median movement increased 

with age and, after accounting for age, was lower with sedative medications and in 

infants with cerebral dysfunction (all P<5x10-3, 10,000 permutations). Sedation 

prediction had high performance on cross-validation, held-out frames, and held-out 

infants (ROC-AUCs 0.90, 0.91, 0.87), as did prediction of cerebral dysfunction (ROC-

AUCs 0.91, 0.90, 0.76).  

Conclusions and Relevance: We used pose AI to predict sedation and cerebral 

dysfunction in 4,705 hours of video from a large, diverse cohort of infants. Pose AI may 

offer a scalable, minimally invasive method for neuro-telemetry in the NICU. 
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INTRODUCTION 
Infant alertness is considered the most sensitive piece of the neurologic exam, 

reflecting integrity throughout the central nervous system.1,2 Infant mental status 

changes can be due to encephalopathy, sedation, or other causes and are highly 

dynamic, necessitating continuous assessment. Encephalopathy can be caused by a 

variety of diagnoses which require rapid identification and treatment (e.g., hypoxic, 

metabolic, and infectious etiologies).3 Lethargy, a sign of encephalopathy, is one of the 

most important indicators of neonatal sepsis.4 While encephalopathy is an example of 

pathology that impacts alertness, we also purposefully manipulate infant mental status, 

most commonly with sedative medications. Titrating the appropriate level of sedation is 

challenging in any patient population, but more so in infants due to their inability to 

communicate and the extreme pharmacokinetic variability of sedative medications. In 

infants, these medications have longer half-lives, high rates of tachyphylaxis, opioid 

antagonist metabolites, and more pronounced respiratory depression.5,6 Altogether, we 

routinely evaluate mental status to make life-saving decisions in the neonatal intensive 

care unit (NICU). 

Despite its importance, our ability to continuously quantify and monitor infant 

alertness is limited. The physical exam is commonly employed, but provides a single 

snapshot, is subjective, and can be delayed.1,2 Validated instruments, such as the N-

PASS for sedation7 or modified Sarnat for encephalopathy,8,9 mitigate exam subjectivity 

with high inter-rater reliability10 but are labor-intensive and not continuous. 

Electroencephalography (EEG) is a continuous record of neurologic activity. However, 

its implementation requires specialized staff and equipment not available at every 

NICU,11 and it carries the risk of pressure injuries with prolonged use.12 Applicability of 

EEG to alertness is also limited, as there is no association between EEG and neonatal 

depth of sedation.13 Furthermore, although continuous EEG can assess encephalopathy 

by indicating the degree of cerebral dysfunction, there is limited clinical adoption aside 

from evaluation for therapeutic hypothermia. This is likely owing to EEG’s high inter-

rater variability and challenging interpretability among bedside providers.14,15 Overall, 

determining the level of an infant’s alertness remains a challenge, despite being 

fundamental to clinical care in the NICU. 
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One scalable approach to address this unmet need is to augment the physical 

exam using computer vision. We hypothesized that pose artificial intelligence (AI),16,17 a 

deep learning approach to track anatomic landmarks, could be used to continuously 

characterize changes in neurological phenotypes in the NICU. In this study, we 

successfully applied pose AI to a large dataset (4,705 video-EEG hours, 115 infants) 

and used pose to accurately predict sedation and cerebral dysfunction in critically ill 

infants (Figure 1). 

 
METHODS 

Patient population and human subjects’ protection 

We collected data through a retrospective observational experimental design 

between February 01, 2021 and December 31, 2022. This approach was approved by 

the institutional review board at the Icahn School of Medicine at Mount Sinai. To train 

algorithms generalizable across race, sex, and gestational age, we used broad inclusion 

criteria and obtained data from a racially and ethnically diverse patient population. We 

included data from all infants who had video-EEG data and chronologic age ≤1 year at 

the start of recording. The Mount Sinai Hospital in New York City is an ideal setting 

because it serves many newborns (6,000-8,000 births/year), serves a racially diverse 

population (Asian 6%, Black 13%, White 38%, Other 27%, Unknown 19%), and has 

broad geographic representation (Manhattan 38%, other Boroughs 37%, and outside 

NYC 25%), based on demographics for mothers of newborns admitted to the Mount 

Sinai NICU or well-baby nursery. We transferred all video-EEG and electronic health 

record data from the Epilepsy Monitoring Unit over an encrypted connection directly to 

Mount Sinai’s HIPAA-compliant supercomputing cluster, where they were stored. The 

full data workflow, which follows Transparent Reporting of a multivariable prediction 

model for Individual Prognosis Or Diagnosis (TRIPOD) guidelines, is shown in Figure 
S1.18,19 

 

Clinical outcomes 

 We evaluated the utility and predictive capability of pose AI on two clinical 

outcomes, sedation and cerebral dysfunction. We classified phenobarbital and sedative 
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infusions (i.e., midazolam, dexmedetomidine and fentanyl) as sedating.20 Levetiracetam 

and less frequently used antiseizure medications (ASMs), such as phenytoin and 

oxcarbazepine, were not considered sedating for this study.20 The observed ASM 

combinations are enumerated in Table 1. Cerebral dysfunction or encephalopathy was 

diagnosed from EEG readings by an epileptologist separately for each calendar day. 

The diagnosis of cerebral dysfunction and encephalopathy was based on focal or 

generalized abnormalities of background EEG activity, such as reactivity, synchrony, 

discontinuities, and slowing. 

 

Software development 

There are multiple algorithms to track human pose from video data. Most are 

trained on adults and have poor performance on infants, likely because infant body 

proportions are different from adults.21 We chose DeepLabCut for its generalizability to 

many animals,16,22 including humans,23 and robots.24 DeepLabCut uses transfer 

learning to leverage ResNet,25 which is trained on >1 million images, for pose tracking. 

To train DeepLabCut to recognize infant pose, we randomly sampled 25 frames per 

infant and labeled up to 14 landmarks per frame. We excluded frames if all body parts 

were occluded, if the infant was out of frame, or if subsets of the video were 

incompatible with DeepLabCut, leaving 2712 frames from 109 infants for model training 

and evaluation. To test generalizability and prevent data leakage,26,27 we randomly 

excluded 10% of infants (N=239 frames, 10 infants) from training and 5% of frames (N 

=122 frames) from infants used in training. We trained DeepLabCut on 2351 frames 

from 99 infants and evaluated performance within these training data with repeated 

measures k-fold cross-validation. With these model weights, any infant video can be 

converted to vectorized pose, which consists of X and Y coordinates and a likelihood for 

each anatomic landmark in each frame. 

We used three evaluation metrics to assess the performance of the infant 

DeepLabCut model. First, we generated L2 pixel errors by measuring the Euclidean 

distance between predicted body part coordinates and their manually labeled anatomic 

landmarks. Second, we generated area under receiver operating characteristic 

(AUROC) curves based on the model’s ability to correctly predict whether an anatomic 
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landmark was occluded using DeepLabCut’s built-in confidence score. Finally, we used 

a standard pose recognition evaluation metric, percentage of correct key points (PCK).23 

The PCK is the percent of body part coordinates within 26.2 pixels of a landmark’s 

known position (26.2 pixels is on average half the height of an infant’s head in our video 

frames). 

 

Statistical analysis 

We first developed a summary metric of infant neurologic status. To quantify 

baseline movement, we calculated variance for each X and Y position for each body 

part per minute. We divided variance by median nose-to-neck distance within each 

interval to adjust for infant size and camera position. Variance was chosen because it 

summarizes frequency and amplitude of motion while maintaining robustness to 

outliers. We used variance instead of kinematic calculations, which were used in other 

infant pose recognition work,28 as kinematics were challenging to calculate from two-

dimensional videos across the wide variety of camera positions and combination of 

occluded anatomic landmarks seen in video-EEG data. We also chose variance for its 

demonstrated clinical relevance with infant mental status: a metric related to variance in 

infant pose, standard deviation derived from ECG-motion artifacts, was previously 

shown to predict lethargy in late onset sepsis.29 We calculated movement variance 

within 1-minute intervals per anatomic landmark and then took the median across all 

landmarks. We then compared 1-minute movement intervals between different groups 

(e.g., sedation vs no sedation) using a resampling procedure to account for repeated 

measures (see Supplemental Methods).30,31 A P value less than 0.05 was considered 

statistically significant. 

 

Machine Learning 

We next used 1-minute movement intervals to develop classifiers for sedation 

and cerebral dysfunction. Machine learning performance hinges on the quality of input 

data, so we implemented the following filters (Figures S1): postmenstrual age (PMA) 

<44 weeks to increase homogeneity, ≥7 body parts visible per 1-minute interval to 

ensure sufficient visibility, variance calculations based on ≥30 seconds per 1-minute 
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interval to ensure stable variance estimates for each anatomic landmark, and ≥60 

minutes of usable footage per infant to ensure sufficient sample size per infant. The 

filtered dataset used for developing sedation and cerebral dysfunction classifiers thus 

comprised 118,823 minutes from 63 infants (Figure S1). 

We trained three models to predict sedation, logistic regression, support vector 

machines, and XGBoost (see Supplemental Methods for hyperparameter tuning). We 

selected the best classifier with multiple metrics (F1 score, accuracy, AUROC, 

precision-recall ROC).32,33 Then, we evaluated the best classifier on training data 

through repeated measures k-fold cross-validation and on two randomly selected test 

sets, held-out infants (i.e., those not used in training) and held-out minutes from infants 

used in training. To better understand which anatomic landmarks were contributing to 

classification performance, we calculated feature importance using the XGBoost 'gain' 

function. To generate a resampled distribution for gain, which is a deterministic function 

of the XGBoost classifier, we recalculated gain through random subsampling of 80% of 

the data and repeated this 500 times. 
 

RESULTS 

Cohort characteristics 

Video-EEG and clinical data were collected from Feb 2021 to Dec 2022, during 

which data from 115 individuals met inclusion criteria (Table 1). Caregiver-reported race 

and ethnicity were obtained retrospectively from the electronic health record. Consistent 

with the routine use of video-EEG in therapeutic hypothermia, most infants were <1 

month old (67%) and the most common underlying suspected/known pathology was 

hypoxic ischemic encephalopathy (21%). Both levetiracetam and phenobarbital were 

the most common first-line ASMs, possibly reflecting the recent publication of the 

NEOLEV2 trial.34  

 

Training and evaluating an infant pose recognition algorithm. 

We trained a computer vision algorithm, DeepLabCut, to predict infant pose. We 

trained DeepLabCut on 2,351 manually labeled frames from 99 infants, and evaluated 

performance within this training set, a set of held-out frames from the infants used for 
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training, and a set of infants not used for training.26,27 We observed a low L2 pixel error 

(median L2train=3.2, L2test-new-frames=3.5, L2test-new-infants=4.6 pixels) comparable to prior 

work.16 This was consistent across all anatomic landmarks (Figure 2a). Further 

illustrating excellent model performance, we observed high ROC-AUCs >0.83 for 

landmark occlusion (Figure 2b) and that ≥95% of predictions were within a reference 

distance threshold, half the size of the head (Figure 2c). Finally, exemplary video 

frames during a seizure in a neonate with KCNQ2-related epilepsy syndrome showed 

predicted landmarks (colored) overlapping expected locations (Figure 2d). Having 

successfully trained a pose recognition algorithm on infants, we generated pose X and 

Y coordinates for all video data from all patients (N=4,705 hours from N=115 infants). 

This includes videos from six additional infants not initially available for training or 

evaluation, bringing the total from 109 to 115 infants for all downstream analyses. 

 

Association between infant movement, predicted by pose AI, and neurologic changes. 

To evaluate the utility of pose recognition in a typical intensive care unit, we used 

movement variance as an intuitive metric of infant movement that would reflect major 

clinical features including PMA, cerebral dysfunction, and use of sedative medications. 

The proportion of videos with sufficient information to calculate variance per 1-minute 

intervals for at least 7 body parts was 47% (range 0–100% per infant). Movement 

increased with corrected age (Figure S2) in infants with EEG abnormalities or sedative 

medications (47-fold increase between lowest and highest age group, permutation 

P=1x10-4, 10,000 permutations) and in those without (15-fold increase between lowest 

and highest age groups, permutation P=2.4x10-3). 

We next evaluated if movement decreased in infants receiving sedative 

medications and in those with cerebral dysfunction. We restricted these hypothesis tests 

to neonates with PMA <44 weeks because the relationship between age and movement 

was non-linear and possibly dependent on underlying neuropathology (see Figure 
S1a). We observed decreased movement in infants with cerebral dysfunction (Figure 
S1b, P=1x10-4), phenobarbital (P=3.6x10-3), both (P=1x10-4), and those receiving 

sedative infusions (P=1x10-4). Taken together, we show that movement increased with 
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age and decreased with sedative medications and with cerebral dysfunction, decreasing 

more so with their combined effects. 

 

Pose AI predicts sedation and cerebral dysfunction. 

The movement variance used in the prior section was used to validate pose AI 

for clinical applicability but does not account for the relative importance of different 

anatomic landmarks or their relationship. To overcome this limitation, we developed 

prediction models for sedation and cerebral dysfunction. We further filtered data to 

stabilize variance estimates and ensure sufficient data per patient (see Methods and 

Figure S1), resulting in 118,823 minutes from 63 infants used for model development 

(range 65–14,409 minutes per infant). XGBoost33 had substantially better performance 

compared to logistic regression and support vector machines across all metrics for 

sedation prediction (Table S1), so it was used for all downstream applications. When 

predicting sedation (Figure 3a, left panel), our classifier had high performance in 

training data (median ROC-AUC=0.90), held-out minutes (ROC-AUC=0.91), and a set 

of infants not used for training (AUROC=0.87). We observed similarly high performance 

with our cerebral dysfunction classifier (Figure 3a, right panel) in training data (median 

AUROC=0.91), held-out minutes (AUROC=0.90), and held-out infants (AUROC=0.76). 

We interrogated both classifiers for feature importance, and found that feet and 

shoulders were consistently the most important (Figure 3b). 

 

Sedation prediction in an infant undergoing therapeutic hypothermia 

To illustrate the utility of predicting sedation in an individual case, we plotted 

sedation probability as a function of time in an infant born at gestational age 37+1 

weeks with Apgar scores 1, 4, and 5, at 1, 5, and 10 minutes, who required therapeutic 

hypothermia for probable hypoxic ischemic encephalopathy (Figure 4). The newborn 

received phenobarbital before rewarming due to increasing epileptiform discharges 

observed on EEG. Sedation probability increased first with hypothermia induction and 

again after phenobarbital administration (P(Sedation)median = 0.23 from 1476 minutes 

before phenobarbital versus 0.59 from 2268 minutes after, Wilcoxon-rank sum test 
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P<10-10). Exemplary video frames with heatmaps of infant motion during the preceding 

five minutes visually capture this decrease in movement (Figure 4d). 

 

DISCUSSION 
We show that pose AI can accurately track infant movement and predict sedation 

and cerebral dysfunction in critically ill infants in their “natural” clinical setting. We 

envision a system for neurologic monitoring akin to cardiorespiratory telemetry. A 

camera is facing the incubator to record and store video data. Pose AI then provides a 

neuro-telemetry strip with anatomic landmark position and algorithmic predictions 

including level of sedation and cerebral dysfunction. If the algorithm detects 

abnormalities or there is a clinical concern (e.g., tolerance to sedative medications), 

then the stored video footage, pose tracking, and relevant predictions can be reviewed. 

This system has high interpretability for bedside providers because reviewing videos is 

intuitive. Such interpretability is not the case with other infant motion sensing technology 

(e.g., wearables, mattresses, radar, or waveform artifacts).35 Similar workflow 

integrations are used to monitor for arrhythmias and apnea-bradycardia events.  

There is broad applicability of our technology because infants are routinely 

sedated. Common reasons for sedation are mechanical ventilation, bedside procedures, 

imaging, therapeutic hypothermia, extracorporeal membrane oxygenation, and clinical 

pathology such as pulmonary hypertension and unrepaired Tetralogy of Fallot.5 

Oversedation leads to prolonged mechanical ventilation, brain injury, and drug 

withdrawal syndromes.36 Undersedation is associated with pain, pulmonary 

hypertensive crises, and adverse events including repeat imaging, catheter 

displacement, and unplanned extubation.37 Pose tracking has potential to address these 

sedation complications through more precise titration. 

Infants are also frequently evaluated for encephalopathy. Cerebral dysfunction is 

an EEG finding that can reflect encephalopathy, which can be iatrogenic or due to an 

unknown clinical pathology. For example, it could be due to medications, hypoglycemia, 

sepsis, hyperammonemia, or permanent injury after neonatal stroke or seizures.3 We 

demonstrate that pose tracking can predict cerebral dysfunction in infants, suggesting 

utility for identifying and monitoring encephalopathy. 
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There are multiple strengths in our study. We use explainable features 

(movement of anatomic landmarks) trained on a large, diverse patient population 

(25.2% white non-Hispanic, 46% female), addressing important concerns about bias 

and interpretability with deploying AI.38 One previous challenge is that pose AI trained 

on adults has worse performance on infants,39 which we overcame by training on 

patients less than one year old. Pose AI and neurologic predictions had high accuracy, 

including on held-out test datasets. This is in contrast to prior studies, which were small 

(N<30) and did not associate the learned infant pose with neurologic changes in the 

NICU. One study correlated pose with infant neuromotor risk,28 but this study was also 

small (19 infants, 9.7 hours of video) and placed infants in a bespoke setting outside the 

NICU. We related variance in movement to neurologic status, analogous to the 

relationship between heart rate variability and autonomic status.40 One limitation of pose 

AI is infant occlusion due to swaddling, however, 47% of video data was sufficient for 

movement prediction. Taken together, our results suggest that pose AI monitoring is 

feasible in the NICU.  

Our work describes new methods for neuro-telemetry and their application, and 

there are important limitations and extensive future directions. The models were trained 

on data collected at a single institution, and the pose algorithm and neurologic 

predictions need to be evaluated on video data from other institutions and technologies. 

This work was also conducted on retrospectively collected video-EEG data. Future 

adjustments to train more precise models will need to be conducted on prospective 

NICU cohorts with continuous video data available from birth. For example, in our study, 

sedation level was based on administration of sedative medications. Prospective work 

could utilize standardized sedation or analgesia scales.37 Cerebral dysfunction is an 

EEG-derived sign of encephalopathy, but future work can use other markers of 

encephalopathy like changes in feeding, respiration, or autonomic function. In addition, 

prospective video studies could correlate infant movement with other clinical changes 

not typically captured on video EEG, likely sepsis, seizures before loading ASMs, and 

withdrawal. 

 

CONCLUSION 
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Artificial intelligence promises to transform pediatrics but has seen limited 

applications for one of the most consequential outcomes– neurologic changes in the 

NICU.38 The neurologic assessment has wide-ranging consequences for healthy 

development, but neuro-telemetry has remained elusive in most NICUs, despite 

decades of work in EEG and specialized neuro-NICUs. As NICU deregionalization 

continues,41 pose AI may fill this unmet need as a minimally invasive, interpretable, and 

scalable approach to continuous neuro-monitoring in the NICU. 
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FIGURES AND TABLES 

Table 1. Clinical characteristics of all patients included in this study. 

Descriptive factor All (N=115) 

Gestational Age at Birth, median (range) 38w1d 
(23w0d – 41w1d) 

Age in months, N (%) 

< 1 77 (67.0) 
[1 − 3) 21 (18.3) 
[3 − 6) 10 (8.7) 
≥ 6 7 (6.1) 

Sex, N (%) Female 53 (46.1) 
Male 62 (53.9) 

Race, N (%) 

American Indian or Alaskan 5 (4.3) 
Asian 9 (7.8) 
Black or African American 27 (23.5) 
Native Hawaiian or Pacific Islander 1 (0.9) 
White 32 (27.8) 
Other 33 (28.7) 
Unknown 8 (7.0) 

Ethnicity, N (%) 
Hispanic/Latino 33 (28.7) 
Non-Hispanic 58 (50.4) 
Unknown 24 (20.9) 

Neurologic pathology, N (%) 

Hypoxic ischemic encephalopathy 24 (20.9) 
Genetic or idiopathic epilepsy 14 (12.2) 
Intraventricular hemorrhage 7 (6.1) 
Stroke 7 (6.1) 
Structural brain malformation 4 (3.5) 
Other 15 (13.0) 
None 44 (38.3) 

CNS active medications*, N (%)  

Levetiracetam 5 (4.3) 
Levetiracetam, phenobarbital 9 (7.8) 
Levetiracetam, phenobarbital, fos/phenytoin 4 (3.5) 
Phenobarbital 16 (13.9) 
Sedative infusion and any ASMs† 12 (10.4) 
Other combination of ASMs†† 5 (4.3) 
None 64 (55.7) 

*All medications acting on the central nervous system (CNS) that were used at any 

point while the patient was undergoing the video-EEG study. 

†ASMs=antiseizure medications 

††Other ASMs were lacosamide, oxcarbazepine, topiramate, and vigabatrin 
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Figure 1. Application of Pose AI to critically ill infants. We built a large database of 

video-EEG data (N=115 infants, 4,705 hours of video, 10.4 Tb) that is stored on a 

HIPAA-compliant supercomputing cluster. We then trained/tested a Pose AI algorithm 

on 2712 manually labelled video frames with DeepLabCut to predict infant anatomic 

landmarks. Finally, we demonstrate clinical utility of quantifying movement and use 

infant movement features to predict sedation and cerebral dysfunction. DNN=deep 

neural network. 
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Figure 2. Performance of pose recognition with DeepLabCut on a ResNet-50 
backbone. (a) The L2 pixel error was comparable to the literature and consistently low 

across all labeled non-occluded anatomic landmarks for training data (blue, median 3.2 

pixels, N=18,399), frames held out from training (orange, median 3.5 pixels, N=797), 

and frames from infants held out from training (green, median 4.6 pixels, N=973). 

Thirteen labeled landmarks (0.06%) had a L2 error >50 pixels and their errors are 

shown with arrows. (b) Pose tracking had high area under ROC curves when predicting 

landmark occlusion. (c) The percentage of key points within a reference distance 

threshold (26.2 pixels, half the height of a head) was >95% for training and test data. (d) 
Exemplary video frames from an infant with KCNQ2 epilepsy syndrome show the 

predicted anatomic landmarks during a seizure.  
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Figure 3. Classifiers trained on infant movement accurately predict sedation and 
cerebral dysfunction. (a) XGBoost receiver operating characteristic curves for 

sedation (left panel) and cerebral dysfunction classifiers (right panel) trained on pose AI 

predictions. XGBoost ROC-AUCs are from subsets of the training dataset (blue, median 

as solid line, 2.5th and 97.5th percentiles as dashed lines), and on test datasets of held-

out frames (orange) and held-out infants (green). The dashed black line is a reference, 

indicating the baseline performance of a classifier operating purely by chance (ROC-

AUC=0.5). (b) Feature importance from 100 repeats of five-fold cross-validation for both 

classifiers show that, as expected, anatomic landmarks from the limbs are more 

important than the nose and neck when predicting sedation and cerebral dysfunction. 
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Figure 4. Pose AI predicts sedation during therapeutic hypothermia for an infant 
with hypoxic ischemic encephalopathy. (a) Sedation probability (y-axis) as a function 

of age in days (x-axis) for a full-term infant transferred to Mount Sinai Hospital for 

therapeutic hypothermia. Sedation probability increased after hypothermia induction 

(see panel c) and after phenobarbital administration (red lines). (b) The EEG had 

increased epileptiform discharges at two and three days old, so phenobarbital was 

administered to protect against seizures during rewarming. (c) Temperature during 

hypothermia and rewarming. (d) Exemplary frames during increasing levels of sedation, 

each annotated with a heat map depicting infant movement over the prior five minutes. 
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